1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Storage;
|
---|
44 | using ILNumerics.Misc;
|
---|
45 | using ILNumerics.Exceptions;
|
---|
46 |
|
---|
47 | namespace ILNumerics {
|
---|
48 | public partial class ILMath {
|
---|
49 |
|
---|
50 |
|
---|
51 | |
---|
52 |
|
---|
53 |
|
---|
54 | |
---|
55 | #region HYCALPER AUTO GENERATED CODE
|
---|
56 | |
---|
57 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
58 | /// <param name="A">Input array</param>
|
---|
59 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
60 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if all elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
61 | public static ILRetArray<double> prod (ILInArray<double> A, int dim = -1) {
|
---|
62 | using (ILScope.Enter(A)) {
|
---|
63 | if (dim < 0)
|
---|
64 | dim = A.Size.WorkingDimension();
|
---|
65 | if (dim >= A.Size.NumberOfDimensions)
|
---|
66 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
67 | if (A.IsEmpty)
|
---|
68 | return new ILRetArray<double>(A.Size);
|
---|
69 | if (A.IsScalar) {
|
---|
70 | return A.C;
|
---|
71 | }
|
---|
72 | ILSize inDim = A.Size;
|
---|
73 | int[] newDims = inDim.ToIntArray();
|
---|
74 |
|
---|
75 | if (inDim[dim] == 1) return A.C;
|
---|
76 |
|
---|
77 | int newLength;
|
---|
78 |
|
---|
79 | double[] retArr;
|
---|
80 | // build ILSize
|
---|
81 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
82 | newDims[dim] = 1;
|
---|
83 | retArr = ILMemoryPool.Pool.New< double>(newLength);
|
---|
84 | ILSize newDimension = new ILSize(newDims);
|
---|
85 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
86 | int dimLen = inDim[dim];
|
---|
87 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
88 | if (dim == 0) {
|
---|
89 | #region physical along 1st leading dimension
|
---|
90 | unsafe {
|
---|
91 | fixed ( double* pOutArr = retArr)
|
---|
92 | fixed ( double* pInArr = A.GetArrayForRead()) {
|
---|
93 |
|
---|
94 | double* lastElement;
|
---|
95 |
|
---|
96 | double* tmpOut = pOutArr;
|
---|
97 |
|
---|
98 | double* tmpIn = pInArr;
|
---|
99 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
100 | lastElement = tmpIn + dimLen;
|
---|
101 | *tmpOut = 1.0;
|
---|
102 | while (tmpIn < lastElement) {
|
---|
103 |
|
---|
104 | double inVal = *(tmpIn++);
|
---|
105 |
|
---|
106 | /*dummy*/
|
---|
107 |
|
---|
108 | *tmpOut *= (double) /*dummy*/ (inVal) ;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /*dummy*/
|
---|
112 | tmpOut++;
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 | #endregion
|
---|
117 | } else {
|
---|
118 | #region physical along abitrary dimension
|
---|
119 | // sum along abitrary dimension
|
---|
120 | unsafe {
|
---|
121 | fixed ( double* pOutArr = retArr)
|
---|
122 | fixed ( double* pInArr = A.GetArrayForRead()) {
|
---|
123 |
|
---|
124 | double* lastElementOut = newLength + pOutArr - 1;
|
---|
125 | int inLength = inDim.NumberOfElements - 1;
|
---|
126 |
|
---|
127 | double* lastElementIn = pInArr + inLength;
|
---|
128 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
129 |
|
---|
130 | double* tmpOut = pOutArr;
|
---|
131 | int outLength = newLength - 1;
|
---|
132 |
|
---|
133 | double* leadEnd;
|
---|
134 |
|
---|
135 | double* tmpIn = pInArr;
|
---|
136 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
137 | leadEnd = tmpIn + dimLen * inc;
|
---|
138 | *tmpOut = 1.0;
|
---|
139 | while (tmpIn < leadEnd) {
|
---|
140 |
|
---|
141 | double inVal = *(tmpIn);
|
---|
142 | tmpIn += inc;
|
---|
143 |
|
---|
144 | /*dummy*/
|
---|
145 |
|
---|
146 | *tmpOut *= (double) /*dummy*/ (inVal) ; //
|
---|
147 | }
|
---|
148 |
|
---|
149 | /*dummy*/
|
---|
150 | tmpOut += inc;
|
---|
151 | if (tmpOut > lastElementOut)
|
---|
152 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
153 | if (tmpIn > lastElementIn)
|
---|
154 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 | #endregion
|
---|
159 | }
|
---|
160 | return new ILRetArray<double>(retArr, newDims);
|
---|
161 | }
|
---|
162 | }
|
---|
163 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
164 | /// <param name="A">Input array</param>
|
---|
165 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
166 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if all elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
167 | public static ILRetArray<Int64> prod (ILInArray<Int64> A, int dim = -1) {
|
---|
168 | using (ILScope.Enter(A)) {
|
---|
169 | if (dim < 0)
|
---|
170 | dim = A.Size.WorkingDimension();
|
---|
171 | if (dim >= A.Size.NumberOfDimensions)
|
---|
172 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
173 | if (A.IsEmpty)
|
---|
174 | return new ILRetArray<Int64>(A.Size);
|
---|
175 | if (A.IsScalar) {
|
---|
176 | return A.C;
|
---|
177 | }
|
---|
178 | ILSize inDim = A.Size;
|
---|
179 | int[] newDims = inDim.ToIntArray();
|
---|
180 |
|
---|
181 | if (inDim[dim] == 1) return A.C;
|
---|
182 |
|
---|
183 | int newLength;
|
---|
184 |
|
---|
185 | Int64[] retArr;
|
---|
186 | // build ILSize
|
---|
187 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
188 | newDims[dim] = 1;
|
---|
189 | retArr = ILMemoryPool.Pool.New< Int64>(newLength);
|
---|
190 | ILSize newDimension = new ILSize(newDims);
|
---|
191 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
192 | int dimLen = inDim[dim];
|
---|
193 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
194 | if (dim == 0) {
|
---|
195 | #region physical along 1st leading dimension
|
---|
196 | unsafe {
|
---|
197 | fixed ( Int64* pOutArr = retArr)
|
---|
198 | fixed ( Int64* pInArr = A.GetArrayForRead()) {
|
---|
199 |
|
---|
200 | Int64* lastElement;
|
---|
201 |
|
---|
202 | Int64* tmpOut = pOutArr;
|
---|
203 |
|
---|
204 | Int64* tmpIn = pInArr;
|
---|
205 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
206 | lastElement = tmpIn + dimLen;
|
---|
207 | *tmpOut = 1;
|
---|
208 | while (tmpIn < lastElement) {
|
---|
209 |
|
---|
210 | Int64 inVal = *(tmpIn++);
|
---|
211 |
|
---|
212 | /*dummy*/
|
---|
213 |
|
---|
214 | *tmpOut *= (Int64) /*dummy*/ (inVal) ;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /*dummy*/
|
---|
218 | tmpOut++;
|
---|
219 | }
|
---|
220 | }
|
---|
221 | }
|
---|
222 | #endregion
|
---|
223 | } else {
|
---|
224 | #region physical along abitrary dimension
|
---|
225 | // sum along abitrary dimension
|
---|
226 | unsafe {
|
---|
227 | fixed ( Int64* pOutArr = retArr)
|
---|
228 | fixed ( Int64* pInArr = A.GetArrayForRead()) {
|
---|
229 |
|
---|
230 | Int64* lastElementOut = newLength + pOutArr - 1;
|
---|
231 | int inLength = inDim.NumberOfElements - 1;
|
---|
232 |
|
---|
233 | Int64* lastElementIn = pInArr + inLength;
|
---|
234 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
235 |
|
---|
236 | Int64* tmpOut = pOutArr;
|
---|
237 | int outLength = newLength - 1;
|
---|
238 |
|
---|
239 | Int64* leadEnd;
|
---|
240 |
|
---|
241 | Int64* tmpIn = pInArr;
|
---|
242 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
243 | leadEnd = tmpIn + dimLen * inc;
|
---|
244 | *tmpOut = 1;
|
---|
245 | while (tmpIn < leadEnd) {
|
---|
246 |
|
---|
247 | Int64 inVal = *(tmpIn);
|
---|
248 | tmpIn += inc;
|
---|
249 |
|
---|
250 | /*dummy*/
|
---|
251 |
|
---|
252 | *tmpOut *= (Int64) /*dummy*/ (inVal) ; //
|
---|
253 | }
|
---|
254 |
|
---|
255 | /*dummy*/
|
---|
256 | tmpOut += inc;
|
---|
257 | if (tmpOut > lastElementOut)
|
---|
258 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
259 | if (tmpIn > lastElementIn)
|
---|
260 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 | #endregion
|
---|
265 | }
|
---|
266 | return new ILRetArray<Int64>(retArr, newDims);
|
---|
267 | }
|
---|
268 | }
|
---|
269 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
270 | /// <param name="A">Input array</param>
|
---|
271 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
272 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if all elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
273 | public static ILRetArray<Int32> prod (ILInArray<Int32> A, int dim = -1) {
|
---|
274 | using (ILScope.Enter(A)) {
|
---|
275 | if (dim < 0)
|
---|
276 | dim = A.Size.WorkingDimension();
|
---|
277 | if (dim >= A.Size.NumberOfDimensions)
|
---|
278 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
279 | if (A.IsEmpty)
|
---|
280 | return new ILRetArray<Int32>(A.Size);
|
---|
281 | if (A.IsScalar) {
|
---|
282 | return A.C;
|
---|
283 | }
|
---|
284 | ILSize inDim = A.Size;
|
---|
285 | int[] newDims = inDim.ToIntArray();
|
---|
286 |
|
---|
287 | if (inDim[dim] == 1) return A.C;
|
---|
288 |
|
---|
289 | int newLength;
|
---|
290 |
|
---|
291 | Int32[] retArr;
|
---|
292 | // build ILSize
|
---|
293 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
294 | newDims[dim] = 1;
|
---|
295 | retArr = ILMemoryPool.Pool.New< Int32>(newLength);
|
---|
296 | ILSize newDimension = new ILSize(newDims);
|
---|
297 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
298 | int dimLen = inDim[dim];
|
---|
299 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
300 | if (dim == 0) {
|
---|
301 | #region physical along 1st leading dimension
|
---|
302 | unsafe {
|
---|
303 | fixed ( Int32* pOutArr = retArr)
|
---|
304 | fixed ( Int32* pInArr = A.GetArrayForRead()) {
|
---|
305 |
|
---|
306 | Int32* lastElement;
|
---|
307 |
|
---|
308 | Int32* tmpOut = pOutArr;
|
---|
309 |
|
---|
310 | Int32* tmpIn = pInArr;
|
---|
311 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
312 | lastElement = tmpIn + dimLen;
|
---|
313 | *tmpOut = 1;
|
---|
314 | while (tmpIn < lastElement) {
|
---|
315 |
|
---|
316 | Int32 inVal = *(tmpIn++);
|
---|
317 |
|
---|
318 | /*dummy*/
|
---|
319 |
|
---|
320 | *tmpOut *= (Int32) /*dummy*/ (inVal) ;
|
---|
321 | }
|
---|
322 |
|
---|
323 | /*dummy*/
|
---|
324 | tmpOut++;
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|
328 | #endregion
|
---|
329 | } else {
|
---|
330 | #region physical along abitrary dimension
|
---|
331 | // sum along abitrary dimension
|
---|
332 | unsafe {
|
---|
333 | fixed ( Int32* pOutArr = retArr)
|
---|
334 | fixed ( Int32* pInArr = A.GetArrayForRead()) {
|
---|
335 |
|
---|
336 | Int32* lastElementOut = newLength + pOutArr - 1;
|
---|
337 | int inLength = inDim.NumberOfElements - 1;
|
---|
338 |
|
---|
339 | Int32* lastElementIn = pInArr + inLength;
|
---|
340 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
341 |
|
---|
342 | Int32* tmpOut = pOutArr;
|
---|
343 | int outLength = newLength - 1;
|
---|
344 |
|
---|
345 | Int32* leadEnd;
|
---|
346 |
|
---|
347 | Int32* tmpIn = pInArr;
|
---|
348 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
349 | leadEnd = tmpIn + dimLen * inc;
|
---|
350 | *tmpOut = 1;
|
---|
351 | while (tmpIn < leadEnd) {
|
---|
352 |
|
---|
353 | Int32 inVal = *(tmpIn);
|
---|
354 | tmpIn += inc;
|
---|
355 |
|
---|
356 | /*dummy*/
|
---|
357 |
|
---|
358 | *tmpOut *= (Int32) /*dummy*/ (inVal) ; //
|
---|
359 | }
|
---|
360 |
|
---|
361 | /*dummy*/
|
---|
362 | tmpOut += inc;
|
---|
363 | if (tmpOut > lastElementOut)
|
---|
364 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
365 | if (tmpIn > lastElementIn)
|
---|
366 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 | #endregion
|
---|
371 | }
|
---|
372 | return new ILRetArray<Int32>(retArr, newDims);
|
---|
373 | }
|
---|
374 | }
|
---|
375 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
376 | /// <param name="A">Input array</param>
|
---|
377 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
378 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if all elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
379 | public static ILRetArray<byte> prod (ILInArray<byte> A, int dim = -1) {
|
---|
380 | using (ILScope.Enter(A)) {
|
---|
381 | if (dim < 0)
|
---|
382 | dim = A.Size.WorkingDimension();
|
---|
383 | if (dim >= A.Size.NumberOfDimensions)
|
---|
384 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
385 | if (A.IsEmpty)
|
---|
386 | return new ILRetArray<byte>(A.Size);
|
---|
387 | if (A.IsScalar) {
|
---|
388 | return A.C;
|
---|
389 | }
|
---|
390 | ILSize inDim = A.Size;
|
---|
391 | int[] newDims = inDim.ToIntArray();
|
---|
392 |
|
---|
393 | if (inDim[dim] == 1) return A.C;
|
---|
394 |
|
---|
395 | int newLength;
|
---|
396 |
|
---|
397 | byte[] retArr;
|
---|
398 | // build ILSize
|
---|
399 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
400 | newDims[dim] = 1;
|
---|
401 | retArr = ILMemoryPool.Pool.New< byte>(newLength);
|
---|
402 | ILSize newDimension = new ILSize(newDims);
|
---|
403 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
404 | int dimLen = inDim[dim];
|
---|
405 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
406 | if (dim == 0) {
|
---|
407 | #region physical along 1st leading dimension
|
---|
408 | unsafe {
|
---|
409 | fixed ( byte* pOutArr = retArr)
|
---|
410 | fixed ( byte* pInArr = A.GetArrayForRead()) {
|
---|
411 |
|
---|
412 | byte* lastElement;
|
---|
413 |
|
---|
414 | byte* tmpOut = pOutArr;
|
---|
415 |
|
---|
416 | byte* tmpIn = pInArr;
|
---|
417 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
418 | lastElement = tmpIn + dimLen;
|
---|
419 | *tmpOut = (byte)1;
|
---|
420 | while (tmpIn < lastElement) {
|
---|
421 |
|
---|
422 | byte inVal = *(tmpIn++);
|
---|
423 |
|
---|
424 | /*dummy*/
|
---|
425 |
|
---|
426 | *tmpOut *= (byte) /*dummy*/ (inVal) ;
|
---|
427 | }
|
---|
428 |
|
---|
429 | /*dummy*/
|
---|
430 | tmpOut++;
|
---|
431 | }
|
---|
432 | }
|
---|
433 | }
|
---|
434 | #endregion
|
---|
435 | } else {
|
---|
436 | #region physical along abitrary dimension
|
---|
437 | // sum along abitrary dimension
|
---|
438 | unsafe {
|
---|
439 | fixed ( byte* pOutArr = retArr)
|
---|
440 | fixed ( byte* pInArr = A.GetArrayForRead()) {
|
---|
441 |
|
---|
442 | byte* lastElementOut = newLength + pOutArr - 1;
|
---|
443 | int inLength = inDim.NumberOfElements - 1;
|
---|
444 |
|
---|
445 | byte* lastElementIn = pInArr + inLength;
|
---|
446 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
447 |
|
---|
448 | byte* tmpOut = pOutArr;
|
---|
449 | int outLength = newLength - 1;
|
---|
450 |
|
---|
451 | byte* leadEnd;
|
---|
452 |
|
---|
453 | byte* tmpIn = pInArr;
|
---|
454 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
455 | leadEnd = tmpIn + dimLen * inc;
|
---|
456 | *tmpOut = (byte)1;
|
---|
457 | while (tmpIn < leadEnd) {
|
---|
458 |
|
---|
459 | byte inVal = *(tmpIn);
|
---|
460 | tmpIn += inc;
|
---|
461 |
|
---|
462 | /*dummy*/
|
---|
463 |
|
---|
464 | *tmpOut *= (byte) /*dummy*/ (inVal) ; //
|
---|
465 | }
|
---|
466 |
|
---|
467 | /*dummy*/
|
---|
468 | tmpOut += inc;
|
---|
469 | if (tmpOut > lastElementOut)
|
---|
470 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
471 | if (tmpIn > lastElementIn)
|
---|
472 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
473 | }
|
---|
474 | }
|
---|
475 | }
|
---|
476 | #endregion
|
---|
477 | }
|
---|
478 | return new ILRetArray<byte>(retArr, newDims);
|
---|
479 | }
|
---|
480 | }
|
---|
481 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
482 | /// <param name="A">Input array</param>
|
---|
483 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
484 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if all elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
485 | public static ILRetArray<fcomplex> prod (ILInArray<fcomplex> A, int dim = -1) {
|
---|
486 | using (ILScope.Enter(A)) {
|
---|
487 | if (dim < 0)
|
---|
488 | dim = A.Size.WorkingDimension();
|
---|
489 | if (dim >= A.Size.NumberOfDimensions)
|
---|
490 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
491 | if (A.IsEmpty)
|
---|
492 | return new ILRetArray<fcomplex>(A.Size);
|
---|
493 | if (A.IsScalar) {
|
---|
494 | return A.C;
|
---|
495 | }
|
---|
496 | ILSize inDim = A.Size;
|
---|
497 | int[] newDims = inDim.ToIntArray();
|
---|
498 |
|
---|
499 | if (inDim[dim] == 1) return A.C;
|
---|
500 |
|
---|
501 | int newLength;
|
---|
502 |
|
---|
503 | fcomplex[] retArr;
|
---|
504 | // build ILSize
|
---|
505 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
506 | newDims[dim] = 1;
|
---|
507 | retArr = ILMemoryPool.Pool.New< fcomplex>(newLength);
|
---|
508 | ILSize newDimension = new ILSize(newDims);
|
---|
509 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
510 | int dimLen = inDim[dim];
|
---|
511 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
512 | if (dim == 0) {
|
---|
513 | #region physical along 1st leading dimension
|
---|
514 | unsafe {
|
---|
515 | fixed ( fcomplex* pOutArr = retArr)
|
---|
516 | fixed ( fcomplex* pInArr = A.GetArrayForRead()) {
|
---|
517 |
|
---|
518 | fcomplex* lastElement;
|
---|
519 |
|
---|
520 | fcomplex* tmpOut = pOutArr;
|
---|
521 |
|
---|
522 | fcomplex* tmpIn = pInArr;
|
---|
523 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
524 | lastElement = tmpIn + dimLen;
|
---|
525 | *tmpOut = new fcomplex(1f,0f);
|
---|
526 | while (tmpIn < lastElement) {
|
---|
527 |
|
---|
528 | fcomplex inVal = *(tmpIn++);
|
---|
529 |
|
---|
530 | /*dummy*/
|
---|
531 |
|
---|
532 | *tmpOut *= (fcomplex) /*dummy*/ (inVal) ;
|
---|
533 | }
|
---|
534 |
|
---|
535 | /*dummy*/
|
---|
536 | tmpOut++;
|
---|
537 | }
|
---|
538 | }
|
---|
539 | }
|
---|
540 | #endregion
|
---|
541 | } else {
|
---|
542 | #region physical along abitrary dimension
|
---|
543 | // sum along abitrary dimension
|
---|
544 | unsafe {
|
---|
545 | fixed ( fcomplex* pOutArr = retArr)
|
---|
546 | fixed ( fcomplex* pInArr = A.GetArrayForRead()) {
|
---|
547 |
|
---|
548 | fcomplex* lastElementOut = newLength + pOutArr - 1;
|
---|
549 | int inLength = inDim.NumberOfElements - 1;
|
---|
550 |
|
---|
551 | fcomplex* lastElementIn = pInArr + inLength;
|
---|
552 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
553 |
|
---|
554 | fcomplex* tmpOut = pOutArr;
|
---|
555 | int outLength = newLength - 1;
|
---|
556 |
|
---|
557 | fcomplex* leadEnd;
|
---|
558 |
|
---|
559 | fcomplex* tmpIn = pInArr;
|
---|
560 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
561 | leadEnd = tmpIn + dimLen * inc;
|
---|
562 | *tmpOut = new fcomplex(1f,0f);
|
---|
563 | while (tmpIn < leadEnd) {
|
---|
564 |
|
---|
565 | fcomplex inVal = *(tmpIn);
|
---|
566 | tmpIn += inc;
|
---|
567 |
|
---|
568 | /*dummy*/
|
---|
569 |
|
---|
570 | *tmpOut *= (fcomplex) /*dummy*/ (inVal) ; //
|
---|
571 | }
|
---|
572 |
|
---|
573 | /*dummy*/
|
---|
574 | tmpOut += inc;
|
---|
575 | if (tmpOut > lastElementOut)
|
---|
576 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
577 | if (tmpIn > lastElementIn)
|
---|
578 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
579 | }
|
---|
580 | }
|
---|
581 | }
|
---|
582 | #endregion
|
---|
583 | }
|
---|
584 | return new ILRetArray<fcomplex>(retArr, newDims);
|
---|
585 | }
|
---|
586 | }
|
---|
587 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
588 | /// <param name="A">Input array</param>
|
---|
589 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
590 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if any elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
591 | public static ILRetArray<float> prod (ILInArray<float> A, int dim = -1) {
|
---|
592 | using (ILScope.Enter(A)) {
|
---|
593 | if (dim < 0)
|
---|
594 | dim = A.Size.WorkingDimension();
|
---|
595 | if (dim >= A.Size.NumberOfDimensions)
|
---|
596 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
597 | if (A.IsEmpty)
|
---|
598 | return new ILRetArray<float>(A.Size);
|
---|
599 | if (A.IsScalar) {
|
---|
600 | return A.C;
|
---|
601 | }
|
---|
602 | ILSize inDim = A.Size;
|
---|
603 | int[] newDims = inDim.ToIntArray();
|
---|
604 |
|
---|
605 | if (inDim[dim] == 1) return A.C;
|
---|
606 |
|
---|
607 | int newLength;
|
---|
608 |
|
---|
609 | float[] retArr;
|
---|
610 | // build ILSize
|
---|
611 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
612 | newDims[dim] = 1;
|
---|
613 | retArr = ILMemoryPool.Pool.New< float>(newLength);
|
---|
614 | ILSize newDimension = new ILSize(newDims);
|
---|
615 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
616 | int dimLen = inDim[dim];
|
---|
617 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
618 | if (dim == 0) {
|
---|
619 | #region physical along 1st leading dimension
|
---|
620 | unsafe {
|
---|
621 | fixed ( float* pOutArr = retArr)
|
---|
622 | fixed ( float* pInArr = A.GetArrayForRead()) {
|
---|
623 |
|
---|
624 | float* lastElement;
|
---|
625 |
|
---|
626 | float* tmpOut = pOutArr;
|
---|
627 |
|
---|
628 | float* tmpIn = pInArr;
|
---|
629 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
630 | lastElement = tmpIn + dimLen;
|
---|
631 | *tmpOut = 1f;
|
---|
632 | while (tmpIn < lastElement) {
|
---|
633 |
|
---|
634 | float inVal = *(tmpIn++);
|
---|
635 |
|
---|
636 | /*dummy*/
|
---|
637 |
|
---|
638 | *tmpOut *= (float) /*dummy*/ (inVal) ;
|
---|
639 | }
|
---|
640 |
|
---|
641 | /*dummy*/
|
---|
642 | tmpOut++;
|
---|
643 | }
|
---|
644 | }
|
---|
645 | }
|
---|
646 | #endregion
|
---|
647 | } else {
|
---|
648 | #region physical along abitrary dimension
|
---|
649 | // sum along abitrary dimension
|
---|
650 | unsafe {
|
---|
651 | fixed ( float* pOutArr = retArr)
|
---|
652 | fixed ( float* pInArr = A.GetArrayForRead()) {
|
---|
653 |
|
---|
654 | float* lastElementOut = newLength + pOutArr - 1;
|
---|
655 | int inLength = inDim.NumberOfElements - 1;
|
---|
656 |
|
---|
657 | float* lastElementIn = pInArr + inLength;
|
---|
658 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
659 |
|
---|
660 | float* tmpOut = pOutArr;
|
---|
661 | int outLength = newLength - 1;
|
---|
662 |
|
---|
663 | float* leadEnd;
|
---|
664 |
|
---|
665 | float* tmpIn = pInArr;
|
---|
666 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
667 | leadEnd = tmpIn + dimLen * inc;
|
---|
668 | *tmpOut = 1f;
|
---|
669 | while (tmpIn < leadEnd) {
|
---|
670 |
|
---|
671 | float inVal = *(tmpIn);
|
---|
672 | tmpIn += inc;
|
---|
673 |
|
---|
674 | /*dummy*/
|
---|
675 |
|
---|
676 | *tmpOut *= (float) /*dummy*/ (inVal) ; //
|
---|
677 | }
|
---|
678 |
|
---|
679 | /*dummy*/
|
---|
680 | tmpOut += inc;
|
---|
681 | if (tmpOut > lastElementOut)
|
---|
682 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
683 | if (tmpIn > lastElementIn)
|
---|
684 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
685 | }
|
---|
686 | }
|
---|
687 | }
|
---|
688 | #endregion
|
---|
689 | }
|
---|
690 | return new ILRetArray<float>(retArr, newDims);
|
---|
691 | }
|
---|
692 | }
|
---|
693 | /// <summary>Product of array elements along specific dimension</summary>
|
---|
694 | /// <param name="A">Input array</param>
|
---|
695 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
696 | /// <returns><para>Array of same size as A, having dim's dimension reduced to 1, if any elements along that dimension are nonzero, '0' else. </para></returns>
|
---|
697 | public static ILRetArray<complex> prod (ILInArray<complex> A, int dim = -1) {
|
---|
698 | using (ILScope.Enter(A)) {
|
---|
699 | if (dim < 0)
|
---|
700 | dim = A.Size.WorkingDimension();
|
---|
701 | if (dim >= A.Size.NumberOfDimensions)
|
---|
702 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
703 | if (A.IsEmpty)
|
---|
704 | return new ILRetArray<complex>(A.Size);
|
---|
705 | if (A.IsScalar) {
|
---|
706 | return A.C;
|
---|
707 | }
|
---|
708 | ILSize inDim = A.Size;
|
---|
709 | int[] newDims = inDim.ToIntArray();
|
---|
710 |
|
---|
711 | if (inDim[dim] == 1) return A.C;
|
---|
712 |
|
---|
713 | int newLength;
|
---|
714 |
|
---|
715 | complex[] retArr;
|
---|
716 | // build ILSize
|
---|
717 | newLength = inDim.NumberOfElements / newDims[dim];
|
---|
718 | newDims[dim] = 1;
|
---|
719 | retArr = ILMemoryPool.Pool.New< complex>(newLength);
|
---|
720 | ILSize newDimension = new ILSize(newDims);
|
---|
721 | int incOut = newDimension.SequentialIndexDistance(dim);
|
---|
722 | int dimLen = inDim[dim];
|
---|
723 | int nrHigherDims = inDim.NumberOfElements / dimLen;
|
---|
724 | if (dim == 0) {
|
---|
725 | #region physical along 1st leading dimension
|
---|
726 | unsafe {
|
---|
727 | fixed ( complex* pOutArr = retArr)
|
---|
728 | fixed ( complex* pInArr = A.GetArrayForRead()) {
|
---|
729 |
|
---|
730 | complex* lastElement;
|
---|
731 |
|
---|
732 | complex* tmpOut = pOutArr;
|
---|
733 |
|
---|
734 | complex* tmpIn = pInArr;
|
---|
735 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
736 | lastElement = tmpIn + dimLen;
|
---|
737 | *tmpOut = new complex(1.0,0.0);
|
---|
738 | while (tmpIn < lastElement) {
|
---|
739 |
|
---|
740 | complex inVal = *(tmpIn++);
|
---|
741 |
|
---|
742 | /*dummy*/
|
---|
743 |
|
---|
744 | *tmpOut *= (complex) /*dummy*/ (inVal) ;
|
---|
745 | }
|
---|
746 |
|
---|
747 | /*dummy*/
|
---|
748 | tmpOut++;
|
---|
749 | }
|
---|
750 | }
|
---|
751 | }
|
---|
752 | #endregion
|
---|
753 | } else {
|
---|
754 | #region physical along abitrary dimension
|
---|
755 | // sum along abitrary dimension
|
---|
756 | unsafe {
|
---|
757 | fixed ( complex* pOutArr = retArr)
|
---|
758 | fixed ( complex* pInArr = A.GetArrayForRead()) {
|
---|
759 |
|
---|
760 | complex* lastElementOut = newLength + pOutArr - 1;
|
---|
761 | int inLength = inDim.NumberOfElements - 1;
|
---|
762 |
|
---|
763 | complex* lastElementIn = pInArr + inLength;
|
---|
764 | int inc = inDim.SequentialIndexDistance(dim);
|
---|
765 |
|
---|
766 | complex* tmpOut = pOutArr;
|
---|
767 | int outLength = newLength - 1;
|
---|
768 |
|
---|
769 | complex* leadEnd;
|
---|
770 |
|
---|
771 | complex* tmpIn = pInArr;
|
---|
772 | for (int h = nrHigherDims; h-- > 0; ) {
|
---|
773 | leadEnd = tmpIn + dimLen * inc;
|
---|
774 | *tmpOut = new complex(1.0,0.0);
|
---|
775 | while (tmpIn < leadEnd) {
|
---|
776 |
|
---|
777 | complex inVal = *(tmpIn);
|
---|
778 | tmpIn += inc;
|
---|
779 |
|
---|
780 | /*dummy*/
|
---|
781 |
|
---|
782 | *tmpOut *= (complex) /*dummy*/ (inVal) ; //
|
---|
783 | }
|
---|
784 |
|
---|
785 | /*dummy*/
|
---|
786 | tmpOut += inc;
|
---|
787 | if (tmpOut > lastElementOut)
|
---|
788 | tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
|
---|
789 | if (tmpIn > lastElementIn)
|
---|
790 | tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
|
---|
791 | }
|
---|
792 | }
|
---|
793 | }
|
---|
794 | #endregion
|
---|
795 | }
|
---|
796 | return new ILRetArray<complex>(retArr, newDims);
|
---|
797 | }
|
---|
798 | }
|
---|
799 |
|
---|
800 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
801 |
|
---|
802 | }
|
---|
803 | } |
---|