1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Storage;
|
---|
44 | using ILNumerics.Misc;
|
---|
45 | using ILNumerics.Exceptions;
|
---|
46 | using ILNumerics;
|
---|
47 |
|
---|
48 | namespace ILNumerics {
|
---|
49 |
|
---|
50 | public partial class ILMath {
|
---|
51 |
|
---|
52 | |
---|
53 |
|
---|
54 |
|
---|
55 | /// <summary>
|
---|
56 | /// Pseudo - inverse of input argument M
|
---|
57 | /// </summary>
|
---|
58 | /// <param name="M">Input matrix M</param>
|
---|
59 | /// <returns>Pseudo inverse of input matrix M</returns>
|
---|
60 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
61 | /// of input matrix M. The return value will be of the same size as
|
---|
62 | /// the transposed of M. it will satisfy the following conditions:
|
---|
63 | /// <list type="bullet">
|
---|
64 | /// <item>M * pinv(M) * M = M </item>
|
---|
65 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
66 | /// <item>pinv(M) * M is hermitian</item>
|
---|
67 | /// <item>M * pinv(M) is hermitian</item>
|
---|
68 | /// </list>
|
---|
69 | /// pinv uses Lapack's function svd internally. Any singular values less than
|
---|
70 | /// the default tolerance will be set to zero. As tolerance the following equation is used: \\
|
---|
71 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
72 | /// with
|
---|
73 | /// <list type="bullet">
|
---|
74 | /// <item>length(M) - the longest dimension of M</item>
|
---|
75 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
76 | /// <item>Double.epsilon - the smallest number greater than zero</item>
|
---|
77 | /// </list>
|
---|
78 | /// You may use a overloaded function to define an alternative tolerance.
|
---|
79 | /// </remarks>
|
---|
80 | /// <seealso cref="ILNumerics.ILMath.pinv(ILInArray{double}, double)"/>
|
---|
81 | public static ILRetArray< double > pinv(ILInArray< double > M) {
|
---|
82 | return pinv(M, -1);
|
---|
83 | }
|
---|
84 | /// <summary>
|
---|
85 | /// Pseudo inverse of input matrix M
|
---|
86 | /// </summary>
|
---|
87 | /// <param name="M">Input matrix M</param>
|
---|
88 | /// <param name="tolerance">Tolerance, see remarks (default = -1; use default tolerance)</param>
|
---|
89 | /// <returns>Pseudo inverse of M</returns>
|
---|
90 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
91 | /// of input matrix M. The return value will be of the same size as
|
---|
92 | /// the transposed of M. it will satisfy the following conditions:
|
---|
93 | /// <list type="bullet">
|
---|
94 | /// <item>M * pinv(M) * M = M </item>
|
---|
95 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
96 | /// <item>pinv(M) * M is hermitian</item>
|
---|
97 | /// <item>M * pinv(M) is hermitian</item>
|
---|
98 | /// </list>
|
---|
99 | /// pinv uses LAPACK's function svd internally. Any singular values less than
|
---|
100 | /// tolerance will be set to zero. If tolerance is less than zero, the following equation
|
---|
101 | /// is used as default: \\
|
---|
102 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
103 | /// with
|
---|
104 | /// <list type="bullet">
|
---|
105 | /// <item>length(M) - the longest dimension of M</item>
|
---|
106 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
107 | /// <item>Double.epsilon - the smallest constructable double precision number greater than zero</item>
|
---|
108 | /// </list>
|
---|
109 | /// </remarks>
|
---|
110 | public static ILRetArray< double > pinv(ILInArray< double > M, double tolerance) {
|
---|
111 | using (ILScope.Enter(M)) {
|
---|
112 | // let svd check the dimensions!
|
---|
113 | //if (M.Dimensions.NumberOfDimensions > 2)
|
---|
114 | // throw new ILDimensionMismatchException("pinv: ...");
|
---|
115 |
|
---|
116 | // in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
|
---|
117 | if (M.Size[0] < M.Size[1]) {
|
---|
118 |
|
---|
119 | return pinv(M.T, tolerance).T;
|
---|
120 | }
|
---|
121 | if (M.IsScalar)
|
---|
122 | return 1.0 / M;
|
---|
123 |
|
---|
124 | ILArray< double> U = empty< double>(ILSize.Empty00);
|
---|
125 | ILArray< double> V = empty< double>(ILSize.Empty00);
|
---|
126 | ILArray< double> S = svd(M, U, V, true, false);
|
---|
127 |
|
---|
128 | int m = M.Size[0];
|
---|
129 | int n = M.Size[1];
|
---|
130 |
|
---|
131 | ILArray< double> s;
|
---|
132 | switch (m) {
|
---|
133 | case 0:
|
---|
134 | s = zeros< double>(ILSize.Scalar1_1);
|
---|
135 | break;
|
---|
136 | case 1:
|
---|
137 | s = S[0];
|
---|
138 | break;
|
---|
139 | default:
|
---|
140 | s = diag< double>(S);
|
---|
141 | break;
|
---|
142 | }
|
---|
143 | if (tolerance < 0) {
|
---|
144 | tolerance = ( double)(M.Size.Longest * max(s).GetValue(0) * MachineParameterDouble.eps);
|
---|
145 | }
|
---|
146 | // sum vector elements: s is dense vector returned from svd
|
---|
147 | int count = (int)sum(s > ( double)tolerance);
|
---|
148 |
|
---|
149 | ILArray< double> Ret = empty< double>(ILSize.Empty00);
|
---|
150 | if (count == 0)
|
---|
151 | S.a = zeros< double>(new ILSize(n, m));
|
---|
152 | else {
|
---|
153 | ILArray< double> OneVec = array< double>( 1.0, count, 1);
|
---|
154 |
|
---|
155 | S.a = diag(divide(OneVec, s[r(0,count - 1)]));
|
---|
156 |
|
---|
157 | U.a = U[full,r(0,count-1)].T;
|
---|
158 |
|
---|
159 | Ret.a = multiply(multiply(V[full,r(0,count - 1)], S), U);
|
---|
160 | }
|
---|
161 | return Ret;
|
---|
162 | }
|
---|
163 | }
|
---|
164 | |
---|
165 | #region HYCALPER AUTO GENERATED CODE
|
---|
166 | |
---|
167 |
|
---|
168 |
|
---|
169 | /// <summary>
|
---|
170 | /// Pseudo - inverse of input argument M
|
---|
171 | /// </summary>
|
---|
172 | /// <param name="M">Input matrix M</param>
|
---|
173 | /// <returns>Pseudo inverse of input matrix M</returns>
|
---|
174 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
175 | /// of input matrix M. The return value will be of the same size as
|
---|
176 | /// the transposed of M. it will satisfy the following conditions:
|
---|
177 | /// <list type="bullet">
|
---|
178 | /// <item>M * pinv(M) * M = M </item>
|
---|
179 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
180 | /// <item>pinv(M) * M is hermitian</item>
|
---|
181 | /// <item>M * pinv(M) is hermitian</item>
|
---|
182 | /// </list>
|
---|
183 | /// pinv uses Lapack's function svd internally. Any singular values less than
|
---|
184 | /// the default tolerance will be set to zero. As tolerance the following equation is used: \\
|
---|
185 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
186 | /// with
|
---|
187 | /// <list type="bullet">
|
---|
188 | /// <item>length(M) - the longest dimension of M</item>
|
---|
189 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
190 | /// <item>Double.epsilon - the smallest number greater than zero</item>
|
---|
191 | /// </list>
|
---|
192 | /// You may use a overloaded function to define an alternative tolerance.
|
---|
193 | /// </remarks>
|
---|
194 | /// <seealso cref="ILNumerics.ILMath.pinv(ILInArray{double}, double)"/>
|
---|
195 | public static ILRetArray< float > pinv(ILInArray< float > M) {
|
---|
196 | return pinv(M, -1);
|
---|
197 | }
|
---|
198 | /// <summary>
|
---|
199 | /// Pseudo inverse of input matrix M
|
---|
200 | /// </summary>
|
---|
201 | /// <param name="M">Input matrix M</param>
|
---|
202 | /// <param name="tolerance">Tolerance, see remarks (default = -1; use default tolerance)</param>
|
---|
203 | /// <returns>Pseudo inverse of M</returns>
|
---|
204 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
205 | /// of input matrix M. The return value will be of the same size as
|
---|
206 | /// the transposed of M. it will satisfy the following conditions:
|
---|
207 | /// <list type="bullet">
|
---|
208 | /// <item>M * pinv(M) * M = M </item>
|
---|
209 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
210 | /// <item>pinv(M) * M is hermitian</item>
|
---|
211 | /// <item>M * pinv(M) is hermitian</item>
|
---|
212 | /// </list>
|
---|
213 | /// pinv uses LAPACK's function svd internally. Any singular values less than
|
---|
214 | /// tolerance will be set to zero. If tolerance is less than zero, the following equation
|
---|
215 | /// is used as default: \\
|
---|
216 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
217 | /// with
|
---|
218 | /// <list type="bullet">
|
---|
219 | /// <item>length(M) - the longest dimension of M</item>
|
---|
220 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
221 | /// <item>Double.epsilon - the smallest constructable double precision number greater than zero</item>
|
---|
222 | /// </list>
|
---|
223 | /// </remarks>
|
---|
224 | public static ILRetArray< float > pinv(ILInArray< float > M, float tolerance) {
|
---|
225 | using (ILScope.Enter(M)) {
|
---|
226 | // let svd check the dimensions!
|
---|
227 | //if (M.Dimensions.NumberOfDimensions > 2)
|
---|
228 | // throw new ILDimensionMismatchException("pinv: ...");
|
---|
229 |
|
---|
230 | // in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
|
---|
231 | if (M.Size[0] < M.Size[1]) {
|
---|
232 | return pinv(M.T, tolerance).T;
|
---|
233 | }
|
---|
234 | if (M.IsScalar)
|
---|
235 | return 1 / M;
|
---|
236 |
|
---|
237 | ILArray< float> U = empty< float>(ILSize.Empty00);
|
---|
238 | ILArray< float> V = empty< float>(ILSize.Empty00);
|
---|
239 | ILArray< float> S = svd(M, U, V, true, false);
|
---|
240 |
|
---|
241 | int m = M.Size[0];
|
---|
242 | int n = M.Size[1];
|
---|
243 |
|
---|
244 | ILArray< float> s;
|
---|
245 | switch (m) {
|
---|
246 | case 0:
|
---|
247 | s = zeros< float>(ILSize.Scalar1_1);
|
---|
248 | break;
|
---|
249 | case 1:
|
---|
250 | s = S[0];
|
---|
251 | break;
|
---|
252 | default:
|
---|
253 | s = diag< float>(S);
|
---|
254 | break;
|
---|
255 | }
|
---|
256 | if (tolerance < 0) {
|
---|
257 | tolerance = ( float)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterSingle.eps);
|
---|
258 | }
|
---|
259 | // sum vector elements: s is dense vector returned from svd
|
---|
260 | int count = (int)sum(s > ( float)tolerance);
|
---|
261 |
|
---|
262 | ILArray< float> Ret = empty< float>(ILSize.Empty00);
|
---|
263 | if (count == 0)
|
---|
264 | S.a = zeros< float>(new ILSize(n, m));
|
---|
265 | else {
|
---|
266 | ILArray< float> OneVec = array< float>( 1.0f, count, 1);
|
---|
267 |
|
---|
268 | S.a = diag(divide(OneVec, s[r(0,count - 1)]));
|
---|
269 | U = U[":;0:" + (count - 1)].T;
|
---|
270 | Ret = multiply(multiply(V[":;0:" + (count - 1)], S), U);
|
---|
271 | }
|
---|
272 | return Ret;
|
---|
273 | }
|
---|
274 | }
|
---|
275 |
|
---|
276 |
|
---|
277 | /// <summary>
|
---|
278 | /// Pseudo - inverse of input argument M
|
---|
279 | /// </summary>
|
---|
280 | /// <param name="M">Input matrix M</param>
|
---|
281 | /// <returns>Pseudo inverse of input matrix M</returns>
|
---|
282 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
283 | /// of input matrix M. The return value will be of the same size as
|
---|
284 | /// the transposed of M. it will satisfy the following conditions:
|
---|
285 | /// <list type="bullet">
|
---|
286 | /// <item>M * pinv(M) * M = M </item>
|
---|
287 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
288 | /// <item>pinv(M) * M is hermitian</item>
|
---|
289 | /// <item>M * pinv(M) is hermitian</item>
|
---|
290 | /// </list>
|
---|
291 | /// pinv uses Lapack's function svd internally. Any singular values less than
|
---|
292 | /// the default tolerance will be set to zero. As tolerance the following equation is used: \\
|
---|
293 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
294 | /// with
|
---|
295 | /// <list type="bullet">
|
---|
296 | /// <item>length(M) - the longest dimension of M</item>
|
---|
297 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
298 | /// <item>Double.epsilon - the smallest number greater than zero</item>
|
---|
299 | /// </list>
|
---|
300 | /// You may use a overloaded function to define an alternative tolerance.
|
---|
301 | /// </remarks>
|
---|
302 | /// <seealso cref="ILNumerics.ILMath.pinv(ILInArray{double}, double)"/>
|
---|
303 | public static ILRetArray< fcomplex > pinv(ILInArray< fcomplex > M) {
|
---|
304 | return pinv(M, -1);
|
---|
305 | }
|
---|
306 | /// <summary>
|
---|
307 | /// Pseudo inverse of input matrix M
|
---|
308 | /// </summary>
|
---|
309 | /// <param name="M">Input matrix M</param>
|
---|
310 | /// <param name="tolerance">Tolerance, see remarks (default = -1; use default tolerance)</param>
|
---|
311 | /// <returns>Pseudo inverse of M</returns>
|
---|
312 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
313 | /// of input matrix M. The return value will be of the same size as
|
---|
314 | /// the transposed of M. it will satisfy the following conditions:
|
---|
315 | /// <list type="bullet">
|
---|
316 | /// <item>M * pinv(M) * M = M </item>
|
---|
317 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
318 | /// <item>pinv(M) * M is hermitian</item>
|
---|
319 | /// <item>M * pinv(M) is hermitian</item>
|
---|
320 | /// </list>
|
---|
321 | /// pinv uses LAPACK's function svd internally. Any singular values less than
|
---|
322 | /// tolerance will be set to zero. If tolerance is less than zero, the following equation
|
---|
323 | /// is used as default: \\
|
---|
324 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
325 | /// with
|
---|
326 | /// <list type="bullet">
|
---|
327 | /// <item>length(M) - the longest dimension of M</item>
|
---|
328 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
329 | /// <item>Double.epsilon - the smallest constructable double precision number greater than zero</item>
|
---|
330 | /// </list>
|
---|
331 | /// </remarks>
|
---|
332 | public static ILRetArray< fcomplex > pinv(ILInArray< fcomplex > M, fcomplex tolerance) {
|
---|
333 | using (ILScope.Enter(M)) {
|
---|
334 | // let svd check the dimensions!
|
---|
335 | //if (M.Dimensions.NumberOfDimensions > 2)
|
---|
336 | // throw new ILDimensionMismatchException("pinv: ...");
|
---|
337 |
|
---|
338 | // in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
|
---|
339 | if (M.Size[0] < M.Size[1]) {
|
---|
340 | return conj(pinv(conj(M.T), tolerance)).T;
|
---|
341 | }
|
---|
342 | if (M.IsScalar)
|
---|
343 | return new fcomplex(1f,0f) / M;
|
---|
344 |
|
---|
345 | ILArray< fcomplex> U = empty< fcomplex>(ILSize.Empty00);
|
---|
346 | ILArray< fcomplex> V = empty< fcomplex>(ILSize.Empty00);
|
---|
347 | ILArray< float> S = svd(M, U, V, true, false);
|
---|
348 |
|
---|
349 | int m = M.Size[0];
|
---|
350 | int n = M.Size[1];
|
---|
351 |
|
---|
352 | ILArray< float> s;
|
---|
353 | switch (m) {
|
---|
354 | case 0:
|
---|
355 | s = zeros< float>(ILSize.Scalar1_1);
|
---|
356 | break;
|
---|
357 | case 1:
|
---|
358 | s = S[0];
|
---|
359 | break;
|
---|
360 | default:
|
---|
361 | s = diag< float>(S);
|
---|
362 | break;
|
---|
363 | }
|
---|
364 | if (tolerance < 0) {
|
---|
365 | tolerance = ( fcomplex)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterSingle.eps);
|
---|
366 | }
|
---|
367 | // sum vector elements: s is dense vector returned from svd
|
---|
368 | int count = (int)sum(s > ( float)tolerance);
|
---|
369 |
|
---|
370 | ILArray< fcomplex> Ret = empty< fcomplex>(ILSize.Empty00);
|
---|
371 | if (count == 0)
|
---|
372 | S.a = zeros< float>(new ILSize(n, m));
|
---|
373 | else {
|
---|
374 | ILArray< float> OneVec = array< float>( 1.0f, count, 1);
|
---|
375 |
|
---|
376 | S.a = diag(divide(OneVec, s[r(0,count - 1)]));
|
---|
377 | U = conj(U[":;0:" + (count - 1)].T);
|
---|
378 | Ret = multiply(multiply(V[":;0:" + (count - 1)], real2fcomplex(S)), U);
|
---|
379 | }
|
---|
380 | return Ret;
|
---|
381 | }
|
---|
382 | }
|
---|
383 |
|
---|
384 |
|
---|
385 | /// <summary>
|
---|
386 | /// Pseudo - inverse of input argument M
|
---|
387 | /// </summary>
|
---|
388 | /// <param name="M">Input matrix M</param>
|
---|
389 | /// <returns>Pseudo inverse of input matrix M</returns>
|
---|
390 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
391 | /// of input matrix M. The return value will be of the same size as
|
---|
392 | /// the transposed of M. it will satisfy the following conditions:
|
---|
393 | /// <list type="bullet">
|
---|
394 | /// <item>M * pinv(M) * M = M </item>
|
---|
395 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
396 | /// <item>pinv(M) * M is hermitian</item>
|
---|
397 | /// <item>M * pinv(M) is hermitian</item>
|
---|
398 | /// </list>
|
---|
399 | /// pinv uses Lapack's function svd internally. Any singular values less than
|
---|
400 | /// the default tolerance will be set to zero. As tolerance the following equation is used: \\
|
---|
401 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
402 | /// with
|
---|
403 | /// <list type="bullet">
|
---|
404 | /// <item>length(M) - the longest dimension of M</item>
|
---|
405 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
406 | /// <item>Double.epsilon - the smallest number greater than zero</item>
|
---|
407 | /// </list>
|
---|
408 | /// You may use a overloaded function to define an alternative tolerance.
|
---|
409 | /// </remarks>
|
---|
410 | /// <seealso cref="ILNumerics.ILMath.pinv(ILInArray{double}, double)"/>
|
---|
411 | public static ILRetArray< complex > pinv(ILInArray< complex > M) {
|
---|
412 | return pinv(M, -1);
|
---|
413 | }
|
---|
414 | /// <summary>
|
---|
415 | /// Pseudo inverse of input matrix M
|
---|
416 | /// </summary>
|
---|
417 | /// <param name="M">Input matrix M</param>
|
---|
418 | /// <param name="tolerance">Tolerance, see remarks (default = -1; use default tolerance)</param>
|
---|
419 | /// <returns>Pseudo inverse of M</returns>
|
---|
420 | /// <remarks>The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
|
---|
421 | /// of input matrix M. The return value will be of the same size as
|
---|
422 | /// the transposed of M. it will satisfy the following conditions:
|
---|
423 | /// <list type="bullet">
|
---|
424 | /// <item>M * pinv(M) * M = M </item>
|
---|
425 | /// <item>pinv(M) * M * pinv(M) = pinv(M)</item>
|
---|
426 | /// <item>pinv(M) * M is hermitian</item>
|
---|
427 | /// <item>M * pinv(M) is hermitian</item>
|
---|
428 | /// </list>
|
---|
429 | /// pinv uses LAPACK's function svd internally. Any singular values less than
|
---|
430 | /// tolerance will be set to zero. If tolerance is less than zero, the following equation
|
---|
431 | /// is used as default: \\
|
---|
432 | /// tol = length(M) * norm(M) * Double.epsilon \\
|
---|
433 | /// with
|
---|
434 | /// <list type="bullet">
|
---|
435 | /// <item>length(M) - the longest dimension of M</item>
|
---|
436 | /// <item>norm(M) being the largest singular value of M, </item>
|
---|
437 | /// <item>Double.epsilon - the smallest constructable double precision number greater than zero</item>
|
---|
438 | /// </list>
|
---|
439 | /// </remarks>
|
---|
440 | public static ILRetArray< complex > pinv(ILInArray< complex > M, complex tolerance) {
|
---|
441 | using (ILScope.Enter(M)) {
|
---|
442 | // let svd check the dimensions!
|
---|
443 | //if (M.Dimensions.NumberOfDimensions > 2)
|
---|
444 | // throw new ILDimensionMismatchException("pinv: ...");
|
---|
445 |
|
---|
446 | // in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
|
---|
447 | if (M.Size[0] < M.Size[1]) {
|
---|
448 | return conj(pinv(conj(M.T), tolerance)).T;
|
---|
449 | }
|
---|
450 | if (M.IsScalar)
|
---|
451 | return new complex(1,0) / M;
|
---|
452 |
|
---|
453 | ILArray< complex> U = empty< complex>(ILSize.Empty00);
|
---|
454 | ILArray< complex> V = empty< complex>(ILSize.Empty00);
|
---|
455 | ILArray< double> S = svd(M, U, V, true, false);
|
---|
456 |
|
---|
457 | int m = M.Size[0];
|
---|
458 | int n = M.Size[1];
|
---|
459 |
|
---|
460 | ILArray< double> s;
|
---|
461 | switch (m) {
|
---|
462 | case 0:
|
---|
463 | s = zeros< double>(ILSize.Scalar1_1);
|
---|
464 | break;
|
---|
465 | case 1:
|
---|
466 | s = S[0];
|
---|
467 | break;
|
---|
468 | default:
|
---|
469 | s = diag< double>(S);
|
---|
470 | break;
|
---|
471 | }
|
---|
472 | if (tolerance < 0) {
|
---|
473 | tolerance = ( complex)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterDouble.eps);
|
---|
474 | }
|
---|
475 | // sum vector elements: s is dense vector returned from svd
|
---|
476 | int count = (int)sum(s > ( double)tolerance);
|
---|
477 |
|
---|
478 | ILArray< complex> Ret = empty< complex>(ILSize.Empty00);
|
---|
479 | if (count == 0)
|
---|
480 | S.a = zeros< double>(new ILSize(n, m));
|
---|
481 | else {
|
---|
482 | ILArray< double> OneVec = array< double>( 1.0, count, 1);
|
---|
483 |
|
---|
484 | S.a = diag(divide(OneVec, s[r(0,count - 1)]));
|
---|
485 | U = conj(U[":;0:" + (count - 1)].T);
|
---|
486 | Ret = multiply(multiply(V[":;0:" + (count - 1)], real2complex(S)), U);
|
---|
487 | }
|
---|
488 | return Ret;
|
---|
489 | }
|
---|
490 | }
|
---|
491 |
|
---|
492 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
493 | }
|
---|
494 | }
|
---|