1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 | using ILNumerics.Storage;
|
---|
46 | using ILNumerics.Misc;
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | namespace ILNumerics {
|
---|
51 |
|
---|
52 | public partial class ILMath {
|
---|
53 |
|
---|
54 | /// <summary>
|
---|
55 | /// Probability density function for a multivariate normal random distribution
|
---|
56 | /// </summary>
|
---|
57 | /// <param name="A">Matrix of points in columns, where the probability density function is to be evaluated</param>
|
---|
58 | /// <param name="mu">[Optional] Centers, size d x 1, if 'null': zeros are attempted, default: null</param>
|
---|
59 | /// <param name="sigma">Covariance matrix, must be positive definite, size d x d or vector of lenght d</param>
|
---|
60 | /// <returns>Random numbers as taken from the multivariate random probability distribution given by mu and sigma</returns>
|
---|
61 | public static ILRetArray<double> mvnpdf(ILInArray<double> A, ILInArray<double> mu = null, ILInArray<double> sigma = null) {
|
---|
62 | using (ILScope.Enter(mu, sigma)) {
|
---|
63 | if (isnull(A)) {
|
---|
64 | throw new ILArgumentException("input parameter 'samples' may not be null");
|
---|
65 | }
|
---|
66 | int d = A.S[0], n = A.S[1];
|
---|
67 | if (A.IsEmpty) {
|
---|
68 | if (d > 0)
|
---|
69 | return empty<double>(A.S);
|
---|
70 | else {
|
---|
71 | return empty<double>(ILSize.Empty00);
|
---|
72 | }
|
---|
73 | }
|
---|
74 | // early exit, trivial case
|
---|
75 | if (isnullorempty(mu) && isnullorempty(sigma)) {
|
---|
76 | return 1 / (pow(sqrt(2 * pi), d)) * exp(-0.5f * (diag(multiply(A.T, A))));
|
---|
77 | }
|
---|
78 | ILArray<double> muLoc = mu;
|
---|
79 | if (isnullorempty(mu)) {
|
---|
80 | muLoc.a = zeros<double>(d,1);
|
---|
81 | }
|
---|
82 | ILArray<double> sigmaLoc = sigma;
|
---|
83 | if (isnullorempty(sigma)) {
|
---|
84 | sigmaLoc.a = eye<double>(d,d);
|
---|
85 | }
|
---|
86 | ILArray<double> sampMinMu = A - muLoc;
|
---|
87 | return 1 / (pow(sqrt(2 * pi), d) * det(sigmaLoc)) * exp(-0.5 * (diag(multiply(sampMinMu.T, eye(d, d) / sigmaLoc, sampMinMu))));
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | /// <summary>
|
---|
92 | /// Probability density function for a multivariate normal random distribution
|
---|
93 | /// </summary>
|
---|
94 | /// <param name="A">Matrix of points in columns, where the probability density function is to be evaluated</param>
|
---|
95 | /// <param name="mu">[Optional] Centers, size d x 1, if 'null': zeros are attempted, default: null</param>
|
---|
96 | /// <param name="sigma">Covariance matrix, must be positive definite, size d x d or vector of lenght d</param>
|
---|
97 | /// <returns>Random numbers as taken from the multivariate random probability distribution given by mu and sigma</returns>
|
---|
98 | public static ILRetArray<float> mvnpdf(ILInArray<float> A, ILInArray<float> mu = null, ILInArray<float> sigma = null) {
|
---|
99 | using (ILScope.Enter(mu, sigma)) {
|
---|
100 | if (isnull(A)) {
|
---|
101 | throw new ILArgumentException("input parameter 'samples' may not be null");
|
---|
102 | }
|
---|
103 | int d = A.S[0], n = A.S[1];
|
---|
104 | if (A.IsEmpty) {
|
---|
105 | if (d > 0)
|
---|
106 | return empty<float>(A.S);
|
---|
107 | else {
|
---|
108 | return empty<float>(ILSize.Empty00);
|
---|
109 | }
|
---|
110 | }
|
---|
111 | // early exit, trivial case
|
---|
112 | if (isnullorempty(mu) && isnullorempty(sigma)) {
|
---|
113 | return 1 / tosingle(pow(sqrt(2 * pi), d)) * exp(-0.5f * (diag(multiply(A.T, A))));
|
---|
114 | }
|
---|
115 | ILArray<float> muLoc = mu;
|
---|
116 | if (isnullorempty(mu)) {
|
---|
117 | muLoc.a = zeros<float>(d,1);
|
---|
118 | }
|
---|
119 | ILArray<float> sigmaLoc = sigma;
|
---|
120 | if (isnullorempty(sigma)) {
|
---|
121 | sigmaLoc.a = eye<float>(d,d);
|
---|
122 | }
|
---|
123 | ILArray<float> sampMinMu = A - muLoc;
|
---|
124 | return 1f / tosingle(pow(sqrt(2 * pi), d)) * det(sigmaLoc) * exp(-0.5f * (diag(multiply(sampMinMu.T, eye<float>(d, d) / sigmaLoc, sampMinMu))));
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | }
|
---|
129 | } |
---|