1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using ILNumerics.Exceptions;
|
---|
42 | using ILNumerics.Misc;
|
---|
43 |
|
---|
44 | namespace ILNumerics {
|
---|
45 | public partial class ILMath {
|
---|
46 |
|
---|
47 | |
---|
48 |
|
---|
49 |
|
---|
50 | #region fft(A)
|
---|
51 | /// <summary>
|
---|
52 | /// Fast fourier transform (1D)
|
---|
53 | /// </summary>
|
---|
54 | /// <param name="A">Input array</param>
|
---|
55 | /// <returns>Transformed output array</returns>
|
---|
56 | /// <remarks><para>The transformation is computed along the first
|
---|
57 | /// non singleton dimension.</para>
|
---|
58 | /// <para>The output array returned will be complex hermitian. I.e. the real
|
---|
59 | /// part being even and the imaginary part being odd symmetrical.</para>
|
---|
60 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
61 | /// a given data array A are mathematically equivalent. It's only a
|
---|
62 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
63 | /// scaling is introduced in the inverse transform.</para>
|
---|
64 | /// <para>The transformation is computed by use of the native library
|
---|
65 | /// which currently is set up for your processor and OS version. The underlying
|
---|
66 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
67 | /// static member ILMath.FFT. See the online documentation for more
|
---|
68 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
69 | /// Currently supported libraries are: Intel MKL
|
---|
70 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
71 | /// </remarks>
|
---|
72 | public static ILRetArray< complex> fft(ILInArray< double> A) {
|
---|
73 | using (ILScope.Enter(A)) {
|
---|
74 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
75 | if (A.IsScalar) return new complex(A.GetValue(0), 0);
|
---|
76 | int fnsd = A.Size.WorkingDimension();
|
---|
77 | return ILMath.FFTImplementation.FFTForward1D(A, fnsd);
|
---|
78 | }
|
---|
79 | }
|
---|
80 | /// <summary>
|
---|
81 | /// Fast fourier transform (1D)
|
---|
82 | /// </summary>
|
---|
83 | /// <param name="A">Input array</param>
|
---|
84 | /// <returns>Transformed output array</returns>
|
---|
85 | /// <remarks>
|
---|
86 | /// <para>The transformation is computed along the first non
|
---|
87 | /// singleton dimension.</para>
|
---|
88 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
89 | /// a given data array A are mathematically equivalent. It's only a
|
---|
90 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
91 | /// scaling is introduced in the inverse transform.</para>
|
---|
92 | /// <para>The transformation is computed by use of the native library
|
---|
93 | /// which currently is set up for your processor and OS version. The underlying
|
---|
94 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
95 | /// static member ILMath.FFT. See the online documentation for more
|
---|
96 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
97 | /// Currently supported libraries are: Intel MKL
|
---|
98 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
99 | /// </remarks>
|
---|
100 | public static ILRetArray< complex > fft(ILInArray< complex > A) {
|
---|
101 | using (ILScope.Enter(A)) {
|
---|
102 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
103 | if (A.IsScalar) return A.C;
|
---|
104 | int fnsd = A.Size.WorkingDimension();
|
---|
105 | return ILMath.FFTImplementation.FFTForward1D(A, fnsd);
|
---|
106 | }
|
---|
107 | }
|
---|
108 | /// <summary>
|
---|
109 | /// Fast inverse fourier transform (1D)
|
---|
110 | /// </summary>
|
---|
111 | /// <param name="A">Input (frequency domain)</param>
|
---|
112 | /// <returns>Inverse transformed output array</returns>
|
---|
113 | /// <remarks>
|
---|
114 | /// <para>The transformation is computed along the first non
|
---|
115 | /// singleton dimension.</para>
|
---|
116 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
117 | /// a given data array A are mathematically equivalent. It's only a
|
---|
118 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
119 | /// scaling is introduced in the inverse transform.</para>
|
---|
120 | /// <para>The transformation is computed by use of the native library
|
---|
121 | /// which currently is set up for your processor and OS version. The underlying
|
---|
122 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
123 | /// static member ILMath.FFT. See the online documentation for more
|
---|
124 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
125 | /// Currently supported libraries are: Intel MKL
|
---|
126 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
127 | /// </remarks>
|
---|
128 | public static ILRetArray<complex> ifft(ILInArray<complex> A) {
|
---|
129 | using (ILScope.Enter(A)) {
|
---|
130 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
131 | if (A.IsScalar) return A.C;
|
---|
132 | int fnsd = A.Size.WorkingDimension();
|
---|
133 | return ILMath.FFTImplementation.FFTBackward1D(A, fnsd);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | /// <summary>
|
---|
137 | /// Inverse fast fourier transform, complex hermitian input
|
---|
138 | /// </summary>
|
---|
139 | /// <param name="A">Complex hermitian input array</param>
|
---|
140 | /// <returns>Real output array, same size as A</returns>
|
---|
141 | /// <remarks>
|
---|
142 | /// <para>Since a transform of complex hermitian input data results in
|
---|
143 | /// the output having all imaginary part equal zero, only the real part is
|
---|
144 | /// returned for convenience reasons.</para>
|
---|
145 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
146 | /// of round-off errors), the result will be wrong!</para>
|
---|
147 | /// <para>The transformation is computed along the first non
|
---|
148 | /// singleton dimension.</para>
|
---|
149 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
150 | /// a given data array A are mathematically equivalent. It's only a
|
---|
151 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
152 | /// scaling is introduced in the inverse transform.</para>
|
---|
153 | /// <para>The transformation is computed by use of the native library
|
---|
154 | /// which currently is set up for your processor and OS version. The underlying
|
---|
155 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
156 | /// static member ILMath.FFT. See the online documentation for more
|
---|
157 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
158 | /// Currently supported libraries are: Intel MKL
|
---|
159 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
160 | /// </remarks>
|
---|
161 | public static ILRetArray< double > ifftsym(ILInArray< complex > A) {
|
---|
162 | using (ILScope.Enter(A)) {
|
---|
163 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
164 | if (A.IsScalar) return real(A);
|
---|
165 | int fnsd = A.Size.WorkingDimension();
|
---|
166 | return ILMath.FFTImplementation.FFTBackwSym1D(A, fnsd);
|
---|
167 | }
|
---|
168 | }
|
---|
169 | #endregion
|
---|
170 |
|
---|
171 | #region fft(A, dim)
|
---|
172 | /// <summary>
|
---|
173 | /// Fast fourier transform along specific dimension
|
---|
174 | /// </summary>
|
---|
175 | /// <param name="A">Real input array</param>
|
---|
176 | /// <param name="dim">Dimension to compute FFT along. This parameter must be non-negative. </param>
|
---|
177 | /// <returns>Transformation result</returns>
|
---|
178 | /// <remarks>
|
---|
179 | /// <para>The output array returned will be complex hermitian. I.e. the real
|
---|
180 | /// part being even and the imaginary part being odd symmetrical.</para>
|
---|
181 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
182 | /// a given data array A are mathematically equivalent. It's only a
|
---|
183 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
184 | /// scaling is introduced in the inverse transform.</para>
|
---|
185 | /// <para>The transformation is computed by use of the native library
|
---|
186 | /// which currently is set up for your processor and OS version. The underlying
|
---|
187 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
188 | /// static member ILMath.FFT. See the online documentation for more
|
---|
189 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
190 | /// Currently supported libraries are: Intel MKL
|
---|
191 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
192 | /// </remarks>
|
---|
193 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if
|
---|
194 | /// the dim parameter is negative</exception>
|
---|
195 | public static ILRetArray< complex > fft(ILInArray< double > A, int dim) {
|
---|
196 | using (ILScope.Enter(A)) {
|
---|
197 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
198 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
199 | if (A.IsScalar) return new complex(A.GetValue(0), 0);
|
---|
200 | return ILMath.FFTImplementation.FFTForward1D(A, dim);
|
---|
201 | }
|
---|
202 | }
|
---|
203 | /// <summary>
|
---|
204 | /// Fast fourier transform along specific dimension
|
---|
205 | /// </summary>
|
---|
206 | /// <param name="A">Input array</param>
|
---|
207 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
208 | /// must be non-negative. </param>
|
---|
209 | /// <returns>Transformation result</returns>
|
---|
210 | /// <remarks>
|
---|
211 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
212 | /// a given data array A are mathematically equivalent. It's only a
|
---|
213 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
214 | /// scaling is introduced in the inverse transform.</para>
|
---|
215 | /// <para>The transformation is computed by use of the native library
|
---|
216 | /// which currently is set up for your processor and OS version. The underlying
|
---|
217 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
218 | /// static member ILMath.FFT. See the online documentation for more
|
---|
219 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
220 | /// Currently supported libraries are: Intel MKL
|
---|
221 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
222 | /// </remarks>
|
---|
223 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if
|
---|
224 | /// the dim parameter is negative</exception>
|
---|
225 | public static ILRetArray< complex > fft(ILInArray< complex > A, int dim) {
|
---|
226 | using (ILScope.Enter(A)) {
|
---|
227 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
228 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
229 | if (A.IsScalar) return A.C;
|
---|
230 | return ILMath.FFTImplementation.FFTForward1D(A, dim);
|
---|
231 | }
|
---|
232 | }
|
---|
233 | /// <summary>
|
---|
234 | /// Inverse fast fourier transform along specific dimension
|
---|
235 | /// </summary>
|
---|
236 | /// <param name="A">Input array</param>
|
---|
237 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
238 | /// must be non-negative. </param>
|
---|
239 | /// <returns>Transformation result</returns>
|
---|
240 | /// <remarks>
|
---|
241 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
242 | /// a given data array A are mathematically equivalent. It's only a
|
---|
243 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
244 | /// scaling is introduced in the inverse transform.</para>
|
---|
245 | /// <para>The transformation is computed by use of the native library
|
---|
246 | /// which currently is set up for your processor and OS version. The underlying
|
---|
247 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
248 | /// static member ILMath.FFT. See the online documentation for more
|
---|
249 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
250 | /// Currently supported libraries are: Intel MKL
|
---|
251 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
252 | /// </remarks>
|
---|
253 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the dim parameter is negative</exception>
|
---|
254 | public static ILRetArray< complex> ifft(ILInArray< complex> A, int dim) {
|
---|
255 | using (ILScope.Enter(A)) {
|
---|
256 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
257 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
258 | if (A.IsScalar) return A.C;
|
---|
259 | return ILMath.FFTImplementation.FFTBackward1D(A, dim);
|
---|
260 | }
|
---|
261 | }
|
---|
262 | /// <summary>
|
---|
263 | /// Inverse fast fourier transform, complex hermitian input
|
---|
264 | /// </summary>
|
---|
265 | /// <param name="A">Complex hermitian input array (frequency domain)</param>
|
---|
266 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
267 | /// must be non-negative. </param>
|
---|
268 | /// <returns>Real output array, same size as A</returns>
|
---|
269 | /// <remarks>
|
---|
270 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
271 | /// output having the imaginary part equals zero, only the real part is
|
---|
272 | /// returned for convenience reasons.</para>
|
---|
273 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
274 | /// of round-off errors), the result will be wrong!</para>
|
---|
275 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
276 | /// a given data array A are mathematically equivalent. It's only a
|
---|
277 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
278 | /// scaling is introduced in the inverse transform.</para>
|
---|
279 | /// <para>The transformation is computed by use of the native library
|
---|
280 | /// which currently is set up for your processor and OS version. The underlying
|
---|
281 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
282 | /// static member ILMath.FFT. See the online documentation for more
|
---|
283 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
284 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
285 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
286 | /// </remarks>
|
---|
287 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the dim parameter is negative</exception>
|
---|
288 | public static ILRetArray< double > ifftsym(ILInArray< complex > A, int dim) {
|
---|
289 | using (ILScope.Enter(A)) {
|
---|
290 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
291 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
292 | if (A.IsScalar) return real(A);
|
---|
293 | return ILMath.FFTImplementation.FFTBackwSym1D(A, dim);
|
---|
294 | }
|
---|
295 | }
|
---|
296 | #endregion
|
---|
297 |
|
---|
298 | #region fft2(A)
|
---|
299 | /// <summary>
|
---|
300 | /// Fast fourier transform (2D)
|
---|
301 | /// </summary>
|
---|
302 | /// <param name="A">Input array</param>
|
---|
303 | /// <returns>Transformation result</returns>
|
---|
304 | /// <remarks>
|
---|
305 | /// <para>The 2D transformation is computed for the first 2 dimensions, regardless
|
---|
306 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
307 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
308 | /// <para>The output array returned will be complex hermitian.</para>
|
---|
309 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
310 | /// the columns and after that transforming the rows of A. However, using this
|
---|
311 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
312 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
313 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
314 | /// a given data array A are mathematically equivalent. It's only a
|
---|
315 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
316 | /// scaling is introduced in the inverse transform.</para>
|
---|
317 | /// <para>The transformation is computed by use of the native library
|
---|
318 | /// which currently is set up for your processor and OS version. The underlying
|
---|
319 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
320 | /// static member ILMath.FFT. See the online documentation for more
|
---|
321 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
322 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
323 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
324 | /// </remarks>
|
---|
325 | public static ILRetArray< complex > fft2(ILInArray< double > A) {
|
---|
326 | using (ILScope.Enter(A)) {
|
---|
327 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
328 | if (A.IsScalar) return new complex(A.GetValue(0), 0);
|
---|
329 | return FFTImplementation.FFTForward(A, 2);
|
---|
330 | }
|
---|
331 | }
|
---|
332 | /// <summary>
|
---|
333 | /// Fast fourier transform (2D)
|
---|
334 | /// </summary>
|
---|
335 | /// <param name="A">Input array</param>
|
---|
336 | /// <returns>Transformation result</returns>
|
---|
337 | /// <remarks>
|
---|
338 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
339 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
340 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
341 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
342 | /// the columns and after that transforming the rows of A. However, using this
|
---|
343 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
344 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
345 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
346 | /// a given data array A are mathematically equivalent. It's only a
|
---|
347 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
348 | /// scaling is introduced in the inverse transform.</para>
|
---|
349 | /// <para>The transformation is computed by use of the native library
|
---|
350 | /// which currently is set up for your processor and OS version. The underlying
|
---|
351 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
352 | /// static member ILMath.FFT. See the online documentation for more
|
---|
353 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
354 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
355 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
356 | /// </remarks>
|
---|
357 | public static ILRetArray< complex> fft2(ILInArray< complex> A) {
|
---|
358 | using (ILScope.Enter(A)) {
|
---|
359 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
360 | if (A.IsScalar) return A.C;
|
---|
361 | return FFTImplementation.FFTForward(A, 2);
|
---|
362 | }
|
---|
363 | }
|
---|
364 | /// <summary>
|
---|
365 | /// Inverse fast fourier transform (2D)
|
---|
366 | /// </summary>
|
---|
367 | /// <param name="A">Input array</param>
|
---|
368 | /// <returns>Transformation result</returns>
|
---|
369 | /// <remarks>
|
---|
370 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
371 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
372 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
373 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
374 | /// the columns and after that transforming the rows of A. However, using this
|
---|
375 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
376 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
377 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
378 | /// a given data array A are mathematically equivalent. It's only a
|
---|
379 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
380 | /// scaling is introduced in the inverse transform.</para>
|
---|
381 | /// <para>The transformation is computed by use of the native library
|
---|
382 | /// which currently is set up for your processor and OS version. The underlying
|
---|
383 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
384 | /// static member ILMath.FFT. See the online documentation for more
|
---|
385 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
386 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
387 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
388 | /// </remarks>
|
---|
389 | public static ILRetArray< complex> ifft2(ILInArray< complex> A) {
|
---|
390 | using (ILScope.Enter(A)) {
|
---|
391 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
392 | if (A.IsScalar) return A.C;
|
---|
393 | return FFTImplementation.FFTBackward(A, 2);
|
---|
394 | }
|
---|
395 | }
|
---|
396 | /// <summary>
|
---|
397 | /// Inverse fast fourier transform (2D, hermitian input)
|
---|
398 | /// </summary>
|
---|
399 | /// <param name="A">Complex hermitian input array (frequency domain)</param>
|
---|
400 | /// <returns>Transformation result</returns>
|
---|
401 | /// <remarks>
|
---|
402 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
403 | /// output having the imaginary part equals zero, only the real part is
|
---|
404 | /// returned for convenience reasons.</para>
|
---|
405 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
406 | /// of round-off errors), the result will be wrong!</para>
|
---|
407 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
408 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
409 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
410 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
411 | /// the columns and after that transforming the rows of A. However, using this
|
---|
412 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
413 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
414 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
415 | /// a given data array A are mathematically equivalent. It's only a
|
---|
416 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
417 | /// scaling is introduced in the inverse transform.</para>
|
---|
418 | /// <para>The transformation is computed by use of the native library
|
---|
419 | /// which currently is set up for your processor and OS version. The underlying
|
---|
420 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
421 | /// static member ILMath.FFT. See the online documentation for more
|
---|
422 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
423 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
424 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
425 | /// </remarks>
|
---|
426 | public static ILRetArray< double> ifft2sym(ILInArray< complex> A) {
|
---|
427 | using (ILScope.Enter(A)) {
|
---|
428 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
429 | if (A.IsScalar) return real(A);
|
---|
430 | return FFTImplementation.FFTBackwSym(A, 2);
|
---|
431 | }
|
---|
432 | }
|
---|
433 | #endregion
|
---|
434 |
|
---|
435 | #region fft2(A,m,n)
|
---|
436 | /// <summary>
|
---|
437 | /// Fast fourier transform (2D)
|
---|
438 | /// </summary>
|
---|
439 | /// <param name="A">Input array</param>
|
---|
440 | /// <param name="m">Transformation column length</param>
|
---|
441 | /// <param name="n">Transformation row length</param>
|
---|
442 | /// <returns>Transformation result, complex hermitian</returns>
|
---|
443 | /// <remarks>
|
---|
444 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
445 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
446 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
447 | /// <para>The data to be transformed (based on the A array) are resized according to
|
---|
448 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
449 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
450 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
451 | /// the columns and after that transforming the rows of A. However, using this
|
---|
452 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
453 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
454 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
455 | /// a given data array A are mathematically equivalent. It's only a
|
---|
456 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
457 | /// scaling is introduced in the inverse transform.</para>
|
---|
458 | /// <para>The transformation is computed by use of the native library
|
---|
459 | /// which currently is set up for your processor and OS version. The underlying
|
---|
460 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
461 | /// static member ILMath.FFT. See the online documentation for more
|
---|
462 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
463 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
464 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
465 | /// </remarks>
|
---|
466 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
467 | public static ILRetArray< complex> fft2(ILInArray< double> A, int m, int n) {
|
---|
468 | using (ILScope.Enter(A)) {
|
---|
469 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
470 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
471 | int[] Asize = A.Size.ToIntArray();
|
---|
472 | Asize[0] = m; Asize[1] = n;
|
---|
473 | ILArray< double> resizedA = resize4Transform(A, Asize);
|
---|
474 | return FFTImplementation.FFTForward(resizedA, 2);
|
---|
475 | }
|
---|
476 | }
|
---|
477 | /// <summary>
|
---|
478 | /// Fast fourier transform (2D)
|
---|
479 | /// </summary>
|
---|
480 | /// <param name="A">input array</param>
|
---|
481 | /// <param name="m">Transformation column length</param>
|
---|
482 | /// <param name="n">Transformation row length</param>
|
---|
483 | /// <returns>Transformation result</returns>
|
---|
484 | /// <remarks>
|
---|
485 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
486 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
487 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
488 | /// <para>The data to be transformed (based on the A array) are resized according to
|
---|
489 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
490 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
491 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
492 | /// the columns and after that transforming the rows of A. However, using this
|
---|
493 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
494 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
495 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
496 | /// a given data array A are mathematically equivalent. It's only a
|
---|
497 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
498 | /// scaling is introduced in the inverse transform.</para>
|
---|
499 | /// <para>The transformation is computed by use of the native library
|
---|
500 | /// which currently is set up for your processor and OS version. The underlying
|
---|
501 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
502 | /// static member ILMath.FFT. See the online documentation for more
|
---|
503 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
504 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
505 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
506 | /// </remarks>
|
---|
507 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
508 | public static ILRetArray< complex> fft2(ILInArray< complex> A, int m, int n) {
|
---|
509 | using (ILScope.Enter(A)) {
|
---|
510 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
511 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
512 | int[] Asize = A.Size.ToIntArray();
|
---|
513 | Asize[0] = m; Asize[1] = n;
|
---|
514 | ILRetArray< complex> resizedA = resize4Transform(A, Asize);
|
---|
515 | return FFTImplementation.FFTForward(resizedA, 2);
|
---|
516 | }
|
---|
517 | }
|
---|
518 | /// <summary>
|
---|
519 | /// Inverse fast fourier transform (2D)
|
---|
520 | /// </summary>
|
---|
521 | /// <param name="A">Input array</param>
|
---|
522 | /// <param name="m">Transformation column length</param>
|
---|
523 | /// <param name="n">Transformation row length</param>
|
---|
524 | /// <returns>Transformation result</returns>
|
---|
525 | /// <remarks>
|
---|
526 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
527 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
528 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
529 | /// <para>The data to be transformed (based on the array A) are resized according to
|
---|
530 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
531 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
532 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
533 | /// the columns and after that transforming the rows of A. However, using this
|
---|
534 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
535 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
536 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
537 | /// a given data array A are mathematically equivalent. It's only a
|
---|
538 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
539 | /// scaling is introduced in the inverse transform.</para>
|
---|
540 | /// <para>The transformation is computed by use of the native library
|
---|
541 | /// which currently is set up for your processor and OS version. The underlying
|
---|
542 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
543 | /// static member ILMath.FFT. See the online documentation for more
|
---|
544 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
545 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
546 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
547 | /// </remarks>
|
---|
548 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
549 | public static ILRetArray< complex> ifft2(ILInArray< complex> A, int m, int n) {
|
---|
550 | using (ILScope.Enter(A)) {
|
---|
551 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
552 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
553 | int[] Asize = A.Size.ToIntArray();
|
---|
554 | Asize[0] = m; Asize[1] = n;
|
---|
555 | ILRetArray< complex> resizedA = resize4Transform(A, Asize);
|
---|
556 | return FFTImplementation.FFTBackward(resizedA, 2);
|
---|
557 | }
|
---|
558 | }
|
---|
559 | /// <summary>
|
---|
560 | /// Inverse fast fourier transform (2D)
|
---|
561 | /// </summary>
|
---|
562 | /// <param name="A">Complex hermitian input array, symmetric in first 2 dimensions</param>
|
---|
563 | /// <param name="m">Transformation column length</param>
|
---|
564 | /// <param name="n">Transformation row length</param>
|
---|
565 | /// <returns>Transformation result</returns>
|
---|
566 | /// <remarks>
|
---|
567 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
568 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
569 | /// the transformation is repeated for trailing dimensions of A respectively. The
|
---|
570 | /// lengths of those trailing dimensions are not altered.</para>
|
---|
571 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
572 | /// output having the imaginary part equals zero, only the real part is
|
---|
573 | /// returned for convenience reasons.</para>
|
---|
574 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
575 | /// of round-off errors), the result will be wrong!</para>
|
---|
576 | /// <para>The data to be transformed (based on the array A) are resized according to
|
---|
577 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
578 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
579 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
580 | /// the columns and after that transforming the rows of A. However, using this
|
---|
581 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
582 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
583 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
584 | /// a given data array A are mathematically equivalent. It's only a
|
---|
585 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
586 | /// scaling is introduced in the inverse transform.</para>
|
---|
587 | /// <para>The transformation is computed by use of the native library
|
---|
588 | /// which currently is set up for your processor and OS version. The underlying
|
---|
589 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
590 | /// static member ILMath.FFT. See the online documentation for more
|
---|
591 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
592 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
593 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
594 | /// </remarks>
|
---|
595 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
596 | public static ILRetArray< double> ifft2sym(ILInArray< complex> A, int m, int n) {
|
---|
597 | using (ILScope.Enter(A)) {
|
---|
598 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
599 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
600 | int[] Asize = A.Size.ToIntArray();
|
---|
601 | Asize[0] = m; Asize[1] = n;
|
---|
602 | ILRetArray< complex> resizedA = resize4Transform(A, Asize);
|
---|
603 | return FFTImplementation.FFTBackwSym(resizedA, 2);
|
---|
604 | }
|
---|
605 | }
|
---|
606 | #endregion
|
---|
607 |
|
---|
608 | #region fftn(A)
|
---|
609 | /// <summary>
|
---|
610 | /// Fast fourier transform (n-D)
|
---|
611 | /// </summary>
|
---|
612 | /// <param name="A">Input array, n-D</param>
|
---|
613 | /// <returns>Transformation result, complex hermitian</returns>
|
---|
614 | /// <remarks>
|
---|
615 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
616 | /// This is equivalent to repeatedly (inplace)
|
---|
617 | /// computing one dimensional transformations along all dimensions of A.
|
---|
618 | /// However, using this
|
---|
619 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
620 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
621 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
622 | /// a given data array A are mathematically equivalent. It's only a
|
---|
623 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
624 | /// scaling is introduced in the inverse transform.</para>
|
---|
625 | /// <para>The transformation is computed by use of the native library
|
---|
626 | /// which currently is set up for your processor and OS version. The underlying
|
---|
627 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
628 | /// static member ILMath.FFT. See the online documentation for more
|
---|
629 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
630 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
631 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
632 | /// </remarks>
|
---|
633 | public static ILRetArray< complex> fftn(ILInArray< double> A) {
|
---|
634 | using (ILScope.Enter(A)) {
|
---|
635 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
636 | return FFTImplementation.FFTForward(A, A.Size.NumberOfDimensions);
|
---|
637 | }
|
---|
638 | }
|
---|
639 | /// <summary>
|
---|
640 | /// Fast fourier transform (n-D)
|
---|
641 | /// </summary>
|
---|
642 | /// <param name="A">Input array, n-D</param>
|
---|
643 | /// <returns>Transformation result</returns>
|
---|
644 | /// <remarks>
|
---|
645 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
646 | /// This is equivalent to repeatedly (inplace)
|
---|
647 | /// computing one dimensional transformations along all dimensions of A.
|
---|
648 | /// However, using this
|
---|
649 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
650 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
651 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
652 | /// a given data array A are mathematically equivalent. It's only a
|
---|
653 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
654 | /// scaling is introduced in the inverse transform.</para>
|
---|
655 | /// <para>The transformation is computed by use of the native library
|
---|
656 | /// which currently is set up for your processor and OS version. The underlying
|
---|
657 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
658 | /// static member ILMath.FFT. See the online documentation for more
|
---|
659 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
660 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
661 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
662 | /// </remarks>
|
---|
663 | public static ILRetArray< complex> fftn(ILInArray< complex> A) {
|
---|
664 | using (ILScope.Enter(A)) {
|
---|
665 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
666 | return FFTImplementation.FFTForward(A, A.Size.NumberOfDimensions);
|
---|
667 | }
|
---|
668 | }
|
---|
669 | /// <summary>
|
---|
670 | /// Inverse fast fourier transform (n-D)
|
---|
671 | /// </summary>
|
---|
672 | /// <param name="A">Input array, n-D (frequency domain)</param>
|
---|
673 | /// <returns>Transformation result</returns>
|
---|
674 | /// <remarks>
|
---|
675 | /// <para>The n-dimensional inverse transformation is computed for the n-dimensional array A.
|
---|
676 | /// This is equivalent to repeatedly (inplace)
|
---|
677 | /// computing one dimensional transformations along all dimensions of A.
|
---|
678 | /// However, using this
|
---|
679 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
680 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
681 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
682 | /// a given data array A are mathematically equivalent. It's only a
|
---|
683 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
684 | /// scaling is introduced in the inverse transform.</para>
|
---|
685 | /// <para>The transformation is computed by use of the native library
|
---|
686 | /// which currently is set up for your processor and OS version. The underlying
|
---|
687 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
688 | /// static member ILMath.FFT. See the online documentation for more
|
---|
689 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
690 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
691 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
692 | /// </remarks>
|
---|
693 | public static ILRetArray< complex> ifftn(ILInArray< complex> A) {
|
---|
694 | using (ILScope.Enter(A)) {
|
---|
695 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
696 | return FFTImplementation.FFTBackward(A, A.Size.NumberOfDimensions);
|
---|
697 | }
|
---|
698 | }
|
---|
699 | /// <summary>
|
---|
700 | /// Inverse fast fourier transform (n-D)
|
---|
701 | /// </summary>
|
---|
702 | /// <param name="A">Input array, n-D, complex hermitian (frequency domain)</param>
|
---|
703 | /// <returns>Transformation result</returns>
|
---|
704 | /// <remarks>
|
---|
705 | /// <para>The n-dimensional inverse transformation is computed for the n-dimensional array A.
|
---|
706 | /// This is equivalent to repeatedly (inplace)
|
---|
707 | /// computing one dimensional transformations along all dimensions of A.
|
---|
708 | /// However, using this
|
---|
709 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
710 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
711 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
712 | /// output having the imaginary part equals zero, only the real part is
|
---|
713 | /// returned for convenience reasons.</para>
|
---|
714 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
715 | /// of round-off errors), the result will be wrong!</para>
|
---|
716 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
717 | /// a given data array A are mathematically equivalent. It's only a
|
---|
718 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
719 | /// scaling is introduced in the inverse transform.</para>
|
---|
720 | /// <para>The transformation is computed by use of the native library
|
---|
721 | /// which currently is set up for your processor and OS version. The underlying
|
---|
722 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
723 | /// static member ILMath.FFT. See the online documentation for more
|
---|
724 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
725 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
726 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
727 | /// </remarks>
|
---|
728 | public static ILRetArray< double> ifftnsym(ILInArray< complex> A) {
|
---|
729 | using (ILScope.Enter(A)) {
|
---|
730 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
731 | return FFTImplementation.FFTBackwSym(A, A.Size.NumberOfDimensions);
|
---|
732 | }
|
---|
733 | }
|
---|
734 | #endregion
|
---|
735 |
|
---|
736 | #region fftn(A, params dims)
|
---|
737 | /// <summary>
|
---|
738 | /// Fast fourier transform (n-D, specific size)
|
---|
739 | /// </summary>
|
---|
740 | /// <param name="A">Input array, n-D</param>
|
---|
741 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
742 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
743 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
744 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
745 | /// <returns>Transformation result of size specified by 'dims' parameter, complex hermitian</returns>
|
---|
746 | /// <remarks>
|
---|
747 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
748 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
749 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
750 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
751 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
752 | /// computing one dimensional transformations along all dimensions of A.
|
---|
753 | /// However, using this
|
---|
754 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
755 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
756 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
757 | /// a given data array A are mathematically equivalent. It's only a
|
---|
758 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
759 | /// scaling is introduced in the inverse transform.</para>
|
---|
760 | /// <para>The transformation is computed by use of the native library
|
---|
761 | /// which currently is set up for your processor and OS version. The underlying
|
---|
762 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
763 | /// static member ILMath.FFT. See the online documentation for more
|
---|
764 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
765 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
766 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
767 | /// </remarks>
|
---|
768 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
769 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
770 | /// or any element of dims is non-negative</exception>
|
---|
771 | public static ILRetArray< complex> fftn(ILInArray< double> A, params int[] dims) {
|
---|
772 | using (ILScope.Enter(A)) {
|
---|
773 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
774 | ILRetArray< double> resizedA = resize4Transform(A, dims);
|
---|
775 | return FFTImplementation.FFTForward(resizedA, dims.Length);
|
---|
776 | }
|
---|
777 | }
|
---|
778 | /// <summary>
|
---|
779 | /// Fast fourier transform (n-D, specific size)
|
---|
780 | /// </summary>
|
---|
781 | /// <param name="A">Tnput array, n-D</param>
|
---|
782 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
783 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
784 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
785 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
786 | /// <returns>Transformation result of size specified by 'dims' parameter</returns>
|
---|
787 | /// <remarks>
|
---|
788 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
789 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
790 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
791 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
792 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
793 | /// computing one dimensional transformations along all dimensions of A.
|
---|
794 | /// However, using this
|
---|
795 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
796 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
797 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
798 | /// a given data array A are mathematically equivalent. It's only a
|
---|
799 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
800 | /// scaling is introduced in the inverse transform.</para>
|
---|
801 | /// <para>The transformation is computed by use of the native library
|
---|
802 | /// which currently is set up for your processor and OS version. The underlying
|
---|
803 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
804 | /// static member ILMath.FFT. See the online documentation for more
|
---|
805 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
806 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
807 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
808 | /// </remarks>
|
---|
809 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
810 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
811 | /// or any element of dims is non-negative</exception>
|
---|
812 | public static ILRetArray< complex> fftn(ILInArray< complex> A, params int[] dims) {
|
---|
813 | using (ILScope.Enter(A)) {
|
---|
814 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
815 | ILRetArray< complex> resizedA = resize4Transform(A, dims);
|
---|
816 | return FFTImplementation.FFTForward(resizedA, dims.Length);
|
---|
817 | }
|
---|
818 | }
|
---|
819 | /// <summary>
|
---|
820 | /// Inverse fast fourier transform (n-D, specific size)
|
---|
821 | /// </summary>
|
---|
822 | /// <param name="A">Input array, n-D</param>
|
---|
823 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
824 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
825 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
826 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
827 | /// <returns>Transformation result of size specified by 'dims' parameter</returns>
|
---|
828 | /// <remarks>
|
---|
829 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
830 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
831 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
832 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
833 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
834 | /// computing one dimensional transformations along all dimensions of A.
|
---|
835 | /// However, using this
|
---|
836 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
837 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
838 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
839 | /// a given data array A are mathematically equivalent. It's only a
|
---|
840 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
841 | /// scaling is introduced in the inverse transform.</para>
|
---|
842 | /// <para>The transformation is computed by use of the native library
|
---|
843 | /// which currently is set up for your processor and OS version. The underlying
|
---|
844 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
845 | /// static member ILMath.FFT. See the online documentation for more
|
---|
846 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
847 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
848 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
849 | /// </remarks>
|
---|
850 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
851 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
852 | /// or any element of dims is non-negative</exception>
|
---|
853 | public static ILRetArray< complex> ifftn(ILInArray< complex> A, params int[] dims) {
|
---|
854 | using (ILScope.Enter(A)) {
|
---|
855 | if (A.IsEmpty) return empty< complex>(A.Size);
|
---|
856 | ILRetArray< complex> resizedA = resize4Transform(A, dims);
|
---|
857 | return FFTImplementation.FFTBackward(resizedA, dims.Length);
|
---|
858 | }
|
---|
859 | }
|
---|
860 | /// <summary>
|
---|
861 | /// Inverse fast fourier transform (n-D, complex hermitian, specific size)
|
---|
862 | /// </summary>
|
---|
863 | /// <param name="A">Complex hermitian input array, n-D</param>
|
---|
864 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
865 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
866 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
867 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
868 | /// <returns>Transformation result, real array of the size specified by the 'dims' parameter</returns>
|
---|
869 | /// <remarks>
|
---|
870 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
871 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
872 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
873 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
874 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
875 | /// computing one dimensional transformations along all dimensions of A.
|
---|
876 | /// However, using this
|
---|
877 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
878 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
879 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
880 | /// output having the imaginary part equals zero, only the real part is
|
---|
881 | /// returned for convenience reasons.</para>
|
---|
882 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
883 | /// of round-off errors), the result will be wrong!</para>
|
---|
884 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
885 | /// a given data array A are mathematically equivalent. It's only a
|
---|
886 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
887 | /// scaling is introduced in the inverse transform.</para>
|
---|
888 | /// <para>The transformation is computed by use of the native library
|
---|
889 | /// which currently is set up for your processor and OS version. The underlying
|
---|
890 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
891 | /// static member ILMath.FFT. See the online documentation for more
|
---|
892 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
893 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
894 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
895 | /// </remarks>
|
---|
896 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
897 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
898 | /// or any element of dims is non-negative</exception>
|
---|
899 | public static ILRetArray< double> ifftnsym(ILInArray< complex> A, params int[] dims) {
|
---|
900 | using (ILScope.Enter(A)) {
|
---|
901 | if (A.IsEmpty) return empty< double>(A.Size);
|
---|
902 | ILRetArray< complex> resizedA = resize4Transform(A, dims);
|
---|
903 | return FFTImplementation.FFTBackwSym(resizedA, dims.Length);
|
---|
904 | }
|
---|
905 | }
|
---|
906 | #endregion
|
---|
907 |
|
---|
908 | |
---|
909 | #region HYCALPER AUTO GENERATED CODE
|
---|
910 | |
---|
911 |
|
---|
912 |
|
---|
913 | #region fft(A)
|
---|
914 | /// <summary>
|
---|
915 | /// Fast fourier transform (1D)
|
---|
916 | /// </summary>
|
---|
917 | /// <param name="A">Input array</param>
|
---|
918 | /// <returns>Transformed output array</returns>
|
---|
919 | /// <remarks><para>The transformation is computed along the first
|
---|
920 | /// non singleton dimension.</para>
|
---|
921 | /// <para>The output array returned will be complex hermitian. I.e. the real
|
---|
922 | /// part being even and the imaginary part being odd symmetrical.</para>
|
---|
923 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
924 | /// a given data array A are mathematically equivalent. It's only a
|
---|
925 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
926 | /// scaling is introduced in the inverse transform.</para>
|
---|
927 | /// <para>The transformation is computed by use of the native library
|
---|
928 | /// which currently is set up for your processor and OS version. The underlying
|
---|
929 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
930 | /// static member ILMath.FFT. See the online documentation for more
|
---|
931 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
932 | /// Currently supported libraries are: Intel MKL
|
---|
933 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
934 | /// </remarks>
|
---|
935 | public static ILRetArray< fcomplex> fft(ILInArray< float> A) {
|
---|
936 | using (ILScope.Enter(A)) {
|
---|
937 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
938 | if (A.IsScalar) return new fcomplex(A.GetValue(0), 0);
|
---|
939 | int fnsd = A.Size.WorkingDimension();
|
---|
940 | return ILMath.FFTImplementation.FFTForward1D(A, fnsd);
|
---|
941 | }
|
---|
942 | }
|
---|
943 | /// <summary>
|
---|
944 | /// Fast fourier transform (1D)
|
---|
945 | /// </summary>
|
---|
946 | /// <param name="A">Input array</param>
|
---|
947 | /// <returns>Transformed output array</returns>
|
---|
948 | /// <remarks>
|
---|
949 | /// <para>The transformation is computed along the first non
|
---|
950 | /// singleton dimension.</para>
|
---|
951 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
952 | /// a given data array A are mathematically equivalent. It's only a
|
---|
953 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
954 | /// scaling is introduced in the inverse transform.</para>
|
---|
955 | /// <para>The transformation is computed by use of the native library
|
---|
956 | /// which currently is set up for your processor and OS version. The underlying
|
---|
957 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
958 | /// static member ILMath.FFT. See the online documentation for more
|
---|
959 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
960 | /// Currently supported libraries are: Intel MKL
|
---|
961 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
962 | /// </remarks>
|
---|
963 | public static ILRetArray< fcomplex > fft(ILInArray< fcomplex > A) {
|
---|
964 | using (ILScope.Enter(A)) {
|
---|
965 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
966 | if (A.IsScalar) return A.C;
|
---|
967 | int fnsd = A.Size.WorkingDimension();
|
---|
968 | return ILMath.FFTImplementation.FFTForward1D(A, fnsd);
|
---|
969 | }
|
---|
970 | }
|
---|
971 | /// <summary>
|
---|
972 | /// Fast inverse fourier transform (1D)
|
---|
973 | /// </summary>
|
---|
974 | /// <param name="A">Input (frequency domain)</param>
|
---|
975 | /// <returns>Inverse transformed output array</returns>
|
---|
976 | /// <remarks>
|
---|
977 | /// <para>The transformation is computed along the first non
|
---|
978 | /// singleton dimension.</para>
|
---|
979 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
980 | /// a given data array A are mathematically equivalent. It's only a
|
---|
981 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
982 | /// scaling is introduced in the inverse transform.</para>
|
---|
983 | /// <para>The transformation is computed by use of the native library
|
---|
984 | /// which currently is set up for your processor and OS version. The underlying
|
---|
985 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
986 | /// static member ILMath.FFT. See the online documentation for more
|
---|
987 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
988 | /// Currently supported libraries are: Intel MKL
|
---|
989 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
990 | /// </remarks>
|
---|
991 | public static ILRetArray<fcomplex> ifft(ILInArray<fcomplex> A) {
|
---|
992 | using (ILScope.Enter(A)) {
|
---|
993 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
994 | if (A.IsScalar) return A.C;
|
---|
995 | int fnsd = A.Size.WorkingDimension();
|
---|
996 | return ILMath.FFTImplementation.FFTBackward1D(A, fnsd);
|
---|
997 | }
|
---|
998 | }
|
---|
999 | /// <summary>
|
---|
1000 | /// Inverse fast fourier transform, complex hermitian input
|
---|
1001 | /// </summary>
|
---|
1002 | /// <param name="A">Complex hermitian input array</param>
|
---|
1003 | /// <returns>Real output array, same size as A</returns>
|
---|
1004 | /// <remarks>
|
---|
1005 | /// <para>Since a transform of complex hermitian input data results in
|
---|
1006 | /// the output having all imaginary part equal zero, only the real part is
|
---|
1007 | /// returned for convenience reasons.</para>
|
---|
1008 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1009 | /// of round-off errors), the result will be wrong!</para>
|
---|
1010 | /// <para>The transformation is computed along the first non
|
---|
1011 | /// singleton dimension.</para>
|
---|
1012 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1013 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1014 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1015 | /// scaling is introduced in the inverse transform.</para>
|
---|
1016 | /// <para>The transformation is computed by use of the native library
|
---|
1017 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1018 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1019 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1020 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1021 | /// Currently supported libraries are: Intel MKL
|
---|
1022 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1023 | /// </remarks>
|
---|
1024 | public static ILRetArray< float > ifftsym(ILInArray< fcomplex > A) {
|
---|
1025 | using (ILScope.Enter(A)) {
|
---|
1026 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1027 | if (A.IsScalar) return real(A);
|
---|
1028 | int fnsd = A.Size.WorkingDimension();
|
---|
1029 | return ILMath.FFTImplementation.FFTBackwSym1D(A, fnsd);
|
---|
1030 | }
|
---|
1031 | }
|
---|
1032 | #endregion
|
---|
1033 |
|
---|
1034 | #region fft(A, dim)
|
---|
1035 | /// <summary>
|
---|
1036 | /// Fast fourier transform along specific dimension
|
---|
1037 | /// </summary>
|
---|
1038 | /// <param name="A">Real input array</param>
|
---|
1039 | /// <param name="dim">Dimension to compute FFT along. This parameter must be non-negative. </param>
|
---|
1040 | /// <returns>Transformation result</returns>
|
---|
1041 | /// <remarks>
|
---|
1042 | /// <para>The output array returned will be complex hermitian. I.e. the real
|
---|
1043 | /// part being even and the imaginary part being odd symmetrical.</para>
|
---|
1044 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1045 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1046 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1047 | /// scaling is introduced in the inverse transform.</para>
|
---|
1048 | /// <para>The transformation is computed by use of the native library
|
---|
1049 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1050 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1051 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1052 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1053 | /// Currently supported libraries are: Intel MKL
|
---|
1054 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1055 | /// </remarks>
|
---|
1056 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if
|
---|
1057 | /// the dim parameter is negative</exception>
|
---|
1058 | public static ILRetArray< fcomplex > fft(ILInArray< float > A, int dim) {
|
---|
1059 | using (ILScope.Enter(A)) {
|
---|
1060 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
1061 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1062 | if (A.IsScalar) return new fcomplex(A.GetValue(0), 0);
|
---|
1063 | return ILMath.FFTImplementation.FFTForward1D(A, dim);
|
---|
1064 | }
|
---|
1065 | }
|
---|
1066 | /// <summary>
|
---|
1067 | /// Fast fourier transform along specific dimension
|
---|
1068 | /// </summary>
|
---|
1069 | /// <param name="A">Input array</param>
|
---|
1070 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
1071 | /// must be non-negative. </param>
|
---|
1072 | /// <returns>Transformation result</returns>
|
---|
1073 | /// <remarks>
|
---|
1074 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1075 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1076 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1077 | /// scaling is introduced in the inverse transform.</para>
|
---|
1078 | /// <para>The transformation is computed by use of the native library
|
---|
1079 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1080 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1081 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1082 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1083 | /// Currently supported libraries are: Intel MKL
|
---|
1084 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1085 | /// </remarks>
|
---|
1086 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if
|
---|
1087 | /// the dim parameter is negative</exception>
|
---|
1088 | public static ILRetArray< fcomplex > fft(ILInArray< fcomplex > A, int dim) {
|
---|
1089 | using (ILScope.Enter(A)) {
|
---|
1090 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
1091 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1092 | if (A.IsScalar) return A.C;
|
---|
1093 | return ILMath.FFTImplementation.FFTForward1D(A, dim);
|
---|
1094 | }
|
---|
1095 | }
|
---|
1096 | /// <summary>
|
---|
1097 | /// Inverse fast fourier transform along specific dimension
|
---|
1098 | /// </summary>
|
---|
1099 | /// <param name="A">Input array</param>
|
---|
1100 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
1101 | /// must be non-negative. </param>
|
---|
1102 | /// <returns>Transformation result</returns>
|
---|
1103 | /// <remarks>
|
---|
1104 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1105 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1106 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1107 | /// scaling is introduced in the inverse transform.</para>
|
---|
1108 | /// <para>The transformation is computed by use of the native library
|
---|
1109 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1110 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1111 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1112 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1113 | /// Currently supported libraries are: Intel MKL
|
---|
1114 | /// (included), AMD ACML and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1115 | /// </remarks>
|
---|
1116 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the dim parameter is negative</exception>
|
---|
1117 | public static ILRetArray< fcomplex> ifft(ILInArray< fcomplex> A, int dim) {
|
---|
1118 | using (ILScope.Enter(A)) {
|
---|
1119 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
1120 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1121 | if (A.IsScalar) return A.C;
|
---|
1122 | return ILMath.FFTImplementation.FFTBackward1D(A, dim);
|
---|
1123 | }
|
---|
1124 | }
|
---|
1125 | /// <summary>
|
---|
1126 | /// Inverse fast fourier transform, complex hermitian input
|
---|
1127 | /// </summary>
|
---|
1128 | /// <param name="A">Complex hermitian input array (frequency domain)</param>
|
---|
1129 | /// <param name="dim">Dimension to compute FFT along. This parameter
|
---|
1130 | /// must be non-negative. </param>
|
---|
1131 | /// <returns>Real output array, same size as A</returns>
|
---|
1132 | /// <remarks>
|
---|
1133 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
1134 | /// output having the imaginary part equals zero, only the real part is
|
---|
1135 | /// returned for convenience reasons.</para>
|
---|
1136 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1137 | /// of round-off errors), the result will be wrong!</para>
|
---|
1138 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1139 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1140 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1141 | /// scaling is introduced in the inverse transform.</para>
|
---|
1142 | /// <para>The transformation is computed by use of the native library
|
---|
1143 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1144 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1145 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1146 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1147 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1148 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1149 | /// </remarks>
|
---|
1150 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the dim parameter is negative</exception>
|
---|
1151 | public static ILRetArray< float > ifftsym(ILInArray< fcomplex > A, int dim) {
|
---|
1152 | using (ILScope.Enter(A)) {
|
---|
1153 | if (dim < 0) throw new ILArgumentException("the 'dim' parameter must point to an existing dimension index of A");
|
---|
1154 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1155 | if (A.IsScalar) return real(A);
|
---|
1156 | return ILMath.FFTImplementation.FFTBackwSym1D(A, dim);
|
---|
1157 | }
|
---|
1158 | }
|
---|
1159 | #endregion
|
---|
1160 |
|
---|
1161 | #region fft2(A)
|
---|
1162 | /// <summary>
|
---|
1163 | /// Fast fourier transform (2D)
|
---|
1164 | /// </summary>
|
---|
1165 | /// <param name="A">Input array</param>
|
---|
1166 | /// <returns>Transformation result</returns>
|
---|
1167 | /// <remarks>
|
---|
1168 | /// <para>The 2D transformation is computed for the first 2 dimensions, regardless
|
---|
1169 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1170 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1171 | /// <para>The output array returned will be complex hermitian.</para>
|
---|
1172 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1173 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1174 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1175 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1176 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1177 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1178 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1179 | /// scaling is introduced in the inverse transform.</para>
|
---|
1180 | /// <para>The transformation is computed by use of the native library
|
---|
1181 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1182 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1183 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1184 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1185 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1186 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1187 | /// </remarks>
|
---|
1188 | public static ILRetArray< fcomplex > fft2(ILInArray< float > A) {
|
---|
1189 | using (ILScope.Enter(A)) {
|
---|
1190 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1191 | if (A.IsScalar) return new fcomplex(A.GetValue(0), 0);
|
---|
1192 | return FFTImplementation.FFTForward(A, 2);
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 | /// <summary>
|
---|
1196 | /// Fast fourier transform (2D)
|
---|
1197 | /// </summary>
|
---|
1198 | /// <param name="A">Input array</param>
|
---|
1199 | /// <returns>Transformation result</returns>
|
---|
1200 | /// <remarks>
|
---|
1201 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1202 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1203 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1204 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1205 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1206 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1207 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1208 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1209 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1210 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1211 | /// scaling is introduced in the inverse transform.</para>
|
---|
1212 | /// <para>The transformation is computed by use of the native library
|
---|
1213 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1214 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1215 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1216 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1217 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1218 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1219 | /// </remarks>
|
---|
1220 | public static ILRetArray< fcomplex> fft2(ILInArray< fcomplex> A) {
|
---|
1221 | using (ILScope.Enter(A)) {
|
---|
1222 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1223 | if (A.IsScalar) return A.C;
|
---|
1224 | return FFTImplementation.FFTForward(A, 2);
|
---|
1225 | }
|
---|
1226 | }
|
---|
1227 | /// <summary>
|
---|
1228 | /// Inverse fast fourier transform (2D)
|
---|
1229 | /// </summary>
|
---|
1230 | /// <param name="A">Input array</param>
|
---|
1231 | /// <returns>Transformation result</returns>
|
---|
1232 | /// <remarks>
|
---|
1233 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1234 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1235 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1236 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1237 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1238 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1239 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1240 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1241 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1242 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1243 | /// scaling is introduced in the inverse transform.</para>
|
---|
1244 | /// <para>The transformation is computed by use of the native library
|
---|
1245 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1246 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1247 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1248 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1249 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1250 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1251 | /// </remarks>
|
---|
1252 | public static ILRetArray< fcomplex> ifft2(ILInArray< fcomplex> A) {
|
---|
1253 | using (ILScope.Enter(A)) {
|
---|
1254 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1255 | if (A.IsScalar) return A.C;
|
---|
1256 | return FFTImplementation.FFTBackward(A, 2);
|
---|
1257 | }
|
---|
1258 | }
|
---|
1259 | /// <summary>
|
---|
1260 | /// Inverse fast fourier transform (2D, hermitian input)
|
---|
1261 | /// </summary>
|
---|
1262 | /// <param name="A">Complex hermitian input array (frequency domain)</param>
|
---|
1263 | /// <returns>Transformation result</returns>
|
---|
1264 | /// <remarks>
|
---|
1265 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
1266 | /// output having the imaginary part equals zero, only the real part is
|
---|
1267 | /// returned for convenience reasons.</para>
|
---|
1268 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1269 | /// of round-off errors), the result will be wrong!</para>
|
---|
1270 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1271 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1272 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1273 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1274 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1275 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1276 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1277 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1278 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1279 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1280 | /// scaling is introduced in the inverse transform.</para>
|
---|
1281 | /// <para>The transformation is computed by use of the native library
|
---|
1282 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1283 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1284 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1285 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1286 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1287 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1288 | /// </remarks>
|
---|
1289 | public static ILRetArray< float> ifft2sym(ILInArray< fcomplex> A) {
|
---|
1290 | using (ILScope.Enter(A)) {
|
---|
1291 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1292 | if (A.IsScalar) return real(A);
|
---|
1293 | return FFTImplementation.FFTBackwSym(A, 2);
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 | #endregion
|
---|
1297 |
|
---|
1298 | #region fft2(A,m,n)
|
---|
1299 | /// <summary>
|
---|
1300 | /// Fast fourier transform (2D)
|
---|
1301 | /// </summary>
|
---|
1302 | /// <param name="A">Input array</param>
|
---|
1303 | /// <param name="m">Transformation column length</param>
|
---|
1304 | /// <param name="n">Transformation row length</param>
|
---|
1305 | /// <returns>Transformation result, complex hermitian</returns>
|
---|
1306 | /// <remarks>
|
---|
1307 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1308 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1309 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1310 | /// <para>The data to be transformed (based on the A array) are resized according to
|
---|
1311 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
1312 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
1313 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1314 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1315 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1316 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1317 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1318 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1319 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1320 | /// scaling is introduced in the inverse transform.</para>
|
---|
1321 | /// <para>The transformation is computed by use of the native library
|
---|
1322 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1323 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1324 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1325 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1326 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1327 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1328 | /// </remarks>
|
---|
1329 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
1330 | public static ILRetArray< fcomplex> fft2(ILInArray< float> A, int m, int n) {
|
---|
1331 | using (ILScope.Enter(A)) {
|
---|
1332 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
1333 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1334 | int[] Asize = A.Size.ToIntArray();
|
---|
1335 | Asize[0] = m; Asize[1] = n;
|
---|
1336 | ILArray< float> resizedA = resize4Transform(A, Asize);
|
---|
1337 | return FFTImplementation.FFTForward(resizedA, 2);
|
---|
1338 | }
|
---|
1339 | }
|
---|
1340 | /// <summary>
|
---|
1341 | /// Fast fourier transform (2D)
|
---|
1342 | /// </summary>
|
---|
1343 | /// <param name="A">input array</param>
|
---|
1344 | /// <param name="m">Transformation column length</param>
|
---|
1345 | /// <param name="n">Transformation row length</param>
|
---|
1346 | /// <returns>Transformation result</returns>
|
---|
1347 | /// <remarks>
|
---|
1348 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1349 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1350 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1351 | /// <para>The data to be transformed (based on the A array) are resized according to
|
---|
1352 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
1353 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
1354 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1355 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1356 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1357 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1358 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1359 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1360 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1361 | /// scaling is introduced in the inverse transform.</para>
|
---|
1362 | /// <para>The transformation is computed by use of the native library
|
---|
1363 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1364 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1365 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1366 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1367 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1368 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1369 | /// </remarks>
|
---|
1370 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
1371 | public static ILRetArray< fcomplex> fft2(ILInArray< fcomplex> A, int m, int n) {
|
---|
1372 | using (ILScope.Enter(A)) {
|
---|
1373 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
1374 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1375 | int[] Asize = A.Size.ToIntArray();
|
---|
1376 | Asize[0] = m; Asize[1] = n;
|
---|
1377 | ILRetArray< fcomplex> resizedA = resize4Transform(A, Asize);
|
---|
1378 | return FFTImplementation.FFTForward(resizedA, 2);
|
---|
1379 | }
|
---|
1380 | }
|
---|
1381 | /// <summary>
|
---|
1382 | /// Inverse fast fourier transform (2D)
|
---|
1383 | /// </summary>
|
---|
1384 | /// <param name="A">Input array</param>
|
---|
1385 | /// <param name="m">Transformation column length</param>
|
---|
1386 | /// <param name="n">Transformation row length</param>
|
---|
1387 | /// <returns>Transformation result</returns>
|
---|
1388 | /// <remarks>
|
---|
1389 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1390 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1391 | /// the transformation is repeated for trailing dimensions of A respectively. </para>
|
---|
1392 | /// <para>The data to be transformed (based on the array A) are resized according to
|
---|
1393 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
1394 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
1395 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1396 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1397 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1398 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1399 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1400 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1401 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1402 | /// scaling is introduced in the inverse transform.</para>
|
---|
1403 | /// <para>The transformation is computed by use of the native library
|
---|
1404 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1405 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1406 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1407 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1408 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1409 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1410 | /// </remarks>
|
---|
1411 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
1412 | public static ILRetArray< fcomplex> ifft2(ILInArray< fcomplex> A, int m, int n) {
|
---|
1413 | using (ILScope.Enter(A)) {
|
---|
1414 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
1415 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1416 | int[] Asize = A.Size.ToIntArray();
|
---|
1417 | Asize[0] = m; Asize[1] = n;
|
---|
1418 | ILRetArray< fcomplex> resizedA = resize4Transform(A, Asize);
|
---|
1419 | return FFTImplementation.FFTBackward(resizedA, 2);
|
---|
1420 | }
|
---|
1421 | }
|
---|
1422 | /// <summary>
|
---|
1423 | /// Inverse fast fourier transform (2D)
|
---|
1424 | /// </summary>
|
---|
1425 | /// <param name="A">Complex hermitian input array, symmetric in first 2 dimensions</param>
|
---|
1426 | /// <param name="m">Transformation column length</param>
|
---|
1427 | /// <param name="n">Transformation row length</param>
|
---|
1428 | /// <returns>Transformation result</returns>
|
---|
1429 | /// <remarks>
|
---|
1430 | /// <para>The transformation is computed for the first 2 dimensions, regardless
|
---|
1431 | /// of those dimensions being singleton or non-singleton. If A is an n-d array,
|
---|
1432 | /// the transformation is repeated for trailing dimensions of A respectively. The
|
---|
1433 | /// lengths of those trailing dimensions are not altered.</para>
|
---|
1434 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
1435 | /// output having the imaginary part equals zero, only the real part is
|
---|
1436 | /// returned for convenience reasons.</para>
|
---|
1437 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1438 | /// of round-off errors), the result will be wrong!</para>
|
---|
1439 | /// <para>The data to be transformed (based on the array A) are resized according to
|
---|
1440 | /// the length parameter m and n. If m or n is larger then the length of the corresponding
|
---|
1441 | /// dimension of A, zeros will be padded, otherwise the dimensions are truncated respectively. </para>
|
---|
1442 | /// <para>The two dimensional transformation is equivalent to repeatedly transforming
|
---|
1443 | /// the columns and after that transforming the rows of A. However, using this
|
---|
1444 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1445 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1446 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1447 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1448 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1449 | /// scaling is introduced in the inverse transform.</para>
|
---|
1450 | /// <para>The transformation is computed by use of the native library
|
---|
1451 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1452 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1453 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1454 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1455 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1456 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1457 | /// </remarks>
|
---|
1458 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if one of n or m is negative</exception>
|
---|
1459 | public static ILRetArray< float> ifft2sym(ILInArray< fcomplex> A, int m, int n) {
|
---|
1460 | using (ILScope.Enter(A)) {
|
---|
1461 | if (m < 0 || n < 0) throw new ILArgumentException("dimension length specifier 'm' and 'n' must be non-negative!");
|
---|
1462 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1463 | int[] Asize = A.Size.ToIntArray();
|
---|
1464 | Asize[0] = m; Asize[1] = n;
|
---|
1465 | ILRetArray< fcomplex> resizedA = resize4Transform(A, Asize);
|
---|
1466 | return FFTImplementation.FFTBackwSym(resizedA, 2);
|
---|
1467 | }
|
---|
1468 | }
|
---|
1469 | #endregion
|
---|
1470 |
|
---|
1471 | #region fftn(A)
|
---|
1472 | /// <summary>
|
---|
1473 | /// Fast fourier transform (n-D)
|
---|
1474 | /// </summary>
|
---|
1475 | /// <param name="A">Input array, n-D</param>
|
---|
1476 | /// <returns>Transformation result, complex hermitian</returns>
|
---|
1477 | /// <remarks>
|
---|
1478 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1479 | /// This is equivalent to repeatedly (inplace)
|
---|
1480 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1481 | /// However, using this
|
---|
1482 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1483 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1484 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1485 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1486 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1487 | /// scaling is introduced in the inverse transform.</para>
|
---|
1488 | /// <para>The transformation is computed by use of the native library
|
---|
1489 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1490 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1491 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1492 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1493 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1494 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1495 | /// </remarks>
|
---|
1496 | public static ILRetArray< fcomplex> fftn(ILInArray< float> A) {
|
---|
1497 | using (ILScope.Enter(A)) {
|
---|
1498 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1499 | return FFTImplementation.FFTForward(A, A.Size.NumberOfDimensions);
|
---|
1500 | }
|
---|
1501 | }
|
---|
1502 | /// <summary>
|
---|
1503 | /// Fast fourier transform (n-D)
|
---|
1504 | /// </summary>
|
---|
1505 | /// <param name="A">Input array, n-D</param>
|
---|
1506 | /// <returns>Transformation result</returns>
|
---|
1507 | /// <remarks>
|
---|
1508 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1509 | /// This is equivalent to repeatedly (inplace)
|
---|
1510 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1511 | /// However, using this
|
---|
1512 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1513 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1514 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1515 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1516 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1517 | /// scaling is introduced in the inverse transform.</para>
|
---|
1518 | /// <para>The transformation is computed by use of the native library
|
---|
1519 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1520 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1521 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1522 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1523 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1524 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1525 | /// </remarks>
|
---|
1526 | public static ILRetArray< fcomplex> fftn(ILInArray< fcomplex> A) {
|
---|
1527 | using (ILScope.Enter(A)) {
|
---|
1528 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1529 | return FFTImplementation.FFTForward(A, A.Size.NumberOfDimensions);
|
---|
1530 | }
|
---|
1531 | }
|
---|
1532 | /// <summary>
|
---|
1533 | /// Inverse fast fourier transform (n-D)
|
---|
1534 | /// </summary>
|
---|
1535 | /// <param name="A">Input array, n-D (frequency domain)</param>
|
---|
1536 | /// <returns>Transformation result</returns>
|
---|
1537 | /// <remarks>
|
---|
1538 | /// <para>The n-dimensional inverse transformation is computed for the n-dimensional array A.
|
---|
1539 | /// This is equivalent to repeatedly (inplace)
|
---|
1540 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1541 | /// However, using this
|
---|
1542 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1543 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1544 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1545 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1546 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1547 | /// scaling is introduced in the inverse transform.</para>
|
---|
1548 | /// <para>The transformation is computed by use of the native library
|
---|
1549 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1550 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1551 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1552 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1553 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1554 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1555 | /// </remarks>
|
---|
1556 | public static ILRetArray< fcomplex> ifftn(ILInArray< fcomplex> A) {
|
---|
1557 | using (ILScope.Enter(A)) {
|
---|
1558 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1559 | return FFTImplementation.FFTBackward(A, A.Size.NumberOfDimensions);
|
---|
1560 | }
|
---|
1561 | }
|
---|
1562 | /// <summary>
|
---|
1563 | /// Inverse fast fourier transform (n-D)
|
---|
1564 | /// </summary>
|
---|
1565 | /// <param name="A">Input array, n-D, complex hermitian (frequency domain)</param>
|
---|
1566 | /// <returns>Transformation result</returns>
|
---|
1567 | /// <remarks>
|
---|
1568 | /// <para>The n-dimensional inverse transformation is computed for the n-dimensional array A.
|
---|
1569 | /// This is equivalent to repeatedly (inplace)
|
---|
1570 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1571 | /// However, using this
|
---|
1572 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1573 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1574 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
1575 | /// output having the imaginary part equals zero, only the real part is
|
---|
1576 | /// returned for convenience reasons.</para>
|
---|
1577 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1578 | /// of round-off errors), the result will be wrong!</para>
|
---|
1579 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1580 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1581 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1582 | /// scaling is introduced in the inverse transform.</para>
|
---|
1583 | /// <para>The transformation is computed by use of the native library
|
---|
1584 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1585 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1586 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1587 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1588 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1589 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1590 | /// </remarks>
|
---|
1591 | public static ILRetArray< float> ifftnsym(ILInArray< fcomplex> A) {
|
---|
1592 | using (ILScope.Enter(A)) {
|
---|
1593 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1594 | return FFTImplementation.FFTBackwSym(A, A.Size.NumberOfDimensions);
|
---|
1595 | }
|
---|
1596 | }
|
---|
1597 | #endregion
|
---|
1598 |
|
---|
1599 | #region fftn(A, params dims)
|
---|
1600 | /// <summary>
|
---|
1601 | /// Fast fourier transform (n-D, specific size)
|
---|
1602 | /// </summary>
|
---|
1603 | /// <param name="A">Input array, n-D</param>
|
---|
1604 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
1605 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
1606 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
1607 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
1608 | /// <returns>Transformation result of size specified by 'dims' parameter, complex hermitian</returns>
|
---|
1609 | /// <remarks>
|
---|
1610 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1611 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
1612 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
1613 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
1614 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
1615 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1616 | /// However, using this
|
---|
1617 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1618 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1619 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1620 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1621 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1622 | /// scaling is introduced in the inverse transform.</para>
|
---|
1623 | /// <para>The transformation is computed by use of the native library
|
---|
1624 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1625 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1626 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1627 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1628 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1629 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1630 | /// </remarks>
|
---|
1631 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
1632 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
1633 | /// or any element of dims is non-negative</exception>
|
---|
1634 | public static ILRetArray< fcomplex> fftn(ILInArray< float> A, params int[] dims) {
|
---|
1635 | using (ILScope.Enter(A)) {
|
---|
1636 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1637 | ILRetArray< float> resizedA = resize4Transform(A, dims);
|
---|
1638 | return FFTImplementation.FFTForward(resizedA, dims.Length);
|
---|
1639 | }
|
---|
1640 | }
|
---|
1641 | /// <summary>
|
---|
1642 | /// Fast fourier transform (n-D, specific size)
|
---|
1643 | /// </summary>
|
---|
1644 | /// <param name="A">Tnput array, n-D</param>
|
---|
1645 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
1646 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
1647 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
1648 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
1649 | /// <returns>Transformation result of size specified by 'dims' parameter</returns>
|
---|
1650 | /// <remarks>
|
---|
1651 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1652 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
1653 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
1654 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
1655 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
1656 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1657 | /// However, using this
|
---|
1658 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1659 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1660 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1661 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1662 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1663 | /// scaling is introduced in the inverse transform.</para>
|
---|
1664 | /// <para>The transformation is computed by use of the native library
|
---|
1665 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1666 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1667 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1668 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1669 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1670 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1671 | /// </remarks>
|
---|
1672 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
1673 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
1674 | /// or any element of dims is non-negative</exception>
|
---|
1675 | public static ILRetArray< fcomplex> fftn(ILInArray< fcomplex> A, params int[] dims) {
|
---|
1676 | using (ILScope.Enter(A)) {
|
---|
1677 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1678 | ILRetArray< fcomplex> resizedA = resize4Transform(A, dims);
|
---|
1679 | return FFTImplementation.FFTForward(resizedA, dims.Length);
|
---|
1680 | }
|
---|
1681 | }
|
---|
1682 | /// <summary>
|
---|
1683 | /// Inverse fast fourier transform (n-D, specific size)
|
---|
1684 | /// </summary>
|
---|
1685 | /// <param name="A">Input array, n-D</param>
|
---|
1686 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
1687 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
1688 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
1689 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
1690 | /// <returns>Transformation result of size specified by 'dims' parameter</returns>
|
---|
1691 | /// <remarks>
|
---|
1692 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1693 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
1694 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
1695 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
1696 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
1697 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1698 | /// However, using this
|
---|
1699 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1700 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1701 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1702 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1703 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1704 | /// scaling is introduced in the inverse transform.</para>
|
---|
1705 | /// <para>The transformation is computed by use of the native library
|
---|
1706 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1707 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1708 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1709 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1710 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1711 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1712 | /// </remarks>
|
---|
1713 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
1714 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
1715 | /// or any element of dims is non-negative</exception>
|
---|
1716 | public static ILRetArray< fcomplex> ifftn(ILInArray< fcomplex> A, params int[] dims) {
|
---|
1717 | using (ILScope.Enter(A)) {
|
---|
1718 | if (A.IsEmpty) return empty< fcomplex>(A.Size);
|
---|
1719 | ILRetArray< fcomplex> resizedA = resize4Transform(A, dims);
|
---|
1720 | return FFTImplementation.FFTBackward(resizedA, dims.Length);
|
---|
1721 | }
|
---|
1722 | }
|
---|
1723 | /// <summary>
|
---|
1724 | /// Inverse fast fourier transform (n-D, complex hermitian, specific size)
|
---|
1725 | /// </summary>
|
---|
1726 | /// <param name="A">Complex hermitian input array, n-D</param>
|
---|
1727 | /// <param name="dims">Transformation lengths, specifies the length of the dimensions
|
---|
1728 | /// for the transformation array. The length of dims must be > or equal to the number of
|
---|
1729 | /// dimensions of A. For elements in dim being smaller than corresponding dimension
|
---|
1730 | /// length in A, the dimensions will be truncated, otherwise zeros will be padded.</param>
|
---|
1731 | /// <returns>Transformation result, real array of the size specified by the 'dims' parameter</returns>
|
---|
1732 | /// <remarks>
|
---|
1733 | /// <para>The n-dimensional transformation is computed for the n-dimensional array A.
|
---|
1734 | /// Before the transform, the input is resized according to the 'dims' parameter.
|
---|
1735 | /// Dimensions larger than corresponding entries in 'dim' are truncated, dimensions
|
---|
1736 | /// smaller than corresponding entries in 'dim' are zero padded.</para>
|
---|
1737 | /// <para>The n-dimensional transformation is equivalent to repeatedly (inplace)
|
---|
1738 | /// computing one dimensional transformations along all dimensions of A.
|
---|
1739 | /// However, using this
|
---|
1740 | /// function may be of magnitudes faster than using 1D transformations. This
|
---|
1741 | /// depends on the algorithm and API provided by the underlying native library.</para>
|
---|
1742 | /// <para>Since a transform of complex hermitian input data results in the
|
---|
1743 | /// output having the imaginary part equals zero, only the real part is
|
---|
1744 | /// returned for convenience reasons.</para>
|
---|
1745 | /// <para>No check is made for A being hermitian! If A is not hermitian (by means
|
---|
1746 | /// of round-off errors), the result will be wrong!</para>
|
---|
1747 | /// <para>The forward fourier transform and the inverse fourier transform of
|
---|
1748 | /// a given data array A are mathematically equivalent. It's only a
|
---|
1749 | /// scaling factor which is needed to make sure, A equals ifft(fft(A)). That
|
---|
1750 | /// scaling is introduced in the inverse transform.</para>
|
---|
1751 | /// <para>The transformation is computed by use of the native library
|
---|
1752 | /// which currently is set up for your processor and OS version. The underlying
|
---|
1753 | /// library is automatically choosen at ILNumerics startup and accessed via the
|
---|
1754 | /// static member ILMath.FFT. See the online documentation for more
|
---|
1755 | /// details in how to tune/configure and select dedicated native libraries.
|
---|
1756 | /// Currently supported libraries are: Intel MKL (included), AMD ACML
|
---|
1757 | /// and FFTW3 (prepared, optional modules, not included due to licensing conflicts).</para>
|
---|
1758 | /// </remarks>
|
---|
1759 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">is thrown if the
|
---|
1760 | /// dim parameter is null, its length is less then the number of dimensions of A
|
---|
1761 | /// or any element of dims is non-negative</exception>
|
---|
1762 | public static ILRetArray< float> ifftnsym(ILInArray< fcomplex> A, params int[] dims) {
|
---|
1763 | using (ILScope.Enter(A)) {
|
---|
1764 | if (A.IsEmpty) return empty< float>(A.Size);
|
---|
1765 | ILRetArray< fcomplex> resizedA = resize4Transform(A, dims);
|
---|
1766 | return FFTImplementation.FFTBackwSym(resizedA, dims.Length);
|
---|
1767 | }
|
---|
1768 | }
|
---|
1769 | #endregion
|
---|
1770 |
|
---|
1771 |
|
---|
1772 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1773 |
|
---|
1774 | #region private helper
|
---|
1775 | internal static ILRetArray<T> resize4Transform<T>(ILInArray<T> A, params int[] size) {
|
---|
1776 | using (ILScope.Enter(A)) {
|
---|
1777 | if (size == null || size.Length < A.Size.NumberOfDimensions)
|
---|
1778 | throw new ILArgumentException("length of output dimensions must be > or equal to number of dimensions of input array!");
|
---|
1779 | ILSize newDimensions = new ILSize(size);
|
---|
1780 | if (A.Size.IsSameShape(newDimensions)) {
|
---|
1781 | return A;
|
---|
1782 | } else {
|
---|
1783 | if (newDimensions.NumberOfElements == 0) return empty<T>(newDimensions);
|
---|
1784 | ILArray<T> tmp = array<T>(default(T), newDimensions);
|
---|
1785 | int minDimsLen = Math.Min(size.Length, A.Size.NumberOfDimensions);
|
---|
1786 | ILArray<ILRegularRange>[] indices = new ILArray<ILRegularRange>[minDimsLen];
|
---|
1787 | for (int i = 0; i < minDimsLen; i++) {
|
---|
1788 | if (size[i] < 0)
|
---|
1789 | throw new ILArgumentException("all dimension lengths of 'size' must be non-negative!");
|
---|
1790 | if (size[i] == 0) return empty<T>(newDimensions);
|
---|
1791 | indices[i] = (ILRetArray<ILRegularRange>)r(0, Math.Min(A.Size[i] - 1, size[i] - 1));
|
---|
1792 | }
|
---|
1793 | tmp[indices] = A[indices];
|
---|
1794 | return tmp;
|
---|
1795 | }
|
---|
1796 | }
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 | #endregion
|
---|
1800 |
|
---|
1801 | }
|
---|
1802 | }
|
---|