Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/ILNumerics.2.14.4735.573/Functions/builtin/eig.cs @ 11316

Last change on this file since 11316 was 9102, checked in by gkronber, 12 years ago

#1967: ILNumerics source for experimentation

File size: 116.7 KB
Line 
1///
2///    This file is part of ILNumerics Community Edition.
3///
4///    ILNumerics Community Edition - high performance computing for applications.
5///    Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
6///
7///    ILNumerics Community Edition is free software: you can redistribute it and/or modify
8///    it under the terms of the GNU General Public License version 3 as published by
9///    the Free Software Foundation.
10///
11///    ILNumerics Community Edition is distributed in the hope that it will be useful,
12///    but WITHOUT ANY WARRANTY; without even the implied warranty of
13///    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14///    GNU General Public License for more details.
15///
16///    You should have received a copy of the GNU General Public License
17///    along with ILNumerics Community Edition. See the file License.txt in the root
18///    of your distribution package. If not, see <http://www.gnu.org/licenses/>.
19///
20///    In addition this software uses the following components and/or licenses:
21///
22///    =================================================================================
23///    The Open Toolkit Library License
24///   
25///    Copyright (c) 2006 - 2009 the Open Toolkit library.
26///   
27///    Permission is hereby granted, free of charge, to any person obtaining a copy
28///    of this software and associated documentation files (the "Software"), to deal
29///    in the Software without restriction, including without limitation the rights to
30///    use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
31///    the Software, and to permit persons to whom the Software is furnished to do
32///    so, subject to the following conditions:
33///
34///    The above copyright notice and this permission notice shall be included in all
35///    copies or substantial portions of the Software.
36///
37///    =================================================================================
38///   
39
40using System;
41using System.Collections.Generic;
42using System.Text;
43using ILNumerics.Storage;
44using ILNumerics.Misc;
45using ILNumerics.Exceptions;
46
47
48
49namespace ILNumerics {
50    public partial class ILMath {
51
52
53       
54        /// <summary>
55        /// Compute eigenvalues of general square matrix A
56        /// </summary>
57        /// <param name="A">Input matrix A. Size [n x n]</param>
58        /// <returns>Vector of eigenvalues of A. Size [n x 1]</returns>
59        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
60        /// <para>The vector returned will be of complex inner type, since no further constraints are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
61        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
62        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;)"/>
63        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
64        public static ILRetArray< complex > eig(ILInArray< double > A) {
65            using (ILScope.Enter(A)) {
66                ILArray< complex> V = null;
67                MatrixProperties props = MatrixProperties.None;
68                return eig(A, V, ref props, true);
69            }
70        }
71        /// <summary>
72        /// Compute eigenvalues and eigenvectors of general square matrix A
73        /// </summary>
74        /// <param name="A">Input matrix A. Size [n x n]</param>
75        /// <param name="V">Output matrix, eigenvectors EV of size [n x n]. May be null on input. If not null, content of V will be destroyed.</param>
76        /// <returns>Diagonal matrix with eigenvalues of A. Size [n x n]</returns>
77        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
78        /// <para>The matrices returned will be of complex inner type, since no further constrains are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
79        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
80        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
81        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
82        public static ILRetArray< complex > eig(ILInArray< double > A, ILOutArray< complex > V) {
83            MatrixProperties props = MatrixProperties.None;
84            return eig(A, V, ref props, true);
85        }
86        /// <summary>
87        /// Find eigenvalues  and eigenvectors
88        /// </summary>
89        /// <param name="A">Input: square matrix, size [n x n]</param>
90        /// <param name="V">Output (optional): eigenvectors</param>   
91        /// <param name="propsA">Matrix properties, on input - if specified,
92        /// will be used to choose the proper method of solution. On exit will be
93        /// filled according to the properties of A.</param>
94        /// <param name="balance">true: permute A in order to increase the
95        /// numerical stability, false: do not permute A.</param>
96        /// <returns>eigenvalues as vector (if V is null) or as diagonoal
97        /// matrix (if V was requested, i.e. not null).</returns>
98        /// <remarks><para>The eigenvalues of A are found by use of the
99        /// Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
100        /// <para>The arrays returned will be of complex inner type,
101        /// since no further constraints are set on the structure of
102        /// A (it may be nonsymmetric). Use
103        /// <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/>
104        /// or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/>
105        /// functions for computing the real eigenvalues of symmetric
106        /// matrices explicitly.</para>
107        /// <para>Depending on the parameter <paramref name="balance"/>,
108        /// A will be balanced first. This includes permutations and
109        /// scaling of A in order to improve the conditioning of the
110        /// eigenvalues.</para></remarks>
111        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
112        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
113        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if a
114        /// is not square</exception>
115        public static ILRetArray< complex > eig(ILInArray< double > A, ILOutArray< complex > V, ref MatrixProperties propsA, bool balance) {
116            using (ILScope.Enter(A)) {
117                if (A.IsEmpty) {
118                    if (!object.Equals(V,null))
119                        V.a = empty<complex>(A.Size);
120                    return  empty<complex>(A.Size);
121                }
122                ILArray< complex > ret = empty< complex >(ILSize.Empty00); 
123                int n = A.Size[0];
124                bool createVR = (object.Equals(V,null))? false:true;
125                if (n != A.Size[1])
126                    throw new ILArgumentException("eig: matrix A must be square");
127                propsA |= MatrixProperties.Square;
128                if (((propsA & MatrixProperties.Hermitian) != 0 || ILMath.ishermitian(A.C))) {
129                    propsA |= MatrixProperties.Hermitian;
130                    ILArray< double > Vd = null;
131                    if (createVR)
132                        Vd = returnType< double >();
133                    ILArray< double > tmpRet = eigSymm(A,Vd);
134                    if (createVR)
135                        V.a =  ILMath.tocomplex (Vd);
136                    ret =  ILMath.tocomplex (tmpRet);
137                } else {
138                    // nonsymmetric case
139                    char bal = (balance)? 'B':'N', jobvr; 
140                    ILRetArray< double > tmpA = A.C;
141                     double [] vr = null;
142                     double [] wr = ILMemoryPool.Pool.New< double >(n);
143                     
144                    double[] wi = ILMemoryPool.Pool.New<double>(n);
145                     double [] scale  = ILMemoryPool.Pool.New< double >(n);
146                     double [] rconde = ILMemoryPool.Pool.New< double >(n);
147                     double [] rcondv = ILMemoryPool.Pool.New< double >(n);
148                     double abnrm = 0;
149                    int ldvr, ilo = 0, ihi = 0, info = 0;
150                    if (createVR) {
151                        ldvr = n;
152                        vr = ILMemoryPool.Pool.New< double >(n * n);
153                        jobvr = 'V';
154                    } else {
155                        ldvr = 1;
156                        vr = new  double [1];
157                        jobvr = 'N';
158                    }
159                    /*!HC:HC?geevx*/
160                    Lapack.dgeevx(bal,'N',jobvr,'N',n,tmpA.GetArrayForWrite(),n,wr,wi,new  double [1],1,vr,ldvr,ref ilo,ref ihi,scale,ref abnrm,rconde,rcondv,ref info);   
161                    ILMemoryPool.Pool.Free(rconde);
162                    ILMemoryPool.Pool.Free(rcondv);
163                    ILMemoryPool.Pool.Free(scale);
164                    if (info != 0)
165                        throw new ILArgumentException("eig: error in Lapack '?geevx': (" + info + ")");
166                    // create eigenvalues
167                     complex [] retArr = ILMemoryPool.Pool.New< complex >(n);
168                    for (int i = 0; i < n; i++) {
169                       
170                        retArr[i].real = wr[i]; retArr[i].imag = wi[i];
171                    }
172                    ret = new ILArray< complex > (retArr,n,1);
173                    if (createVR) {
174                        #region HCSortEVec
175                        complex [] VArr = ILMemoryPool.Pool.New< complex >(n * n);
176                        for (int c = 0; c < n; c++) {
177                            if (wi[c] != 0 && wi[c+1] != 0 && c < n-1) {
178                                ilo = n * c; ihi = ilo + n;
179                                for (int r = 0; r < n; r++) {
180                                    VArr[ilo].real = vr[ilo];
181                                    VArr[ilo].imag = vr[ihi]; 
182                                    VArr[ihi].real = vr[ilo]; 
183                                    VArr[ihi].imag = -vr[ihi];
184                                    ilo++; ihi++;
185                                }
186                                c++;
187                            } else {
188                                ilo = n * c;
189                                for (int r = 0; r < n; r++) {
190                                    VArr[ilo].real = vr[ilo];
191                                    ilo++;
192                                }
193                            }
194                        }
195                        V.a = array<complex> (VArr,n,n);
196                        #endregion HYCALPER
197                        if (createVR)
198                            ret.a = ILMath.diag< complex>(ret);
199                    }
200                   
201                    ILMemoryPool.Pool.Free(wi);
202                    ILMemoryPool.Pool.Free(vr);
203                    ILMemoryPool.Pool.Free(wr);
204                }
205                return ret;
206            }
207        }
208
209        /// <summary>
210        /// Find all eigenvalues of symmetric (hermitian) matrix
211        /// </summary>
212        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
213        /// <returns>Array of size [n,1] with eigenvalues of A.</returns>
214        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
215        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
216        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
217        public static ILRetArray< double > eigSymm (ILInArray< double > A) {
218            using (ILScope.Enter(A)) {
219                if (A.IsEmpty) {
220                    return empty< double>(A.Size);
221                }
222                int n = A.Size[0];
223                if (n != A.Size[1])
224                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
225                int m = 0,info = 0;
226                ILArray< double > w = new ILArray< double > (new  double [n],1,n);
227                 double [] z = new  double [1]; ;
228                int [] isuppz = new int[2 * n];
229                 double [] AcArr = A.C.GetArrayForWrite();
230                /*!HC:lapack_???evr*/ Lapack.dsyevr ('N','A','U',n,AcArr,n,0,0,0,0,0,ref m,w.GetArrayForWrite(),z,1,isuppz,ref info);
231                ILMemoryPool.Pool.Free(AcArr);
232                return  /*dummy*/ (w);
233            }
234        }
235        /// <summary>
236        /// Find all eigenvalues and -vectors of symmetric (hermitian) matrix
237        /// </summary>
238        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
239        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors
240        /// will not be computed and V is not changed. In order to make the function return the vectors, V should be initiialized with ILMath.returnType before calling eigSymm.</param>
241        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
242        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
243        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
244        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
245        public static ILRetArray< double > eigSymm (ILInArray< double > A, ILOutArray< double > V) {
246            using (ILScope.Enter(A)) {
247                if (A.IsEmpty) {
248                    if (!object.Equals(V,null))
249                        V.a = empty<double>(A.Size);
250                    return empty<double>(A.Size);
251                }
252                int n = A.Size[0];
253                if (n != A.Size[1])
254                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
255                int m = 0,ldz = 0,info = 0;
256                ILArray< double > w = new ILArray< double >(ILMemoryPool.Pool.New< double >(n),n,1);
257                 double [] z;
258                char jobz;
259                if (object.Equals(V,null)) {
260                    z = new  double [1];
261                    jobz = 'N';
262                    ldz = 1;
263                } else {
264                    z = ILMemoryPool.Pool.New<  double >(n * n);
265                    jobz = 'V';
266                    ldz = n;
267                }
268                int [] isuppz = ILMemoryPool.Pool.New<int>( 2 * n);
269                 double [] AcArr = A.C.GetArrayForWrite();
270                /*!HC:lapack_???evr*/ Lapack.dsyevr (jobz,'A','U',n,AcArr,n,1,n,0,0,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
271                ILMemoryPool.Pool.Free(AcArr);
272                ILMemoryPool.Pool.Free(isuppz);
273                if (info != 0)
274                    throw new ILException("error returned from lapack: " + info);
275                if (jobz == 'V') {
276                    System.Diagnostics.Debug.Assert(!object.Equals(V,null));
277                    V.a =  array< double > (z,n,n);
278                    V.a = V[full,r(0,m-1)];
279                    return ILMath.diag( /*dummy*/ (w));
280                } else {
281                    ILMemoryPool.Pool.Free(z);
282                    return  /*dummy*/ (w);
283                }
284            }
285        }
286        /// <summary>
287        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
288        /// </summary>
289        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
290        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
291        /// <param name="rangeStart">Specify the lowest limit for the range of eigenvalues to be queried.</param>
292        /// <param name="rangeEnd">Specify the upper limit for the range of eigenvalues to be queried.</param>
293        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
294        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
295        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
296        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/></exception>
297        public static ILRetArray< double > eigSymm (ILInArray< double > A, ILOutArray< double > V, int rangeStart, int rangeEnd) {
298            using (ILScope.Enter(A)) {
299                if (A.IsEmpty) {
300                    if (!object.Equals(V,null))
301                        V.a = empty<double>(A.Size);
302                    return empty<double>(A.Size);
303                }
304                int n = A.Size[0];
305                if (n != A.Size[1])
306                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
307                int m = 0,ldz = 0,info = 0;
308                if (rangeEnd < rangeStart || rangeStart < 1)
309                    throw new ILArgumentException("invalid range of eigenvalues requested");
310                ILArray< double > w = array< double > (
311                                            ILMemoryPool.Pool.New< double>(n),1,n);
312                 double [] z;
313                char jobz;
314                if (object.Equals(V,null)) {
315                    z = new  double [1];
316                    jobz = 'N';
317                    ldz = 1;
318                } else {
319                    z = ILMemoryPool.Pool.New<double>(n * n);
320                    jobz = 'V';
321                    ldz = n;
322                }
323                int [] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
324                 double [] AcArr = A.C.GetArrayForWrite();
325                /*!HC:lapack_???evr*/ Lapack.dsyevr (jobz,'I','U',n,AcArr,n,0,0,rangeStart,rangeEnd,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
326                ILMemoryPool.Pool.Free(isuppz);
327                ILMemoryPool.Pool.Free(AcArr);
328
329                if (jobz == 'V') {
330                    V.a = array<  double >(z,n,n);
331                    V.a = V[full,r(0,m-1)];
332                }
333                ILMemoryPool.Pool.Free(z);
334                return ILMath.diag( /*dummy*/ (w));
335            }
336        }
337        /// <summary>
338        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
339        /// </summary>
340        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
341        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
342        /// <param name="rangeStart">The eigenvalues will be returned by increasing size. This will determine the number of the first eigenvalue to be returned.</param>
343        /// <param name="rangeEnd">Determine the number of the last eigenvalue to be returned.</param>
344        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
345        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
346        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
347        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/> or if either one is &lt;= 0.</exception>
348        public static ILRetArray< double> eigSymm( ILInArray< double> A, ILOutArray< double> V,  double rangeStart,  double rangeEnd ) {
349            using (ILScope.Enter(A)) {
350                if (A.IsEmpty) {
351                    if (!object.Equals(V, null))
352                        V.a = empty<double>(A.Size);
353                    return empty<double>(A.Size);
354                }
355                int n = A.Size[0];
356                if (n != A.Size[1])
357                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian");
358                int m = 0, ldz = 0, info = 0;
359                if (rangeStart > rangeEnd)
360                    throw new ILArgumentException("invalid range of eigenvalues requested");
361                ILArray< double> w = zeros<double>(1, n);
362               
363                double[] z;
364                char jobz;
365                if (object.Equals(V, null)) {
366                    z = new  double[1];
367                    jobz = 'N';
368                    ldz = 1;
369                } else {
370                    z = ILMemoryPool.Pool.New<double>(n * n);
371                    jobz = 'V';
372                    ldz = n;
373                }
374                int[] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
375
376               
377                double[] AcArr = A.C.GetArrayForWrite();
378                /*!HC:lapack_???evr*/
379                Lapack.dsyevr(jobz, 'V', 'U', n, AcArr, n, rangeStart, rangeEnd, 0, 0, 0, ref m, w.GetArrayForWrite(), z, ldz, isuppz, ref info);
380                ILMemoryPool.Pool.Free(AcArr);
381                ILMemoryPool.Pool.Free(isuppz);
382
383                if (jobz == 'V') {
384                    V.a = array< double>(z, n, n);
385                    V.a = V[full, r(0, m - 1)];
386                }
387                ILMemoryPool.Pool.Free(z);
388                return diag( /*dummy*/ (w));
389            }
390        }
391
392#region HYCALPER AUTO GENERATED CODE
393
394       
395        /// <summary>
396        /// Compute eigenvalues of general square matrix A
397        /// </summary>
398        /// <param name="A">Input matrix A. Size [n x n]</param>
399        /// <returns>Vector of eigenvalues of A. Size [n x 1]</returns>
400        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
401        /// <para>The vector returned will be of complex inner type, since no further constraints are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
402        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
403        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;)"/>
404        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
405        public static ILRetArray< fcomplex > eig(ILInArray< float > A) {
406            using (ILScope.Enter(A)) {
407                ILArray< fcomplex> V = null;
408                MatrixProperties props = MatrixProperties.None;
409                return eig(A, V, ref props, true);
410            }
411        }
412        /// <summary>
413        /// Compute eigenvalues and eigenvectors of general square matrix A
414        /// </summary>
415        /// <param name="A">Input matrix A. Size [n x n]</param>
416        /// <param name="V">Output matrix, eigenvectors EV of size [n x n]. May be null on input. If not null, content of V will be destroyed.</param>
417        /// <returns>Diagonal matrix with eigenvalues of A. Size [n x n]</returns>
418        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
419        /// <para>The matrices returned will be of complex inner type, since no further constrains are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
420        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
421        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
422        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
423        public static ILRetArray< fcomplex > eig(ILInArray< float > A, ILOutArray< fcomplex > V) {
424            MatrixProperties props = MatrixProperties.None;
425            return eig(A, V, ref props, true);
426        }
427        /// <summary>
428        /// Find eigenvalues  and eigenvectors
429        /// </summary>
430        /// <param name="A">Input: square matrix, size [n x n]</param>
431        /// <param name="V">Output (optional): eigenvectors</param>   
432        /// <param name="propsA">Matrix properties, on input - if specified,
433        /// will be used to choose the proper method of solution. On exit will be
434        /// filled according to the properties of A.</param>
435        /// <param name="balance">true: permute A in order to increase the
436        /// numerical stability, false: do not permute A.</param>
437        /// <returns>eigenvalues as vector (if V is null) or as diagonoal
438        /// matrix (if V was requested, i.e. not null).</returns>
439        /// <remarks><para>The eigenvalues of A are found by use of the
440        /// Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
441        /// <para>The arrays returned will be of complex inner type,
442        /// since no further constraints are set on the structure of
443        /// A (it may be nonsymmetric). Use
444        /// <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/>
445        /// or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/>
446        /// functions for computing the real eigenvalues of symmetric
447        /// matrices explicitly.</para>
448        /// <para>Depending on the parameter <paramref name="balance"/>,
449        /// A will be balanced first. This includes permutations and
450        /// scaling of A in order to improve the conditioning of the
451        /// eigenvalues.</para></remarks>
452        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
453        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
454        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if a
455        /// is not square</exception>
456        public static ILRetArray< fcomplex > eig(ILInArray< float > A, ILOutArray< fcomplex > V, ref MatrixProperties propsA, bool balance) {
457            using (ILScope.Enter(A)) {
458                if (A.IsEmpty) {
459                    if (!object.Equals(V,null))
460                        V.a = empty<fcomplex>(A.Size);
461                    return  empty<fcomplex>(A.Size);
462                }
463                ILArray< fcomplex > ret = empty< fcomplex >(ILSize.Empty00); 
464                int n = A.Size[0];
465                bool createVR = (object.Equals(V,null))? false:true;
466                if (n != A.Size[1])
467                    throw new ILArgumentException("eig: matrix A must be square");
468                propsA |= MatrixProperties.Square;
469                if (((propsA & MatrixProperties.Hermitian) != 0 || ILMath.ishermitian(A.C))) {
470                    propsA |= MatrixProperties.Hermitian;
471                    ILArray< float > Vd = null;
472                    if (createVR)
473                        Vd = returnType< float >();
474                    ILArray< float > tmpRet = eigSymm(A,Vd);
475                    if (createVR)
476                        V.a =  ILMath.tofcomplex (Vd);
477                    ret =  ILMath.tofcomplex (tmpRet);
478                } else {
479                    // nonsymmetric case
480                    char bal = (balance)? 'B':'N', jobvr; 
481                    ILRetArray< float > tmpA = A.C;
482                    float [] vr = null;
483                    float [] wr = ILMemoryPool.Pool.New< float >(n);
484                    float[] wi = ILMemoryPool.Pool.New< float>(n);
485                    float [] scale  = ILMemoryPool.Pool.New< float >(n);
486                    float [] rconde = ILMemoryPool.Pool.New< float >(n);
487                    float [] rcondv = ILMemoryPool.Pool.New< float >(n);
488                    float abnrm = 0;
489                    int ldvr, ilo = 0, ihi = 0, info = 0;
490                    if (createVR) {
491                        ldvr = n;
492                        vr = ILMemoryPool.Pool.New< float >(n * n);
493                        jobvr = 'V';
494                    } else {
495                        ldvr = 1;
496                        vr = new  float [1];
497                        jobvr = 'N';
498                    }
499                    Lapack.sgeevx(bal,'N',jobvr,'N',n,tmpA.GetArrayForWrite(),n,wr,wi,new float   [1],1,vr,ldvr,ref ilo,ref ihi,scale,ref abnrm,rconde,rcondv,ref info);   
500                    ILMemoryPool.Pool.Free(rconde);
501                    ILMemoryPool.Pool.Free(rcondv);
502                    ILMemoryPool.Pool.Free(scale);
503                    if (info != 0)
504                        throw new ILArgumentException("eig: error in Lapack '?geevx': (" + info + ")");
505                    // create eigenvalues
506                    fcomplex [] retArr = ILMemoryPool.Pool.New< fcomplex >(n);
507                    for (int i = 0; i < n; i++) {
508                        retArr[i].real = wr[i]; retArr[i].imag = wi[i];
509                    }
510                    ret = new ILArray< fcomplex > (retArr,n,1);
511                    if (createVR) {
512                        fcomplex [] VArr = ILMemoryPool.Pool.New< fcomplex >(n * n);
513                    for (int c = 0; c < n; c++) {
514                        if (wi[c] != 0 && wi[c+1] != 0 && c < n-1) {
515                            ilo = n * c; ihi = ilo + n;
516                            for (int r = 0; r < n; r++) {
517                                VArr[ilo].real = vr[ilo];
518                                VArr[ilo].imag = vr[ihi]; 
519                                VArr[ihi].real = vr[ilo]; 
520                                VArr[ihi].imag = -vr[ihi];
521                                ilo++; ihi++;
522                            }
523                            c++;
524                        } else {
525                            ilo = n * c;
526                            for (int r = 0; r < n; r++) {
527                                VArr[ilo].real = vr[ilo];
528                                ilo++;
529                            }
530                        }
531                    }
532                    V.a = array<fcomplex> (VArr,n,n); 
533                        if (createVR)
534                            ret.a = ILMath.diag< fcomplex>(ret);
535                    }
536                    ILMemoryPool.Pool.Free(wi);
537                    ILMemoryPool.Pool.Free(vr);
538                    ILMemoryPool.Pool.Free(wr);
539                }
540                return ret;
541            }
542        }
543
544        /// <summary>
545        /// Find all eigenvalues of symmetric (hermitian) matrix
546        /// </summary>
547        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
548        /// <returns>Array of size [n,1] with eigenvalues of A.</returns>
549        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
550        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
551        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
552        public static ILRetArray< float > eigSymm (ILInArray< float > A) {
553            using (ILScope.Enter(A)) {
554                if (A.IsEmpty) {
555                    return empty< float>(A.Size);
556                }
557                int n = A.Size[0];
558                if (n != A.Size[1])
559                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
560                int m = 0,info = 0;
561                ILArray< float > w = new ILArray< float > (new  float [n],1,n);
562                float [] z = new  float [1]; ;
563                int [] isuppz = new int[2 * n];
564                float [] AcArr = A.C.GetArrayForWrite();
565                Lapack.ssyevr ('N','A','U',n,AcArr,n,0,0,0,0,0,ref m,w.GetArrayForWrite(),z,1,isuppz,ref info);
566                ILMemoryPool.Pool.Free(AcArr);
567                return  (w);
568            }
569        }
570        /// <summary>
571        /// Find all eigenvalues and -vectors of symmetric (hermitian) matrix
572        /// </summary>
573        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
574        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors
575        /// will not be computed and V is not changed. In order to make the function return the vectors, V should be initiialized with ILMath.returnType before calling eigSymm.</param>
576        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
577        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
578        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
579        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
580        public static ILRetArray< float > eigSymm (ILInArray< float > A, ILOutArray< float > V) {
581            using (ILScope.Enter(A)) {
582                if (A.IsEmpty) {
583                    if (!object.Equals(V,null))
584                        V.a = empty<float>(A.Size);
585                    return empty<float>(A.Size);
586                }
587                int n = A.Size[0];
588                if (n != A.Size[1])
589                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
590                int m = 0,ldz = 0,info = 0;
591                ILArray< float > w = new ILArray< float >(ILMemoryPool.Pool.New< float >(n),n,1);
592                float [] z;
593                char jobz;
594                if (object.Equals(V,null)) {
595                    z = new  float [1];
596                    jobz = 'N';
597                    ldz = 1;
598                } else {
599                    z = ILMemoryPool.Pool.New<  float >(n * n);
600                    jobz = 'V';
601                    ldz = n;
602                }
603                int [] isuppz = ILMemoryPool.Pool.New<int>( 2 * n);
604                float [] AcArr = A.C.GetArrayForWrite();
605                Lapack.ssyevr (jobz,'A','U',n,AcArr,n,1,n,0,0,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
606                ILMemoryPool.Pool.Free(AcArr);
607                ILMemoryPool.Pool.Free(isuppz);
608                if (info != 0)
609                    throw new ILException("error returned from lapack: " + info);
610                if (jobz == 'V') {
611                    System.Diagnostics.Debug.Assert(!object.Equals(V,null));
612                    V.a =  array< float > (z,n,n);
613                    V.a = V[full,r(0,m-1)];
614                    return ILMath.diag( (w));
615                } else {
616                    ILMemoryPool.Pool.Free(z);
617                    return  (w);
618                }
619            }
620        }
621        /// <summary>
622        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
623        /// </summary>
624        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
625        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
626        /// <param name="rangeStart">Specify the lowest limit for the range of eigenvalues to be queried.</param>
627        /// <param name="rangeEnd">Specify the upper limit for the range of eigenvalues to be queried.</param>
628        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
629        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
630        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
631        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/></exception>
632        public static ILRetArray< float > eigSymm (ILInArray< float > A, ILOutArray< float > V, int rangeStart, int rangeEnd) {
633            using (ILScope.Enter(A)) {
634                if (A.IsEmpty) {
635                    if (!object.Equals(V,null))
636                        V.a = empty<float>(A.Size);
637                    return empty<float>(A.Size);
638                }
639                int n = A.Size[0];
640                if (n != A.Size[1])
641                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
642                int m = 0,ldz = 0,info = 0;
643                if (rangeEnd < rangeStart || rangeStart < 1)
644                    throw new ILArgumentException("invalid range of eigenvalues requested");
645                ILArray< float > w = array< float > (
646                                            ILMemoryPool.Pool.New< float>(n),1,n);
647                float [] z;
648                char jobz;
649                if (object.Equals(V,null)) {
650                    z = new  float [1];
651                    jobz = 'N';
652                    ldz = 1;
653                } else {
654                    z = ILMemoryPool.Pool.New<float>(n * n);
655                    jobz = 'V';
656                    ldz = n;
657                }
658                int [] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
659                float [] AcArr = A.C.GetArrayForWrite();
660                Lapack.ssyevr (jobz,'I','U',n,AcArr,n,0,0,rangeStart,rangeEnd,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
661                ILMemoryPool.Pool.Free(isuppz);
662                ILMemoryPool.Pool.Free(AcArr);
663
664                if (jobz == 'V') {
665                    V.a = array<  float >(z,n,n);
666                    V.a = V[full,r(0,m-1)];
667                }
668                ILMemoryPool.Pool.Free(z);
669                return ILMath.diag( (w));
670            }
671        }
672        /// <summary>
673        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
674        /// </summary>
675        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
676        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
677        /// <param name="rangeStart">The eigenvalues will be returned by increasing size. This will determine the number of the first eigenvalue to be returned.</param>
678        /// <param name="rangeEnd">Determine the number of the last eigenvalue to be returned.</param>
679        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
680        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
681        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
682        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/> or if either one is &lt;= 0.</exception>
683        public static ILRetArray< float> eigSymm( ILInArray< float> A, ILOutArray< float> V,  float rangeStart,  float rangeEnd ) {
684            using (ILScope.Enter(A)) {
685                if (A.IsEmpty) {
686                    if (!object.Equals(V, null))
687                        V.a = empty<float>(A.Size);
688                    return empty<float>(A.Size);
689                }
690                int n = A.Size[0];
691                if (n != A.Size[1])
692                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian");
693                int m = 0, ldz = 0, info = 0;
694                if (rangeStart > rangeEnd)
695                    throw new ILArgumentException("invalid range of eigenvalues requested");
696                ILArray< float> w = zeros<float>(1, n);
697               
698                float[] z;
699                char jobz;
700                if (object.Equals(V, null)) {
701                    z = new  float[1];
702                    jobz = 'N';
703                    ldz = 1;
704                } else {
705                    z = ILMemoryPool.Pool.New<float>(n * n);
706                    jobz = 'V';
707                    ldz = n;
708                }
709                int[] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
710
711               
712                float[] AcArr = A.C.GetArrayForWrite();
713               
714                Lapack.ssyevr(jobz, 'V', 'U', n, AcArr, n, rangeStart, rangeEnd, 0, 0, 0, ref m, w.GetArrayForWrite(), z, ldz, isuppz, ref info);
715                ILMemoryPool.Pool.Free(AcArr);
716                ILMemoryPool.Pool.Free(isuppz);
717
718                if (jobz == 'V') {
719                    V.a = array< float>(z, n, n);
720                    V.a = V[full, r(0, m - 1)];
721                }
722                ILMemoryPool.Pool.Free(z);
723                return diag( (w));
724            }
725        }
726       
727        /// <summary>
728        /// Compute eigenvalues of general square matrix A
729        /// </summary>
730        /// <param name="A">Input matrix A. Size [n x n]</param>
731        /// <returns>Vector of eigenvalues of A. Size [n x 1]</returns>
732        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
733        /// <para>The vector returned will be of complex inner type, since no further constraints are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
734        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
735        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;)"/>
736        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
737        public static ILRetArray< fcomplex > eig(ILInArray< fcomplex > A) {
738            using (ILScope.Enter(A)) {
739                ILArray< fcomplex> V = null;
740                MatrixProperties props = MatrixProperties.None;
741                return eig(A, V, ref props, true);
742            }
743        }
744        /// <summary>
745        /// Compute eigenvalues and eigenvectors of general square matrix A
746        /// </summary>
747        /// <param name="A">Input matrix A. Size [n x n]</param>
748        /// <param name="V">Output matrix, eigenvectors EV of size [n x n]. May be null on input. If not null, content of V will be destroyed.</param>
749        /// <returns>Diagonal matrix with eigenvalues of A. Size [n x n]</returns>
750        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
751        /// <para>The matrices returned will be of complex inner type, since no further constrains are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
752        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
753        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
754        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
755        public static ILRetArray< fcomplex > eig(ILInArray< fcomplex > A, ILOutArray< fcomplex > V) {
756            MatrixProperties props = MatrixProperties.None;
757            return eig(A, V, ref props, true);
758        }
759        /// <summary>
760        /// Find eigenvalues  and eigenvectors
761        /// </summary>
762        /// <param name="A">Input: square matrix, size [n x n]</param>
763        /// <param name="V">Output (optional): eigenvectors</param>   
764        /// <param name="propsA">Matrix properties, on input - if specified,
765        /// will be used to choose the proper method of solution. On exit will be
766        /// filled according to the properties of A.</param>
767        /// <param name="balance">true: permute A in order to increase the
768        /// numerical stability, false: do not permute A.</param>
769        /// <returns>eigenvalues as vector (if V is null) or as diagonoal
770        /// matrix (if V was requested, i.e. not null).</returns>
771        /// <remarks><para>The eigenvalues of A are found by use of the
772        /// Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
773        /// <para>The arrays returned will be of complex inner type,
774        /// since no further constraints are set on the structure of
775        /// A (it may be nonsymmetric). Use
776        /// <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/>
777        /// or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/>
778        /// functions for computing the real eigenvalues of symmetric
779        /// matrices explicitly.</para>
780        /// <para>Depending on the parameter <paramref name="balance"/>,
781        /// A will be balanced first. This includes permutations and
782        /// scaling of A in order to improve the conditioning of the
783        /// eigenvalues.</para></remarks>
784        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
785        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
786        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if a
787        /// is not square</exception>
788        public static ILRetArray< fcomplex > eig(ILInArray< fcomplex > A, ILOutArray< fcomplex > V, ref MatrixProperties propsA, bool balance) {
789            using (ILScope.Enter(A)) {
790                if (A.IsEmpty) {
791                    if (!object.Equals(V,null))
792                        V.a = empty<fcomplex>(A.Size);
793                    return  empty<fcomplex>(A.Size);
794                }
795                ILArray< fcomplex > ret = empty< fcomplex >(ILSize.Empty00); 
796                int n = A.Size[0];
797                bool createVR = (object.Equals(V,null))? false:true;
798                if (n != A.Size[1])
799                    throw new ILArgumentException("eig: matrix A must be square");
800                propsA |= MatrixProperties.Square;
801                if (((propsA & MatrixProperties.Hermitian) != 0 || ILMath.ishermitian(A.C))) {
802                    propsA |= MatrixProperties.Hermitian;
803                    ILArray< fcomplex > Vd = null;
804                    if (createVR)
805                        Vd = returnType< fcomplex >();
806                    ILArray< fcomplex > tmpRet = eigSymm(A,Vd);
807                    if (createVR)
808                        V.a =   (Vd);
809                    ret =   (tmpRet);
810                } else {
811                    // nonsymmetric case
812                    char bal = (balance)? 'B':'N', jobvr; 
813                    ILRetArray< fcomplex > tmpA = A.C;
814                    fcomplex [] vr = null;
815                    fcomplex [] wr = ILMemoryPool.Pool.New< fcomplex >(n);
816                   
817                    float [] scale  = ILMemoryPool.Pool.New< float >(n);
818                    float [] rconde = ILMemoryPool.Pool.New< float >(n);
819                    float [] rcondv = ILMemoryPool.Pool.New< float >(n);
820                    float abnrm = 0;
821                    int ldvr, ilo = 0, ihi = 0, info = 0;
822                    if (createVR) {
823                        ldvr = n;
824                        vr = ILMemoryPool.Pool.New< fcomplex >(n * n);
825                        jobvr = 'V';
826                    } else {
827                        ldvr = 1;
828                        vr = new  fcomplex [1];
829                        jobvr = 'N';
830                    }
831                    Lapack.cgeevx(bal,'N',jobvr,'N',n,tmpA.GetArrayForWrite(),n,wr,   new fcomplex[1],1,vr,ldvr,ref ilo,ref ihi,scale,ref abnrm,rconde,rcondv,ref info);   
832                    ILMemoryPool.Pool.Free(rconde);
833                    ILMemoryPool.Pool.Free(rcondv);
834                    ILMemoryPool.Pool.Free(scale);
835                    if (info != 0)
836                        throw new ILArgumentException("eig: error in Lapack '?geevx': (" + info + ")");
837                    // create eigenvalues
838                    fcomplex [] retArr = ILMemoryPool.Pool.New< fcomplex >(n);
839                    for (int i = 0; i < n; i++) {
840                        retArr[i] = wr[i];
841                    }
842                    ret = new ILArray< fcomplex > (retArr,n,1);
843                    if (createVR) {
844                        V.a = array<fcomplex> (vr,n,n);
845                        if (createVR)
846                            ret.a = ILMath.diag< fcomplex>(ret);
847                    }
848                   
849                    ILMemoryPool.Pool.Free(vr);
850                    ILMemoryPool.Pool.Free(wr);
851                }
852                return ret;
853            }
854        }
855
856        /// <summary>
857        /// Find all eigenvalues of symmetric (hermitian) matrix
858        /// </summary>
859        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
860        /// <returns>Array of size [n,1] with eigenvalues of A.</returns>
861        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
862        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
863        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
864        public static ILRetArray< fcomplex > eigSymm (ILInArray< fcomplex > A) {
865            using (ILScope.Enter(A)) {
866                if (A.IsEmpty) {
867                    return empty< fcomplex>(A.Size);
868                }
869                int n = A.Size[0];
870                if (n != A.Size[1])
871                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
872                int m = 0,info = 0;
873                ILArray< float > w = new ILArray< float > (new  float [n],1,n);
874                fcomplex [] z = new  fcomplex [1]; ;
875                int [] isuppz = new int[2 * n];
876                fcomplex [] AcArr = A.C.GetArrayForWrite();
877                Lapack.cheevr ('N','A','U',n,AcArr,n,0,0,0,0,0,ref m,w.GetArrayForWrite(),z,1,isuppz,ref info);
878                ILMemoryPool.Pool.Free(AcArr);
879                return  ILMath.tofcomplex(w);
880            }
881        }
882        /// <summary>
883        /// Find all eigenvalues and -vectors of symmetric (hermitian) matrix
884        /// </summary>
885        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
886        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors
887        /// will not be computed and V is not changed. In order to make the function return the vectors, V should be initiialized with ILMath.returnType before calling eigSymm.</param>
888        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
889        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
890        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
891        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
892        public static ILRetArray< fcomplex > eigSymm (ILInArray< fcomplex > A, ILOutArray< fcomplex > V) {
893            using (ILScope.Enter(A)) {
894                if (A.IsEmpty) {
895                    if (!object.Equals(V,null))
896                        V.a = empty<fcomplex>(A.Size);
897                    return empty<fcomplex>(A.Size);
898                }
899                int n = A.Size[0];
900                if (n != A.Size[1])
901                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
902                int m = 0,ldz = 0,info = 0;
903                ILArray< float > w = new ILArray< float >(ILMemoryPool.Pool.New< float >(n),n,1);
904                fcomplex [] z;
905                char jobz;
906                if (object.Equals(V,null)) {
907                    z = new  fcomplex [1];
908                    jobz = 'N';
909                    ldz = 1;
910                } else {
911                    z = ILMemoryPool.Pool.New<  fcomplex >(n * n);
912                    jobz = 'V';
913                    ldz = n;
914                }
915                int [] isuppz = ILMemoryPool.Pool.New<int>( 2 * n);
916                fcomplex [] AcArr = A.C.GetArrayForWrite();
917                Lapack.cheevr (jobz,'A','U',n,AcArr,n,1,n,0,0,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
918                ILMemoryPool.Pool.Free(AcArr);
919                ILMemoryPool.Pool.Free(isuppz);
920                if (info != 0)
921                    throw new ILException("error returned from lapack: " + info);
922                if (jobz == 'V') {
923                    System.Diagnostics.Debug.Assert(!object.Equals(V,null));
924                    V.a =  array< fcomplex > (z,n,n);
925                    V.a = V[full,r(0,m-1)];
926                    return ILMath.diag( ILMath.tofcomplex(w));
927                } else {
928                    ILMemoryPool.Pool.Free(z);
929                    return  ILMath.tofcomplex(w);
930                }
931            }
932        }
933        /// <summary>
934        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
935        /// </summary>
936        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
937        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
938        /// <param name="rangeStart">Specify the lowest limit for the range of eigenvalues to be queried.</param>
939        /// <param name="rangeEnd">Specify the upper limit for the range of eigenvalues to be queried.</param>
940        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
941        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
942        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
943        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/></exception>
944        public static ILRetArray< fcomplex > eigSymm (ILInArray< fcomplex > A, ILOutArray< fcomplex > V, int rangeStart, int rangeEnd) {
945            using (ILScope.Enter(A)) {
946                if (A.IsEmpty) {
947                    if (!object.Equals(V,null))
948                        V.a = empty<fcomplex>(A.Size);
949                    return empty<fcomplex>(A.Size);
950                }
951                int n = A.Size[0];
952                if (n != A.Size[1])
953                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
954                int m = 0,ldz = 0,info = 0;
955                if (rangeEnd < rangeStart || rangeStart < 1)
956                    throw new ILArgumentException("invalid range of eigenvalues requested");
957                ILArray< float > w = array< float > (
958                                            ILMemoryPool.Pool.New< float>(n),1,n);
959                fcomplex [] z;
960                char jobz;
961                if (object.Equals(V,null)) {
962                    z = new  fcomplex [1];
963                    jobz = 'N';
964                    ldz = 1;
965                } else {
966                    z = ILMemoryPool.Pool.New<fcomplex>(n * n);
967                    jobz = 'V';
968                    ldz = n;
969                }
970                int [] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
971                fcomplex [] AcArr = A.C.GetArrayForWrite();
972                Lapack.cheevr (jobz,'I','U',n,AcArr,n,0,0,rangeStart,rangeEnd,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
973                ILMemoryPool.Pool.Free(isuppz);
974                ILMemoryPool.Pool.Free(AcArr);
975
976                if (jobz == 'V') {
977                    V.a = array<  fcomplex >(z,n,n);
978                    V.a = V[full,r(0,m-1)];
979                }
980                ILMemoryPool.Pool.Free(z);
981                return ILMath.diag( ILMath.tofcomplex(w));
982            }
983        }
984        /// <summary>
985        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
986        /// </summary>
987        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
988        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
989        /// <param name="rangeStart">The eigenvalues will be returned by increasing size. This will determine the number of the first eigenvalue to be returned.</param>
990        /// <param name="rangeEnd">Determine the number of the last eigenvalue to be returned.</param>
991        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
992        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
993        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
994        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/> or if either one is &lt;= 0.</exception>
995        public static ILRetArray< fcomplex> eigSymm( ILInArray< fcomplex> A, ILOutArray< fcomplex> V,  float rangeStart,  float rangeEnd ) {
996            using (ILScope.Enter(A)) {
997                if (A.IsEmpty) {
998                    if (!object.Equals(V, null))
999                        V.a = empty<fcomplex>(A.Size);
1000                    return empty<fcomplex>(A.Size);
1001                }
1002                int n = A.Size[0];
1003                if (n != A.Size[1])
1004                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian");
1005                int m = 0, ldz = 0, info = 0;
1006                if (rangeStart > rangeEnd)
1007                    throw new ILArgumentException("invalid range of eigenvalues requested");
1008                ILArray< float> w = zeros<float>(1, n);
1009               
1010                fcomplex[] z;
1011                char jobz;
1012                if (object.Equals(V, null)) {
1013                    z = new  fcomplex[1];
1014                    jobz = 'N';
1015                    ldz = 1;
1016                } else {
1017                    z = ILMemoryPool.Pool.New<fcomplex>(n * n);
1018                    jobz = 'V';
1019                    ldz = n;
1020                }
1021                int[] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
1022
1023               
1024                fcomplex[] AcArr = A.C.GetArrayForWrite();
1025               
1026                Lapack.cheevr(jobz, 'V', 'U', n, AcArr, n, rangeStart, rangeEnd, 0, 0, 0, ref m, w.GetArrayForWrite(), z, ldz, isuppz, ref info);
1027                ILMemoryPool.Pool.Free(AcArr);
1028                ILMemoryPool.Pool.Free(isuppz);
1029
1030                if (jobz == 'V') {
1031                    V.a = array< fcomplex>(z, n, n);
1032                    V.a = V[full, r(0, m - 1)];
1033                }
1034                ILMemoryPool.Pool.Free(z);
1035                return diag( ILMath.tofcomplex(w));
1036            }
1037        }
1038       
1039        /// <summary>
1040        /// Compute eigenvalues of general square matrix A
1041        /// </summary>
1042        /// <param name="A">Input matrix A. Size [n x n]</param>
1043        /// <returns>Vector of eigenvalues of A. Size [n x 1]</returns>
1044        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
1045        /// <para>The vector returned will be of complex inner type, since no further constraints are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
1046        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
1047        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;)"/>
1048        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
1049        public static ILRetArray< complex > eig(ILInArray< complex > A) {
1050            using (ILScope.Enter(A)) {
1051                ILArray< complex> V = null;
1052                MatrixProperties props = MatrixProperties.None;
1053                return eig(A, V, ref props, true);
1054            }
1055        }
1056        /// <summary>
1057        /// Compute eigenvalues and eigenvectors of general square matrix A
1058        /// </summary>
1059        /// <param name="A">Input matrix A. Size [n x n]</param>
1060        /// <param name="V">Output matrix, eigenvectors EV of size [n x n]. May be null on input. If not null, content of V will be destroyed.</param>
1061        /// <returns>Diagonal matrix with eigenvalues of A. Size [n x n]</returns>
1062        /// <remarks><para>The eigenvalues of A are found by use of the Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
1063        /// <para>The matrices returned will be of complex inner type, since no further constrains are set on the structure of A (it may be nonsymmetric). Use <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/> or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/> functions for computing the real eigenvalues of symmetric matrices explicitly.</para>
1064        /// <para>A will be balanced first. This includes permutations and scaling of A in order to improve the conditioning of the eigenvalues.</para></remarks>
1065        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
1066        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
1067        public static ILRetArray< complex > eig(ILInArray< complex > A, ILOutArray< complex > V) {
1068            MatrixProperties props = MatrixProperties.None;
1069            return eig(A, V, ref props, true);
1070        }
1071        /// <summary>
1072        /// Find eigenvalues  and eigenvectors
1073        /// </summary>
1074        /// <param name="A">Input: square matrix, size [n x n]</param>
1075        /// <param name="V">Output (optional): eigenvectors</param>   
1076        /// <param name="propsA">Matrix properties, on input - if specified,
1077        /// will be used to choose the proper method of solution. On exit will be
1078        /// filled according to the properties of A.</param>
1079        /// <param name="balance">true: permute A in order to increase the
1080        /// numerical stability, false: do not permute A.</param>
1081        /// <returns>eigenvalues as vector (if V is null) or as diagonoal
1082        /// matrix (if V was requested, i.e. not null).</returns>
1083        /// <remarks><para>The eigenvalues of A are found by use of the
1084        /// Lapack functions dgeevx, sgeevx, cgeevx and zgeevx. </para>
1085        /// <para>The arrays returned will be of complex inner type,
1086        /// since no further constraints are set on the structure of
1087        /// A (it may be nonsymmetric). Use
1088        /// <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;)"/>
1089        /// or <see cref="ILNumerics.ILMath.eigSymm(ILInArray&lt;double&gt;,ILOutArray&lt;double&gt;)"/>
1090        /// functions for computing the real eigenvalues of symmetric
1091        /// matrices explicitly.</para>
1092        /// <para>Depending on the parameter <paramref name="balance"/>,
1093        /// A will be balanced first. This includes permutations and
1094        /// scaling of A in order to improve the conditioning of the
1095        /// eigenvalues.</para></remarks>
1096        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;)"/>
1097        /// <seealso cref="ILNumerics.ILMath.eig(ILInArray&lt;double&gt;,ILOutArray&lt;complex&gt;,ref MatrixProperties,bool)"/>
1098        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if a
1099        /// is not square</exception>
1100        public static ILRetArray< complex > eig(ILInArray< complex > A, ILOutArray< complex > V, ref MatrixProperties propsA, bool balance) {
1101            using (ILScope.Enter(A)) {
1102                if (A.IsEmpty) {
1103                    if (!object.Equals(V,null))
1104                        V.a = empty<complex>(A.Size);
1105                    return  empty<complex>(A.Size);
1106                }
1107                ILArray< complex > ret = empty< complex >(ILSize.Empty00); 
1108                int n = A.Size[0];
1109                bool createVR = (object.Equals(V,null))? false:true;
1110                if (n != A.Size[1])
1111                    throw new ILArgumentException("eig: matrix A must be square");
1112                propsA |= MatrixProperties.Square;
1113                if (((propsA & MatrixProperties.Hermitian) != 0 || ILMath.ishermitian(A.C))) {
1114                    propsA |= MatrixProperties.Hermitian;
1115                    ILArray< complex > Vd = null;
1116                    if (createVR)
1117                        Vd = returnType< complex >();
1118                    ILArray< complex > tmpRet = eigSymm(A,Vd);
1119                    if (createVR)
1120                        V.a =   (Vd);
1121                    ret =   (tmpRet);
1122                } else {
1123                    // nonsymmetric case
1124                    char bal = (balance)? 'B':'N', jobvr; 
1125                    ILRetArray< complex > tmpA = A.C;
1126                    complex [] vr = null;
1127                    complex [] wr = ILMemoryPool.Pool.New< complex >(n);
1128                   
1129                    double [] scale  = ILMemoryPool.Pool.New< double >(n);
1130                    double [] rconde = ILMemoryPool.Pool.New< double >(n);
1131                    double [] rcondv = ILMemoryPool.Pool.New< double >(n);
1132                    double abnrm = 0;
1133                    int ldvr, ilo = 0, ihi = 0, info = 0;
1134                    if (createVR) {
1135                        ldvr = n;
1136                        vr = ILMemoryPool.Pool.New< complex >(n * n);
1137                        jobvr = 'V';
1138                    } else {
1139                        ldvr = 1;
1140                        vr = new  complex [1];
1141                        jobvr = 'N';
1142                    }
1143                    Lapack.zgeevx(bal,'N',jobvr,'N',n,tmpA.GetArrayForWrite(),n,wr,   new complex [1],1,vr,ldvr,ref ilo,ref ihi,scale,ref abnrm,rconde,rcondv,ref info);   
1144                    ILMemoryPool.Pool.Free(rconde);
1145                    ILMemoryPool.Pool.Free(rcondv);
1146                    ILMemoryPool.Pool.Free(scale);
1147                    if (info != 0)
1148                        throw new ILArgumentException("eig: error in Lapack '?geevx': (" + info + ")");
1149                    // create eigenvalues
1150                    complex [] retArr = ILMemoryPool.Pool.New< complex >(n);
1151                    for (int i = 0; i < n; i++) {
1152                        retArr[i] = wr[i];
1153                    }
1154                    ret = new ILArray< complex > (retArr,n,1);
1155                    if (createVR) {
1156                        V.a = array<complex> (vr,n,n);
1157                        if (createVR)
1158                            ret.a = ILMath.diag< complex>(ret);
1159                    }
1160                   
1161                    ILMemoryPool.Pool.Free(vr);
1162                    ILMemoryPool.Pool.Free(wr);
1163                }
1164                return ret;
1165            }
1166        }
1167
1168        /// <summary>
1169        /// Find all eigenvalues of symmetric (hermitian) matrix
1170        /// </summary>
1171        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
1172        /// <returns>Array of size [n,1] with eigenvalues of A.</returns>
1173        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
1174        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
1175        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
1176        public static ILRetArray< complex > eigSymm (ILInArray< complex > A) {
1177            using (ILScope.Enter(A)) {
1178                if (A.IsEmpty) {
1179                    return empty< complex>(A.Size);
1180                }
1181                int n = A.Size[0];
1182                if (n != A.Size[1])
1183                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
1184                int m = 0,info = 0;
1185                ILArray< double > w = new ILArray< double > (new  double [n],1,n);
1186                complex [] z = new  complex [1]; ;
1187                int [] isuppz = new int[2 * n];
1188                complex [] AcArr = A.C.GetArrayForWrite();
1189                Lapack.zheevr ('N','A','U',n,AcArr,n,0,0,0,0,0,ref m,w.GetArrayForWrite(),z,1,isuppz,ref info);
1190                ILMemoryPool.Pool.Free(AcArr);
1191                return  ILMath.tocomplex(w);
1192            }
1193        }
1194        /// <summary>
1195        /// Find all eigenvalues and -vectors of symmetric (hermitian) matrix
1196        /// </summary>
1197        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
1198        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors
1199        /// will not be computed and V is not changed. In order to make the function return the vectors, V should be initiialized with ILMath.returnType before calling eigSymm.</param>
1200        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
1201        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
1202        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
1203        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square.</exception>
1204        public static ILRetArray< complex > eigSymm (ILInArray< complex > A, ILOutArray< complex > V) {
1205            using (ILScope.Enter(A)) {
1206                if (A.IsEmpty) {
1207                    if (!object.Equals(V,null))
1208                        V.a = empty<complex>(A.Size);
1209                    return empty<complex>(A.Size);
1210                }
1211                int n = A.Size[0];
1212                if (n != A.Size[1])
1213                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
1214                int m = 0,ldz = 0,info = 0;
1215                ILArray< double > w = new ILArray< double >(ILMemoryPool.Pool.New< double >(n),n,1);
1216                complex [] z;
1217                char jobz;
1218                if (object.Equals(V,null)) {
1219                    z = new  complex [1];
1220                    jobz = 'N';
1221                    ldz = 1;
1222                } else {
1223                    z = ILMemoryPool.Pool.New<  complex >(n * n);
1224                    jobz = 'V';
1225                    ldz = n;
1226                }
1227                int [] isuppz = ILMemoryPool.Pool.New<int>( 2 * n);
1228                complex [] AcArr = A.C.GetArrayForWrite();
1229                Lapack.zheevr (jobz,'A','U',n,AcArr,n,1,n,0,0,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
1230                ILMemoryPool.Pool.Free(AcArr);
1231                ILMemoryPool.Pool.Free(isuppz);
1232                if (info != 0)
1233                    throw new ILException("error returned from lapack: " + info);
1234                if (jobz == 'V') {
1235                    System.Diagnostics.Debug.Assert(!object.Equals(V,null));
1236                    V.a =  array< complex > (z,n,n);
1237                    V.a = V[full,r(0,m-1)];
1238                    return ILMath.diag( ILMath.tocomplex(w));
1239                } else {
1240                    ILMemoryPool.Pool.Free(z);
1241                    return  ILMath.tocomplex(w);
1242                }
1243            }
1244        }
1245        /// <summary>
1246        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
1247        /// </summary>
1248        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
1249        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
1250        /// <param name="rangeStart">Specify the lowest limit for the range of eigenvalues to be queried.</param>
1251        /// <param name="rangeEnd">Specify the upper limit for the range of eigenvalues to be queried.</param>
1252        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
1253        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
1254        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
1255        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/></exception>
1256        public static ILRetArray< complex > eigSymm (ILInArray< complex > A, ILOutArray< complex > V, int rangeStart, int rangeEnd) {
1257            using (ILScope.Enter(A)) {
1258                if (A.IsEmpty) {
1259                    if (!object.Equals(V,null))
1260                        V.a = empty<complex>(A.Size);
1261                    return empty<complex>(A.Size);
1262                }
1263                int n = A.Size[0];
1264                if (n != A.Size[1])
1265                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian.");
1266                int m = 0,ldz = 0,info = 0;
1267                if (rangeEnd < rangeStart || rangeStart < 1)
1268                    throw new ILArgumentException("invalid range of eigenvalues requested");
1269                ILArray< double > w = array< double > (
1270                                            ILMemoryPool.Pool.New< double>(n),1,n);
1271                complex [] z;
1272                char jobz;
1273                if (object.Equals(V,null)) {
1274                    z = new  complex [1];
1275                    jobz = 'N';
1276                    ldz = 1;
1277                } else {
1278                    z = ILMemoryPool.Pool.New<complex>(n * n);
1279                    jobz = 'V';
1280                    ldz = n;
1281                }
1282                int [] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
1283                complex [] AcArr = A.C.GetArrayForWrite();
1284                Lapack.zheevr (jobz,'I','U',n,AcArr,n,0,0,rangeStart,rangeEnd,0,ref m,w.GetArrayForWrite(),z,ldz,isuppz,ref info);
1285                ILMemoryPool.Pool.Free(isuppz);
1286                ILMemoryPool.Pool.Free(AcArr);
1287
1288                if (jobz == 'V') {
1289                    V.a = array<  complex >(z,n,n);
1290                    V.a = V[full,r(0,m-1)];
1291                }
1292                ILMemoryPool.Pool.Free(z);
1293                return ILMath.diag( ILMath.tocomplex(w));
1294            }
1295        }
1296        /// <summary>
1297        /// Find some eigenvalues and -vectors of symmetric (hermitian) matrix
1298        /// </summary>
1299        /// <param name="A">Input matrix, Size [n x n], symmetric (hermitian for complex A) </param>
1300        /// <param name="V">Output: n eigenvectors as columns. Size [n x n]. If V is null on input, the eigenvectors will not be computed and V is not changed. </param>
1301        /// <param name="rangeStart">The eigenvalues will be returned by increasing size. This will determine the number of the first eigenvalue to be returned.</param>
1302        /// <param name="rangeEnd">Determine the number of the last eigenvalue to be returned.</param>
1303        /// <returns>Diagonal matrix of size [n,n] with eigenvalues of A on the main diagonal.</returns>
1304        /// <remarks><para>For computation the Lapack functions dsyevr, ssyevr, chesvr and zheesv are used. </para>
1305        /// <para>Since A is symmetric, the eigenvalues will always be real. Therefore the return value will be of the same inner type as A.</para></remarks>
1306        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A is not square or <paramref name="rangeEnd"/> &lt; <paramref name="rangeStart"/> or if either one is &lt;= 0.</exception>
1307        public static ILRetArray< complex> eigSymm( ILInArray< complex> A, ILOutArray< complex> V,  double rangeStart,  double rangeEnd ) {
1308            using (ILScope.Enter(A)) {
1309                if (A.IsEmpty) {
1310                    if (!object.Equals(V, null))
1311                        V.a = empty<complex>(A.Size);
1312                    return empty<complex>(A.Size);
1313                }
1314                int n = A.Size[0];
1315                if (n != A.Size[1])
1316                    throw new ILArgumentException("input matrix A must be square and symmetric/hermitian");
1317                int m = 0, ldz = 0, info = 0;
1318                if (rangeStart > rangeEnd)
1319                    throw new ILArgumentException("invalid range of eigenvalues requested");
1320                ILArray< double> w = zeros<double>(1, n);
1321               
1322                complex[] z;
1323                char jobz;
1324                if (object.Equals(V, null)) {
1325                    z = new  complex[1];
1326                    jobz = 'N';
1327                    ldz = 1;
1328                } else {
1329                    z = ILMemoryPool.Pool.New<complex>(n * n);
1330                    jobz = 'V';
1331                    ldz = n;
1332                }
1333                int[] isuppz = ILMemoryPool.Pool.New<int>(2 * n);
1334
1335               
1336                complex[] AcArr = A.C.GetArrayForWrite();
1337               
1338                Lapack.zheevr(jobz, 'V', 'U', n, AcArr, n, rangeStart, rangeEnd, 0, 0, 0, ref m, w.GetArrayForWrite(), z, ldz, isuppz, ref info);
1339                ILMemoryPool.Pool.Free(AcArr);
1340                ILMemoryPool.Pool.Free(isuppz);
1341
1342                if (jobz == 'V') {
1343                    V.a = array< complex>(z, n, n);
1344                    V.a = V[full, r(0, m - 1)];
1345                }
1346                ILMemoryPool.Pool.Free(z);
1347                return diag( ILMath.tocomplex(w));
1348            }
1349        }
1350
1351#endregion HYCALPER AUTO GENERATED CODE
1352
1353        /// <summary>
1354        /// Specifies the type of eigenproblem
1355        /// </summary>
1356        /// <remarks>The enumeration describes possible problem definitions for generelized eigenproblems:
1357        /// <list type="bullet">
1358        /// <item>Ax_eq_lambBx: A*V = r*B*V</item>
1359        /// <item>ABx_eq_lambx: A*B*V = r*V</item>
1360        /// <item>BAx_eq_lambx: B*A*V = r*V</item>
1361        /// </list></remarks>
1362        public enum GenEigenType {
1363            /// <summary>
1364            /// A*V = r*B*V
1365            /// </summary>
1366            Ax_eq_lambBx,
1367            /// <summary>
1368            /// A*B*V = r*V
1369            /// </summary>
1370            ABx_eq_lambx,
1371            /// <summary>
1372            /// B*A*V = r*V
1373            /// </summary>
1374            BAx_eq_lambx
1375        }
1376
1377
1378
1379
1380        /// <summary>
1381        /// Compute eigenvalues <it>lambda</it> of symmetrical/hermitian inputs A and B: A*V=lamda*B*V
1382        /// </summary>
1383        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1384        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1385        /// <returns>Vector of eigenvalues. size [n x 1]</returns>
1386        /// <remarks>
1387        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1388        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1389        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1390        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1391        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if either A and/or B was found not to be symmetric/hermitian</exception>
1392        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1393        public static ILRetArray<double> eigSymm(ILInArray<double> A, ILInArray<double> B) {
1394            using (ILScope.Enter(A, B)) {
1395                return eigSymm(A, B, null, GenEigenType.Ax_eq_lambBx, false);
1396            }
1397        }
1398
1399        /// <summary>
1400        /// Compute eigenvalues and eigenvectors of symmetric/hermitian input
1401        /// </summary>
1402        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1403        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1404        /// <param name="outV">[Output] Returns eigenvectors in columns (size [n x n]). </param>
1405        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1406        /// <returns>Vector of eigenvalues. The return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1407        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1408        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1409        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1410        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1411        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1412        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1413        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1414        public static ILRetArray<double> eigSymm(ILInArray<double> A, ILInArray<double> B, ILOutArray<double> outV, bool skipSymmCheck) {
1415            using (ILScope.Enter(A, B)) {
1416                return eigSymm(A, B, outV, GenEigenType.Ax_eq_lambBx, skipSymmCheck);
1417            }
1418        }
1419
1420        /// <summary>
1421        /// Compute eigenvalues and eigenvectors (optional) of symmetric/hermitian input
1422        /// </summary>
1423        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1424        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1425        /// <param name="outV">[Output] If on input not null-> returns eigenvectors in columns (size [n x n]). If null on input -> eigenvectors will not get computed.</param>
1426        /// <param name="type">Determine the type of problem. This is one of the following types:
1427        /// <list type="bullet">
1428        /// <item>Ax_eq_lambBx: A*V = r*B*V</item>
1429        /// <item>ABx_eq_lambx: A*B*V = r*V</item>
1430        /// <item>BAx_eq_lambx: B*A*V = r*V</item>
1431        /// </list>Here 'r' is the eigenvalue corresponding to the eigenvector 'V'.</param>
1432        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1433        /// <returns>Vector of eigenvalues. If the eigenvectors are requested as well (V not null on input),
1434        /// the return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1435        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1436        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1437        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1438        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1439        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1440        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1441        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1442        public static ILRetArray<double> eigSymm(ILInArray<double> A, ILInArray<double> B, ILOutArray< double> outV, GenEigenType type, bool skipSymmCheck) {
1443            using (ILScope.Enter(A, B)) {
1444                // check input arguments
1445                if (object.Equals(A, null) || object.Equals(B, null))
1446                    throw new ILArgumentException("A and B must not be null!");
1447                if (!A.IsMatrix || !B.IsMatrix)
1448                    throw new ILArgumentException("A & B must be matrices!");
1449                int n = A.Size[0];
1450                if (n != A.Size[1])
1451                    throw new ILArgumentException("input matrices must be square!");
1452                if (!A.Size.IsSameSize(B.Size))
1453                    throw new ILArgumentException("A and B must have the same size!");
1454                if (A.IsEmpty) {
1455                    if (object.Equals(outV, null))
1456                        return empty< double>(A.Size);
1457                    else {
1458                        outV.a = A.C;
1459                        return empty< double>(A.Size);
1460                    }
1461                }
1462                if (!skipSymmCheck && !ILMath.ishermitian(A)) {
1463                    throw new ILArgumentException("A must be hermitian!");
1464                }
1465                if (!skipSymmCheck && !ILMath.ishermitian(B)) {
1466                    throw new ILArgumentException("B must be hermitian!");
1467                }
1468                int info = -1;
1469                int itype = 1;
1470                switch (type) {
1471                    case GenEigenType.Ax_eq_lambBx:
1472                        itype = 1;
1473                        break;
1474                    case GenEigenType.ABx_eq_lambx:
1475                        itype = 2;
1476                        break;
1477                    case GenEigenType.BAx_eq_lambx:
1478                        itype = 3;
1479                        break;
1480                }
1481                char jobz = 'N';
1482                if (!object.Equals(outV, null)) {
1483                    jobz = 'V';
1484                    outV.a = copyUpperTriangle(A, n, n);
1485                } else {
1486                    ILArray< double> tmpOutV = copyUpperTriangle(A, n, n);
1487                    outV = tmpOutV;
1488                }
1489                ILArray< double> BC = B.C;
1490               
1491                double[] w = ILMemoryPool.Pool.New< double>(n);
1492                /*!HC:lapack_func*/
1493                Lapack.dsygv(itype, jobz, 'U', n, outV.GetArrayForWrite(), n, BC.GetArrayForWrite(), BC.Size[0], w, ref info);
1494                if (info == 0) {
1495                    if (jobz == 'N')
1496                        return array< double>(w, 1, n);
1497                    else
1498                        return diag(array< double>(w, 1, n));
1499                } else if (info < 0) {
1500                    throw new ILArgumentException("invalid parameter reported from Lapack module: #" + (-info));
1501                } else {
1502                    if (info <= n) {
1503                        throw new ILArgumentException(String.Format("eigSymm did not converge! {0} off-diagonal elements unequal 0", info));
1504                    } else if (info < 2 * n) {
1505                        throw new ILArgumentException("eigSymm: B must be positive definite!");
1506                    } else {
1507                        throw new ILArgumentException("eigSymm: unknown Lapack module error");
1508                    }
1509                }
1510            }
1511        }
1512
1513#region HYCALPER AUTO GENERATED CODE
1514
1515
1516
1517        /// <summary>
1518        /// Compute eigenvalues <it>lambda</it> of symmetrical/hermitian inputs A and B: A*V=lamda*B*V
1519        /// </summary>
1520        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1521        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1522        /// <returns>Vector of eigenvalues. size [n x 1]</returns>
1523        /// <remarks>
1524        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1525        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1526        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1527        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1528        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if either A and/or B was found not to be symmetric/hermitian</exception>
1529        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1530        public static ILRetArray<float> eigSymm(ILInArray<float> A, ILInArray<float> B) {
1531            using (ILScope.Enter(A, B)) {
1532                return eigSymm(A, B, null, GenEigenType.Ax_eq_lambBx, false);
1533            }
1534        }
1535
1536        /// <summary>
1537        /// Compute eigenvalues and eigenvectors of symmetric/hermitian input
1538        /// </summary>
1539        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1540        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1541        /// <param name="outV">[Output] Returns eigenvectors in columns (size [n x n]). </param>
1542        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1543        /// <returns>Vector of eigenvalues. The return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1544        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1545        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1546        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1547        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1548        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1549        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1550        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1551        public static ILRetArray<float> eigSymm(ILInArray<float> A, ILInArray<float> B, ILOutArray<float> outV, bool skipSymmCheck) {
1552            using (ILScope.Enter(A, B)) {
1553                return eigSymm(A, B, outV, GenEigenType.Ax_eq_lambBx, skipSymmCheck);
1554            }
1555        }
1556
1557        /// <summary>
1558        /// Compute eigenvalues and eigenvectors (optional) of symmetric/hermitian input
1559        /// </summary>
1560        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1561        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1562        /// <param name="outV">[Output] If on input not null-> returns eigenvectors in columns (size [n x n]). If null on input -> eigenvectors will not get computed.</param>
1563        /// <param name="type">Determine the type of problem. This is one of the following types:
1564        /// <list type="bullet">
1565        /// <item>Ax_eq_lambBx: A*V = r*B*V</item>
1566        /// <item>ABx_eq_lambx: A*B*V = r*V</item>
1567        /// <item>BAx_eq_lambx: B*A*V = r*V</item>
1568        /// </list>Here 'r' is the eigenvalue corresponding to the eigenvector 'V'.</param>
1569        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1570        /// <returns>Vector of eigenvalues. If the eigenvectors are requested as well (V not null on input),
1571        /// the return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1572        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1573        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1574        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1575        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1576        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1577        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1578        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1579        public static ILRetArray<float> eigSymm(ILInArray<float> A, ILInArray<float> B, ILOutArray< float> outV, GenEigenType type, bool skipSymmCheck) {
1580            using (ILScope.Enter(A, B)) {
1581                // check input arguments
1582                if (object.Equals(A, null) || object.Equals(B, null))
1583                    throw new ILArgumentException("A and B must not be null!");
1584                if (!A.IsMatrix || !B.IsMatrix)
1585                    throw new ILArgumentException("A & B must be matrices!");
1586                int n = A.Size[0];
1587                if (n != A.Size[1])
1588                    throw new ILArgumentException("input matrices must be square!");
1589                if (!A.Size.IsSameSize(B.Size))
1590                    throw new ILArgumentException("A and B must have the same size!");
1591                if (A.IsEmpty) {
1592                    if (object.Equals(outV, null))
1593                        return empty< float>(A.Size);
1594                    else {
1595                        outV.a = A.C;
1596                        return empty< float>(A.Size);
1597                    }
1598                }
1599                if (!skipSymmCheck && !ILMath.ishermitian(A)) {
1600                    throw new ILArgumentException("A must be hermitian!");
1601                }
1602                if (!skipSymmCheck && !ILMath.ishermitian(B)) {
1603                    throw new ILArgumentException("B must be hermitian!");
1604                }
1605                int info = -1;
1606                int itype = 1;
1607                switch (type) {
1608                    case GenEigenType.Ax_eq_lambBx:
1609                        itype = 1;
1610                        break;
1611                    case GenEigenType.ABx_eq_lambx:
1612                        itype = 2;
1613                        break;
1614                    case GenEigenType.BAx_eq_lambx:
1615                        itype = 3;
1616                        break;
1617                }
1618                char jobz = 'N';
1619                if (!object.Equals(outV, null)) {
1620                    jobz = 'V';
1621                    outV.a = copyUpperTriangle(A, n, n);
1622                } else {
1623                    ILArray< float> tmpOutV = copyUpperTriangle(A, n, n);
1624                    outV = tmpOutV;
1625                }
1626                ILArray< float> BC = B.C;
1627               
1628                float[] w = ILMemoryPool.Pool.New< float>(n);
1629               
1630                Lapack.ssygv(itype, jobz, 'U', n, outV.GetArrayForWrite(), n, BC.GetArrayForWrite(), BC.Size[0], w, ref info);
1631                if (info == 0) {
1632                    if (jobz == 'N')
1633                        return array< float>(w, 1, n);
1634                    else
1635                        return diag(array< float>(w, 1, n));
1636                } else if (info < 0) {
1637                    throw new ILArgumentException("invalid parameter reported from Lapack module: #" + (-info));
1638                } else {
1639                    if (info <= n) {
1640                        throw new ILArgumentException(String.Format("eigSymm did not converge! {0} off-diagonal elements unequal 0", info));
1641                    } else if (info < 2 * n) {
1642                        throw new ILArgumentException("eigSymm: B must be positive definite!");
1643                    } else {
1644                        throw new ILArgumentException("eigSymm: unknown Lapack module error");
1645                    }
1646                }
1647            }
1648        }
1649
1650
1651        /// <summary>
1652        /// Compute eigenvalues <it>lambda</it> of symmetrical/hermitian inputs A and B: A*V=lamda*B*V
1653        /// </summary>
1654        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1655        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1656        /// <returns>Vector of eigenvalues. size [n x 1]</returns>
1657        /// <remarks>
1658        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1659        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1660        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1661        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1662        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if either A and/or B was found not to be symmetric/hermitian</exception>
1663        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1664        public static ILRetArray<float> eigSymm(ILInArray<fcomplex> A, ILInArray<fcomplex> B) {
1665            using (ILScope.Enter(A, B)) {
1666                return eigSymm(A, B, null, GenEigenType.Ax_eq_lambBx, false);
1667            }
1668        }
1669
1670        /// <summary>
1671        /// Compute eigenvalues and eigenvectors of symmetric/hermitian input
1672        /// </summary>
1673        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1674        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1675        /// <param name="outV">[Output] Returns eigenvectors in columns (size [n x n]). </param>
1676        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1677        /// <returns>Vector of eigenvalues. The return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1678        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1679        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1680        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1681        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1682        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1683        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1684        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1685        public static ILRetArray<float> eigSymm(ILInArray<fcomplex> A, ILInArray<fcomplex> B, ILOutArray<fcomplex> outV, bool skipSymmCheck) {
1686            using (ILScope.Enter(A, B)) {
1687                return eigSymm(A, B, outV, GenEigenType.Ax_eq_lambBx, skipSymmCheck);
1688            }
1689        }
1690
1691        /// <summary>
1692        /// Compute eigenvalues and eigenvectors (optional) of symmetric/hermitian input
1693        /// </summary>
1694        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1695        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1696        /// <param name="outV">[Output] If on input not null-> returns eigenvectors in columns (size [n x n]). If null on input -> eigenvectors will not get computed.</param>
1697        /// <param name="type">Determine the type of problem. This is one of the following types:
1698        /// <list type="bullet">
1699        /// <item>Ax_eq_lambBx: A*V = r*B*V</item>
1700        /// <item>ABx_eq_lambx: A*B*V = r*V</item>
1701        /// <item>BAx_eq_lambx: B*A*V = r*V</item>
1702        /// </list>Here 'r' is the eigenvalue corresponding to the eigenvector 'V'.</param>
1703        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1704        /// <returns>Vector of eigenvalues. If the eigenvectors are requested as well (V not null on input),
1705        /// the return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1706        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1707        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1708        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1709        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1710        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1711        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1712        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1713        public static ILRetArray<float> eigSymm(ILInArray<fcomplex> A, ILInArray<fcomplex> B, ILOutArray< fcomplex> outV, GenEigenType type, bool skipSymmCheck) {
1714            using (ILScope.Enter(A, B)) {
1715                // check input arguments
1716                if (object.Equals(A, null) || object.Equals(B, null))
1717                    throw new ILArgumentException("A and B must not be null!");
1718                if (!A.IsMatrix || !B.IsMatrix)
1719                    throw new ILArgumentException("A & B must be matrices!");
1720                int n = A.Size[0];
1721                if (n != A.Size[1])
1722                    throw new ILArgumentException("input matrices must be square!");
1723                if (!A.Size.IsSameSize(B.Size))
1724                    throw new ILArgumentException("A and B must have the same size!");
1725                if (A.IsEmpty) {
1726                    if (object.Equals(outV, null))
1727                        return empty< float>(A.Size);
1728                    else {
1729                        outV.a = A.C;
1730                        return empty< float>(A.Size);
1731                    }
1732                }
1733                if (!skipSymmCheck && !ILMath.ishermitian(A)) {
1734                    throw new ILArgumentException("A must be hermitian!");
1735                }
1736                if (!skipSymmCheck && !ILMath.ishermitian(B)) {
1737                    throw new ILArgumentException("B must be hermitian!");
1738                }
1739                int info = -1;
1740                int itype = 1;
1741                switch (type) {
1742                    case GenEigenType.Ax_eq_lambBx:
1743                        itype = 1;
1744                        break;
1745                    case GenEigenType.ABx_eq_lambx:
1746                        itype = 2;
1747                        break;
1748                    case GenEigenType.BAx_eq_lambx:
1749                        itype = 3;
1750                        break;
1751                }
1752                char jobz = 'N';
1753                if (!object.Equals(outV, null)) {
1754                    jobz = 'V';
1755                    outV.a = copyUpperTriangle(A, n, n);
1756                } else {
1757                    ILArray< fcomplex> tmpOutV = copyUpperTriangle(A, n, n);
1758                    outV = tmpOutV;
1759                }
1760                ILArray< fcomplex> BC = B.C;
1761               
1762                float[] w = ILMemoryPool.Pool.New< float>(n);
1763               
1764                Lapack.chegv(itype, jobz, 'U', n, outV.GetArrayForWrite(), n, BC.GetArrayForWrite(), BC.Size[0], w, ref info);
1765                if (info == 0) {
1766                    if (jobz == 'N')
1767                        return array< float>(w, 1, n);
1768                    else
1769                        return diag(array< float>(w, 1, n));
1770                } else if (info < 0) {
1771                    throw new ILArgumentException("invalid parameter reported from Lapack module: #" + (-info));
1772                } else {
1773                    if (info <= n) {
1774                        throw new ILArgumentException(String.Format("eigSymm did not converge! {0} off-diagonal elements unequal 0", info));
1775                    } else if (info < 2 * n) {
1776                        throw new ILArgumentException("eigSymm: B must be positive definite!");
1777                    } else {
1778                        throw new ILArgumentException("eigSymm: unknown Lapack module error");
1779                    }
1780                }
1781            }
1782        }
1783
1784
1785        /// <summary>
1786        /// Compute eigenvalues <it>lambda</it> of symmetrical/hermitian inputs A and B: A*V=lamda*B*V
1787        /// </summary>
1788        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1789        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1790        /// <returns>Vector of eigenvalues. size [n x 1]</returns>
1791        /// <remarks>
1792        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1793        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1794        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1795        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1796        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if either A and/or B was found not to be symmetric/hermitian</exception>
1797        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1798        public static ILRetArray<double> eigSymm(ILInArray<complex> A, ILInArray<complex> B) {
1799            using (ILScope.Enter(A, B)) {
1800                return eigSymm(A, B, null, GenEigenType.Ax_eq_lambBx, false);
1801            }
1802        }
1803
1804        /// <summary>
1805        /// Compute eigenvalues and eigenvectors of symmetric/hermitian input
1806        /// </summary>
1807        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1808        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1809        /// <param name="outV">[Output] Returns eigenvectors in columns (size [n x n]). </param>
1810        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1811        /// <returns>Vector of eigenvalues. The return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1812        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1813        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1814        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1815        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1816        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1817        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1818        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1819        public static ILRetArray<double> eigSymm(ILInArray<complex> A, ILInArray<complex> B, ILOutArray<complex> outV, bool skipSymmCheck) {
1820            using (ILScope.Enter(A, B)) {
1821                return eigSymm(A, B, outV, GenEigenType.Ax_eq_lambBx, skipSymmCheck);
1822            }
1823        }
1824
1825        /// <summary>
1826        /// Compute eigenvalues and eigenvectors (optional) of symmetric/hermitian input
1827        /// </summary>
1828        /// <param name="A">Square, symmetric/hermitian input matrix, size [n x n]</param>
1829        /// <param name="B">Square, symmetric/hermitian and positive definite matrix, size [n x n]</param>
1830        /// <param name="outV">[Output] If on input not null-> returns eigenvectors in columns (size [n x n]). If null on input -> eigenvectors will not get computed.</param>
1831        /// <param name="type">Determine the type of problem. This is one of the following types:
1832        /// <list type="bullet">
1833        /// <item>Ax_eq_lambBx: A*V = r*B*V</item>
1834        /// <item>ABx_eq_lambx: A*B*V = r*V</item>
1835        /// <item>BAx_eq_lambx: B*A*V = r*V</item>
1836        /// </list>Here 'r' is the eigenvalue corresponding to the eigenvector 'V'.</param>
1837        /// <param name="skipSymmCheck">true: skip tests for A and B being hermitian.</param>
1838        /// <returns>Vector of eigenvalues. If the eigenvectors are requested as well (V not null on input),
1839        /// the return value will be a diagonal matrix with the eigenvalues on the main diagonal.</returns>
1840        /// <remarks><para>The eigenvectors in 'V' are not normalized!</para>
1841        /// <para>Internally, the generalized eigenproblem A*V = r*B*V will be reduced to B<sup>-1</sup>*A*V = r*V using cholesky factorization. The
1842        /// computations are handled by LAPACK functions DSYGV,SSYGV,CHEGV and ZHEGV.</para></remarks>
1843        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if B was not positive definite</exception>
1844        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if A and B was not of the same size</exception>
1845        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if <paramref name="skipSymmCheck"/> is false and either A and/or B was found not to be symmetric/hermitian</exception>
1846        /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if the algorithm did not converge. All exceptions will contain an informational message describing the problem verbosely.</exception>
1847        public static ILRetArray<double> eigSymm(ILInArray<complex> A, ILInArray<complex> B, ILOutArray< complex> outV, GenEigenType type, bool skipSymmCheck) {
1848            using (ILScope.Enter(A, B)) {
1849                // check input arguments
1850                if (object.Equals(A, null) || object.Equals(B, null))
1851                    throw new ILArgumentException("A and B must not be null!");
1852                if (!A.IsMatrix || !B.IsMatrix)
1853                    throw new ILArgumentException("A & B must be matrices!");
1854                int n = A.Size[0];
1855                if (n != A.Size[1])
1856                    throw new ILArgumentException("input matrices must be square!");
1857                if (!A.Size.IsSameSize(B.Size))
1858                    throw new ILArgumentException("A and B must have the same size!");
1859                if (A.IsEmpty) {
1860                    if (object.Equals(outV, null))
1861                        return empty< double>(A.Size);
1862                    else {
1863                        outV.a = A.C;
1864                        return empty< double>(A.Size);
1865                    }
1866                }
1867                if (!skipSymmCheck && !ILMath.ishermitian(A)) {
1868                    throw new ILArgumentException("A must be hermitian!");
1869                }
1870                if (!skipSymmCheck && !ILMath.ishermitian(B)) {
1871                    throw new ILArgumentException("B must be hermitian!");
1872                }
1873                int info = -1;
1874                int itype = 1;
1875                switch (type) {
1876                    case GenEigenType.Ax_eq_lambBx:
1877                        itype = 1;
1878                        break;
1879                    case GenEigenType.ABx_eq_lambx:
1880                        itype = 2;
1881                        break;
1882                    case GenEigenType.BAx_eq_lambx:
1883                        itype = 3;
1884                        break;
1885                }
1886                char jobz = 'N';
1887                if (!object.Equals(outV, null)) {
1888                    jobz = 'V';
1889                    outV.a = copyUpperTriangle(A, n, n);
1890                } else {
1891                    ILArray< complex> tmpOutV = copyUpperTriangle(A, n, n);
1892                    outV = tmpOutV;
1893                }
1894                ILArray< complex> BC = B.C;
1895               
1896                double[] w = ILMemoryPool.Pool.New< double>(n);
1897               
1898                Lapack.zhegv(itype, jobz, 'U', n, outV.GetArrayForWrite(), n, BC.GetArrayForWrite(), BC.Size[0], w, ref info);
1899                if (info == 0) {
1900                    if (jobz == 'N')
1901                        return array< double>(w, 1, n);
1902                    else
1903                        return diag(array< double>(w, 1, n));
1904                } else if (info < 0) {
1905                    throw new ILArgumentException("invalid parameter reported from Lapack module: #" + (-info));
1906                } else {
1907                    if (info <= n) {
1908                        throw new ILArgumentException(String.Format("eigSymm did not converge! {0} off-diagonal elements unequal 0", info));
1909                    } else if (info < 2 * n) {
1910                        throw new ILArgumentException("eigSymm: B must be positive definite!");
1911                    } else {
1912                        throw new ILArgumentException("eigSymm: unknown Lapack module error");
1913                    }
1914                }
1915            }
1916        }
1917
1918#endregion HYCALPER AUTO GENERATED CODE
1919   }
1920}
1921
Note: See TracBrowser for help on using the repository browser.