Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/ILNumerics.2.14.4735.573/Functions/builtin/det.cs @ 12005

Last change on this file since 12005 was 9102, checked in by gkronber, 12 years ago

#1967: ILNumerics source for experimentation

File size: 12.9 KB
Line 
1///
2///    This file is part of ILNumerics Community Edition.
3///
4///    ILNumerics Community Edition - high performance computing for applications.
5///    Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
6///
7///    ILNumerics Community Edition is free software: you can redistribute it and/or modify
8///    it under the terms of the GNU General Public License version 3 as published by
9///    the Free Software Foundation.
10///
11///    ILNumerics Community Edition is distributed in the hope that it will be useful,
12///    but WITHOUT ANY WARRANTY; without even the implied warranty of
13///    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14///    GNU General Public License for more details.
15///
16///    You should have received a copy of the GNU General Public License
17///    along with ILNumerics Community Edition. See the file License.txt in the root
18///    of your distribution package. If not, see <http://www.gnu.org/licenses/>.
19///
20///    In addition this software uses the following components and/or licenses:
21///
22///    =================================================================================
23///    The Open Toolkit Library License
24///   
25///    Copyright (c) 2006 - 2009 the Open Toolkit library.
26///   
27///    Permission is hereby granted, free of charge, to any person obtaining a copy
28///    of this software and associated documentation files (the "Software"), to deal
29///    in the Software without restriction, including without limitation the rights to
30///    use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
31///    the Software, and to permit persons to whom the Software is furnished to do
32///    so, subject to the following conditions:
33///
34///    The above copyright notice and this permission notice shall be included in all
35///    copies or substantial portions of the Software.
36///
37///    =================================================================================
38///   
39
40using System;
41using System.Collections.Generic;
42using System.Text;
43using ILNumerics.Storage;
44using ILNumerics.Misc;
45using ILNumerics.Exceptions;
46
47
48
49namespace ILNumerics {
50
51    public partial class ILMath {
52
53
54        /// <summary>
55        /// Determinant of square matrix
56        /// </summary>
57        /// <param name="A">Input matrix (square)</param>
58        /// <returns>Determinant of A</returns>
59        /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
60        /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
61        /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
62        /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
63        /// <code>ILArray&lt;double&gt; A = ILMath.counter(1.0,1.0,4,4);
64        ///A[1] = 0.0;  // make A nonsingular
65        ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
66        /// // A is now:
67        /// //&lt;Double&gt; [4,4]
68        /// //(:,:) 1e+001 *
69        /// // 0,10000   0,50000   0,90000   1,30000
70        /// // 0,00000   0,60000   1,00000   1,40000
71        /// // 0,30000   0,70000   1,10000   0,00000
72        /// // 0,40000   0,80000   1,20000   1,60000
73        ///
74        ///ILMath.det(A) gives:
75        /// //&lt;Double&gt; -360
76        ///</code></example>
77        ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
78        public static ILRetArray< double > det(ILInArray< double > A) {
79            using (ILScope.Enter(A)) {
80                if (A.IsScalar)
81                    return A.C;
82                if (A.IsEmpty)
83                    throw new ILArgumentException("det: A must be a matrix");
84                int m = A.Size[0];
85                if (m != A.Size[1]) {
86                    throw new ILArgumentException("det: matrix A must be square");
87                }
88
89                ILArray< double > L = A.C;
90                 double [] lArr = L.GetArrayForWrite();
91                int [] pivInd = new int[m];
92                int info = 0;
93                /*!HC:lapack_*getrf*/ Lapack.dgetrf (m, m, lArr, m, pivInd ,ref info);
94                if (info < 0 ) {
95                    throw new ILArgumentException("det: illegal parameter error");
96                }
97                // determine pivoting: number of exchanges
98                 double retA =  1.0 ;
99                for (int i = 0; i < m;) {
100                    retA *= lArr[i * m + i];
101                    if (pivInd[i] != ++i) retA *=  -1.0 ;
102                }
103                return retA;
104            }
105        }
106
107#region HYCALPER AUTO GENERATED CODE
108
109        /// <summary>
110        /// Determinant of square matrix
111        /// </summary>
112        /// <param name="A">Input matrix (square)</param>
113        /// <returns>Determinant of A</returns>
114        /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
115        /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
116        /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
117        /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
118        /// <code>ILArray&lt;double&gt; A = ILMath.counter(1.0,1.0,4,4);
119        ///A[1] = 0.0;  // make A nonsingular
120        ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
121        /// // A is now:
122        /// //&lt;Double&gt; [4,4]
123        /// //(:,:) 1e+001 *
124        /// // 0,10000   0,50000   0,90000   1,30000
125        /// // 0,00000   0,60000   1,00000   1,40000
126        /// // 0,30000   0,70000   1,10000   0,00000
127        /// // 0,40000   0,80000   1,20000   1,60000
128        ///
129        ///ILMath.det(A) gives:
130        /// //&lt;Double&gt; -360
131        ///</code></example>
132        ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
133        public static ILRetArray< float > det(ILInArray< float > A) {
134            using (ILScope.Enter(A)) {
135                if (A.IsScalar)
136                    return A.C;
137                if (A.IsEmpty)
138                    throw new ILArgumentException("det: A must be a matrix");
139                int m = A.Size[0];
140                if (m != A.Size[1]) {
141                    throw new ILArgumentException("det: matrix A must be square");
142                }
143
144                ILArray< float > L = A.C;
145                float [] lArr = L.GetArrayForWrite();
146                int [] pivInd = new int[m];
147                int info = 0;
148                Lapack.sgetrf (m, m, lArr, m, pivInd ,ref info);
149                if (info < 0 ) {
150                    throw new ILArgumentException("det: illegal parameter error");
151                }
152                // determine pivoting: number of exchanges
153                float retA =  1.0f ;
154                for (int i = 0; i < m;) {
155                    retA *= lArr[i * m + i];
156                    if (pivInd[i] != ++i) retA *=  -1.0f ;
157                }
158                return retA;
159            }
160        }
161        /// <summary>
162        /// Determinant of square matrix
163        /// </summary>
164        /// <param name="A">Input matrix (square)</param>
165        /// <returns>Determinant of A</returns>
166        /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
167        /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
168        /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
169        /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
170        /// <code>ILArray&lt;double&gt; A = ILMath.counter(1.0,1.0,4,4);
171        ///A[1] = 0.0;  // make A nonsingular
172        ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
173        /// // A is now:
174        /// //&lt;Double&gt; [4,4]
175        /// //(:,:) 1e+001 *
176        /// // 0,10000   0,50000   0,90000   1,30000
177        /// // 0,00000   0,60000   1,00000   1,40000
178        /// // 0,30000   0,70000   1,10000   0,00000
179        /// // 0,40000   0,80000   1,20000   1,60000
180        ///
181        ///ILMath.det(A) gives:
182        /// //&lt;Double&gt; -360
183        ///</code></example>
184        ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
185        public static ILRetArray< fcomplex > det(ILInArray< fcomplex > A) {
186            using (ILScope.Enter(A)) {
187                if (A.IsScalar)
188                    return A.C;
189                if (A.IsEmpty)
190                    throw new ILArgumentException("det: A must be a matrix");
191                int m = A.Size[0];
192                if (m != A.Size[1]) {
193                    throw new ILArgumentException("det: matrix A must be square");
194                }
195
196                ILArray< fcomplex > L = A.C;
197                fcomplex [] lArr = L.GetArrayForWrite();
198                int [] pivInd = new int[m];
199                int info = 0;
200                Lapack.cgetrf (m, m, lArr, m, pivInd ,ref info);
201                if (info < 0 ) {
202                    throw new ILArgumentException("det: illegal parameter error");
203                }
204                // determine pivoting: number of exchanges
205                fcomplex retA =  new fcomplex(1.0f,0.0f) ;
206                for (int i = 0; i < m;) {
207                    retA *= lArr[i * m + i];
208                    if (pivInd[i] != ++i) retA *=  -1.0f ;
209                }
210                return retA;
211            }
212        }
213        /// <summary>
214        /// Determinant of square matrix
215        /// </summary>
216        /// <param name="A">Input matrix (square)</param>
217        /// <returns>Determinant of A</returns>
218        /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
219        /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
220        /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
221        /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
222        /// <code>ILArray&lt;double&gt; A = ILMath.counter(1.0,1.0,4,4);
223        ///A[1] = 0.0;  // make A nonsingular
224        ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
225        /// // A is now:
226        /// //&lt;Double&gt; [4,4]
227        /// //(:,:) 1e+001 *
228        /// // 0,10000   0,50000   0,90000   1,30000
229        /// // 0,00000   0,60000   1,00000   1,40000
230        /// // 0,30000   0,70000   1,10000   0,00000
231        /// // 0,40000   0,80000   1,20000   1,60000
232        ///
233        ///ILMath.det(A) gives:
234        /// //&lt;Double&gt; -360
235        ///</code></example>
236        ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
237        public static ILRetArray< complex > det(ILInArray< complex > A) {
238            using (ILScope.Enter(A)) {
239                if (A.IsScalar)
240                    return A.C;
241                if (A.IsEmpty)
242                    throw new ILArgumentException("det: A must be a matrix");
243                int m = A.Size[0];
244                if (m != A.Size[1]) {
245                    throw new ILArgumentException("det: matrix A must be square");
246                }
247
248                ILArray< complex > L = A.C;
249                complex [] lArr = L.GetArrayForWrite();
250                int [] pivInd = new int[m];
251                int info = 0;
252                Lapack.zgetrf (m, m, lArr, m, pivInd ,ref info);
253                if (info < 0 ) {
254                    throw new ILArgumentException("det: illegal parameter error");
255                }
256                // determine pivoting: number of exchanges
257                complex retA =  new complex(1.0,0.0) ;
258                for (int i = 0; i < m;) {
259                    retA *= lArr[i * m + i];
260                    if (pivInd[i] != ++i) retA *=  -1.0 ;
261                }
262                return retA;
263            }
264        }
265
266#endregion HYCALPER AUTO GENERATED CODE
267   }
268}
Note: See TracBrowser for help on using the repository browser.