[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics.Storage;
|
---|
| 44 | using ILNumerics.Misc;
|
---|
| 45 | using ILNumerics.Exceptions;
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | namespace ILNumerics {
|
---|
| 50 |
|
---|
| 51 | public partial class ILMath {
|
---|
| 52 |
|
---|
| 53 | |
---|
| 54 | /// <summary>
|
---|
| 55 | /// Determinant of square matrix
|
---|
| 56 | /// </summary>
|
---|
| 57 | /// <param name="A">Input matrix (square)</param>
|
---|
| 58 | /// <returns>Determinant of A</returns>
|
---|
| 59 | /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
|
---|
| 60 | /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
|
---|
| 61 | /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
|
---|
| 62 | /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
|
---|
| 63 | /// <code>ILArray<double> A = ILMath.counter(1.0,1.0,4,4);
|
---|
| 64 | ///A[1] = 0.0; // make A nonsingular
|
---|
| 65 | ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
|
---|
| 66 | /// // A is now:
|
---|
| 67 | /// //<Double> [4,4]
|
---|
| 68 | /// //(:,:) 1e+001 *
|
---|
| 69 | /// // 0,10000 0,50000 0,90000 1,30000
|
---|
| 70 | /// // 0,00000 0,60000 1,00000 1,40000
|
---|
| 71 | /// // 0,30000 0,70000 1,10000 0,00000
|
---|
| 72 | /// // 0,40000 0,80000 1,20000 1,60000
|
---|
| 73 | ///
|
---|
| 74 | ///ILMath.det(A) gives:
|
---|
| 75 | /// //<Double> -360
|
---|
| 76 | ///</code></example>
|
---|
| 77 | ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
|
---|
| 78 | public static ILRetArray< double > det(ILInArray< double > A) {
|
---|
| 79 | using (ILScope.Enter(A)) {
|
---|
| 80 | if (A.IsScalar)
|
---|
| 81 | return A.C;
|
---|
| 82 | if (A.IsEmpty)
|
---|
| 83 | throw new ILArgumentException("det: A must be a matrix");
|
---|
| 84 | int m = A.Size[0];
|
---|
| 85 | if (m != A.Size[1]) {
|
---|
| 86 | throw new ILArgumentException("det: matrix A must be square");
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | ILArray< double > L = A.C;
|
---|
| 90 | double [] lArr = L.GetArrayForWrite();
|
---|
| 91 | int [] pivInd = new int[m];
|
---|
| 92 | int info = 0;
|
---|
| 93 | /*!HC:lapack_*getrf*/ Lapack.dgetrf (m, m, lArr, m, pivInd ,ref info);
|
---|
| 94 | if (info < 0 ) {
|
---|
| 95 | throw new ILArgumentException("det: illegal parameter error");
|
---|
| 96 | }
|
---|
| 97 | // determine pivoting: number of exchanges
|
---|
| 98 | double retA = 1.0 ;
|
---|
| 99 | for (int i = 0; i < m;) {
|
---|
| 100 | retA *= lArr[i * m + i];
|
---|
| 101 | if (pivInd[i] != ++i) retA *= -1.0 ;
|
---|
| 102 | }
|
---|
| 103 | return retA;
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 | |
---|
| 107 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 108 | |
---|
| 109 | /// <summary>
|
---|
| 110 | /// Determinant of square matrix
|
---|
| 111 | /// </summary>
|
---|
| 112 | /// <param name="A">Input matrix (square)</param>
|
---|
| 113 | /// <returns>Determinant of A</returns>
|
---|
| 114 | /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
|
---|
| 115 | /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
|
---|
| 116 | /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
|
---|
| 117 | /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
|
---|
| 118 | /// <code>ILArray<double> A = ILMath.counter(1.0,1.0,4,4);
|
---|
| 119 | ///A[1] = 0.0; // make A nonsingular
|
---|
| 120 | ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
|
---|
| 121 | /// // A is now:
|
---|
| 122 | /// //<Double> [4,4]
|
---|
| 123 | /// //(:,:) 1e+001 *
|
---|
| 124 | /// // 0,10000 0,50000 0,90000 1,30000
|
---|
| 125 | /// // 0,00000 0,60000 1,00000 1,40000
|
---|
| 126 | /// // 0,30000 0,70000 1,10000 0,00000
|
---|
| 127 | /// // 0,40000 0,80000 1,20000 1,60000
|
---|
| 128 | ///
|
---|
| 129 | ///ILMath.det(A) gives:
|
---|
| 130 | /// //<Double> -360
|
---|
| 131 | ///</code></example>
|
---|
| 132 | ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
|
---|
| 133 | public static ILRetArray< float > det(ILInArray< float > A) {
|
---|
| 134 | using (ILScope.Enter(A)) {
|
---|
| 135 | if (A.IsScalar)
|
---|
| 136 | return A.C;
|
---|
| 137 | if (A.IsEmpty)
|
---|
| 138 | throw new ILArgumentException("det: A must be a matrix");
|
---|
| 139 | int m = A.Size[0];
|
---|
| 140 | if (m != A.Size[1]) {
|
---|
| 141 | throw new ILArgumentException("det: matrix A must be square");
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | ILArray< float > L = A.C;
|
---|
| 145 | float [] lArr = L.GetArrayForWrite();
|
---|
| 146 | int [] pivInd = new int[m];
|
---|
| 147 | int info = 0;
|
---|
| 148 | Lapack.sgetrf (m, m, lArr, m, pivInd ,ref info);
|
---|
| 149 | if (info < 0 ) {
|
---|
| 150 | throw new ILArgumentException("det: illegal parameter error");
|
---|
| 151 | }
|
---|
| 152 | // determine pivoting: number of exchanges
|
---|
| 153 | float retA = 1.0f ;
|
---|
| 154 | for (int i = 0; i < m;) {
|
---|
| 155 | retA *= lArr[i * m + i];
|
---|
| 156 | if (pivInd[i] != ++i) retA *= -1.0f ;
|
---|
| 157 | }
|
---|
| 158 | return retA;
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | /// <summary>
|
---|
| 162 | /// Determinant of square matrix
|
---|
| 163 | /// </summary>
|
---|
| 164 | /// <param name="A">Input matrix (square)</param>
|
---|
| 165 | /// <returns>Determinant of A</returns>
|
---|
| 166 | /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
|
---|
| 167 | /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
|
---|
| 168 | /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
|
---|
| 169 | /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
|
---|
| 170 | /// <code>ILArray<double> A = ILMath.counter(1.0,1.0,4,4);
|
---|
| 171 | ///A[1] = 0.0; // make A nonsingular
|
---|
| 172 | ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
|
---|
| 173 | /// // A is now:
|
---|
| 174 | /// //<Double> [4,4]
|
---|
| 175 | /// //(:,:) 1e+001 *
|
---|
| 176 | /// // 0,10000 0,50000 0,90000 1,30000
|
---|
| 177 | /// // 0,00000 0,60000 1,00000 1,40000
|
---|
| 178 | /// // 0,30000 0,70000 1,10000 0,00000
|
---|
| 179 | /// // 0,40000 0,80000 1,20000 1,60000
|
---|
| 180 | ///
|
---|
| 181 | ///ILMath.det(A) gives:
|
---|
| 182 | /// //<Double> -360
|
---|
| 183 | ///</code></example>
|
---|
| 184 | ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
|
---|
| 185 | public static ILRetArray< fcomplex > det(ILInArray< fcomplex > A) {
|
---|
| 186 | using (ILScope.Enter(A)) {
|
---|
| 187 | if (A.IsScalar)
|
---|
| 188 | return A.C;
|
---|
| 189 | if (A.IsEmpty)
|
---|
| 190 | throw new ILArgumentException("det: A must be a matrix");
|
---|
| 191 | int m = A.Size[0];
|
---|
| 192 | if (m != A.Size[1]) {
|
---|
| 193 | throw new ILArgumentException("det: matrix A must be square");
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | ILArray< fcomplex > L = A.C;
|
---|
| 197 | fcomplex [] lArr = L.GetArrayForWrite();
|
---|
| 198 | int [] pivInd = new int[m];
|
---|
| 199 | int info = 0;
|
---|
| 200 | Lapack.cgetrf (m, m, lArr, m, pivInd ,ref info);
|
---|
| 201 | if (info < 0 ) {
|
---|
| 202 | throw new ILArgumentException("det: illegal parameter error");
|
---|
| 203 | }
|
---|
| 204 | // determine pivoting: number of exchanges
|
---|
| 205 | fcomplex retA = new fcomplex(1.0f,0.0f) ;
|
---|
| 206 | for (int i = 0; i < m;) {
|
---|
| 207 | retA *= lArr[i * m + i];
|
---|
| 208 | if (pivInd[i] != ++i) retA *= -1.0f ;
|
---|
| 209 | }
|
---|
| 210 | return retA;
|
---|
| 211 | }
|
---|
| 212 | }
|
---|
| 213 | /// <summary>
|
---|
| 214 | /// Determinant of square matrix
|
---|
| 215 | /// </summary>
|
---|
| 216 | /// <param name="A">Input matrix (square)</param>
|
---|
| 217 | /// <returns>Determinant of A</returns>
|
---|
| 218 | /// <remarks><para>The determinant is computed by decomposing A into upper and lower triangular part (using the LAPACK function ?getrf).<br />
|
---|
| 219 | /// Due to the properties of determinants, det(a) is the same as det(L) * det(U),where det(L) can easily be extracted from the permutation indices returned from LU decomposition. det(U) - with U being an upper triangular matrix - equals the product of the diagonal elements.</para>
|
---|
| 220 | /// <para>For scalar A, a plain copy of A is returned.</para></remarks>
|
---|
| 221 | /// <example>Creating a nonsingular 4x4 (double) matrix and it's determinant
|
---|
| 222 | /// <code>ILArray<double> A = ILMath.counter(1.0,1.0,4,4);
|
---|
| 223 | ///A[1] = 0.0; // make A nonsingular
|
---|
| 224 | ///A[14] = 0.0; //(same as: A[2,3] = 0.0;)
|
---|
| 225 | /// // A is now:
|
---|
| 226 | /// //<Double> [4,4]
|
---|
| 227 | /// //(:,:) 1e+001 *
|
---|
| 228 | /// // 0,10000 0,50000 0,90000 1,30000
|
---|
| 229 | /// // 0,00000 0,60000 1,00000 1,40000
|
---|
| 230 | /// // 0,30000 0,70000 1,10000 0,00000
|
---|
| 231 | /// // 0,40000 0,80000 1,20000 1,60000
|
---|
| 232 | ///
|
---|
| 233 | ///ILMath.det(A) gives:
|
---|
| 234 | /// //<Double> -360
|
---|
| 235 | ///</code></example>
|
---|
| 236 | ///<exception cref="ILNumerics.Exceptions.ILArgumentException">if A is empty or not a square matrix</exception>
|
---|
| 237 | public static ILRetArray< complex > det(ILInArray< complex > A) {
|
---|
| 238 | using (ILScope.Enter(A)) {
|
---|
| 239 | if (A.IsScalar)
|
---|
| 240 | return A.C;
|
---|
| 241 | if (A.IsEmpty)
|
---|
| 242 | throw new ILArgumentException("det: A must be a matrix");
|
---|
| 243 | int m = A.Size[0];
|
---|
| 244 | if (m != A.Size[1]) {
|
---|
| 245 | throw new ILArgumentException("det: matrix A must be square");
|
---|
| 246 | }
|
---|
| 247 |
|
---|
| 248 | ILArray< complex > L = A.C;
|
---|
| 249 | complex [] lArr = L.GetArrayForWrite();
|
---|
| 250 | int [] pivInd = new int[m];
|
---|
| 251 | int info = 0;
|
---|
| 252 | Lapack.zgetrf (m, m, lArr, m, pivInd ,ref info);
|
---|
| 253 | if (info < 0 ) {
|
---|
| 254 | throw new ILArgumentException("det: illegal parameter error");
|
---|
| 255 | }
|
---|
| 256 | // determine pivoting: number of exchanges
|
---|
| 257 | complex retA = new complex(1.0,0.0) ;
|
---|
| 258 | for (int i = 0; i < m;) {
|
---|
| 259 | retA *= lArr[i * m + i];
|
---|
| 260 | if (pivInd[i] != ++i) retA *= -1.0 ;
|
---|
| 261 | }
|
---|
| 262 | return retA;
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 267 | }
|
---|
| 268 | }
|
---|