Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/ILNumerics.2.14.4735.573/Functions/builtin/cov.cs @ 11316

Last change on this file since 11316 was 9102, checked in by gkronber, 12 years ago

#1967: ILNumerics source for experimentation

File size: 6.9 KB
Line 
1///
2///    This file is part of ILNumerics Community Edition.
3///
4///    ILNumerics Community Edition - high performance computing for applications.
5///    Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
6///
7///    ILNumerics Community Edition is free software: you can redistribute it and/or modify
8///    it under the terms of the GNU General Public License version 3 as published by
9///    the Free Software Foundation.
10///
11///    ILNumerics Community Edition is distributed in the hope that it will be useful,
12///    but WITHOUT ANY WARRANTY; without even the implied warranty of
13///    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14///    GNU General Public License for more details.
15///
16///    You should have received a copy of the GNU General Public License
17///    along with ILNumerics Community Edition. See the file License.txt in the root
18///    of your distribution package. If not, see <http://www.gnu.org/licenses/>.
19///
20///    In addition this software uses the following components and/or licenses:
21///
22///    =================================================================================
23///    The Open Toolkit Library License
24///   
25///    Copyright (c) 2006 - 2009 the Open Toolkit library.
26///   
27///    Permission is hereby granted, free of charge, to any person obtaining a copy
28///    of this software and associated documentation files (the "Software"), to deal
29///    in the Software without restriction, including without limitation the rights to
30///    use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
31///    the Software, and to permit persons to whom the Software is furnished to do
32///    so, subject to the following conditions:
33///
34///    The above copyright notice and this permission notice shall be included in all
35///    copies or substantial portions of the Software.
36///
37///    =================================================================================
38///   
39
40using System;
41using System.Collections.Generic;
42using System.Text;
43using ILNumerics;
44using ILNumerics.Exceptions;
45using ILNumerics.Storage;
46using ILNumerics.Misc;
47
48
49
50namespace ILNumerics {
51
52    public partial class ILMath {
53
54
55       
56        /// <summary>
57        /// Covariance matrix of A
58        /// </summary>
59        /// <param name="A">Input vector or data matrix, samples in columns, variables in rows</param>
60        /// <param name="unbiased">[Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.</param>
61        /// <returns>Variance of vector A/Covariance matrix of A</returns>
62        /// <remarks><para>If A is a vector <c>cov(A)</c> returns the variance of A</para>
63        /// <para>If A is a m x n matrix, where each of the n columns is an m-dimensional observation, <c>cov(A)</c> is the n x n covariance matrix.</para>
64        /// <para>The mean is removed from each column before calculating the result.</para>
65        /// </remarks>
66        public static ILRetArray<double> cov(ILInArray<double> A, bool unbiased = true) {
67            using (ILScope.Enter(A)) {
68                if (isnull(A)) {
69                    throw new ILArgumentException("Parameter A must not be null");
70                }
71                if (!A.IsMatrix)
72                    throw new ILArgumentException("Input array A must be a matrix (2d)");
73                if (A.IsEmpty) {
74                    if (A.S[0] == 0 && A.S[1] == 0)
75                        return array<double>(double.NaN, 1, 1);
76                    return array<double>(double.NaN, A.S[0], A.S[0]); 
77                }
78
79                if (A.IsVector)
80                {
81                    // A vector, return variance
82                    int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
83                    ILArray<double> AnoMean = A - mean(A);
84                    return sum(multiplyElem(AnoMean, AnoMean)) / (double )normFactor;
85                    // return zeros<double>(A.D[0], A.D[0]);
86                }
87                else
88                {
89                    int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
90                    ILArray<double> AnoMean = A - mean(A, 1);
91                    return multiply(AnoMean, AnoMean.T) / (double )normFactor;
92                }
93            }
94        }
95
96#region HYCALPER AUTO GENERATED CODE
97
98       
99        /// <summary>
100        /// Covariance matrix of A
101        /// </summary>
102        /// <param name="A">Input vector or data matrix, samples in columns, variables in rows</param>
103        /// <param name="unbiased">[Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.</param>
104        /// <returns>Variance of vector A/Covariance matrix of A</returns>
105        /// <remarks><para>If A is a vector <c>cov(A)</c> returns the variance of A</para>
106        /// <para>If A is a m x n matrix, where each of the n columns is an m-dimensional observation, <c>cov(A)</c> is the n x n covariance matrix.</para>
107        /// <para>The mean is removed from each column before calculating the result.</para>
108        /// </remarks>
109        public static ILRetArray<float> cov(ILInArray<float> A, bool unbiased = true) {
110            using (ILScope.Enter(A)) {
111                if (isnull(A)) {
112                    throw new ILArgumentException("Parameter A must not be null");
113                }
114                if (!A.IsMatrix)
115                    throw new ILArgumentException("Input array A must be a matrix (2d)");
116                if (A.IsEmpty) {
117                    if (A.S[0] == 0 && A.S[1] == 0)
118                        return array<float>(float.NaN, 1, 1);
119                    return array<float>(float.NaN, A.S[0], A.S[0]); 
120                }
121
122                if (A.IsVector)
123                {
124                    // A vector, return variance
125                    int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
126                    ILArray<float> AnoMean = A - mean(A);
127                    return sum(multiplyElem(AnoMean, AnoMean)) / (float )normFactor;
128                    // return zeros<float>(A.D[0], A.D[0]);
129                }
130                else
131                {
132                    int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
133                    ILArray<float> AnoMean = A - mean(A, 1);
134                    return multiply(AnoMean, AnoMean.T) / (float )normFactor;
135                }
136            }
137        }
138
139#endregion HYCALPER AUTO GENERATED CODE
140
141    }
142}
Note: See TracBrowser for help on using the repository browser.