1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 | using ILNumerics.Storage;
|
---|
46 | using ILNumerics.Misc;
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | namespace ILNumerics {
|
---|
51 |
|
---|
52 | public partial class ILMath {
|
---|
53 |
|
---|
54 | |
---|
55 |
|
---|
56 | /// <summary>
|
---|
57 | /// Covariance matrix of A
|
---|
58 | /// </summary>
|
---|
59 | /// <param name="A">Input vector or data matrix, samples in columns, variables in rows</param>
|
---|
60 | /// <param name="unbiased">[Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.</param>
|
---|
61 | /// <returns>Variance of vector A/Covariance matrix of A</returns>
|
---|
62 | /// <remarks><para>If A is a vector <c>cov(A)</c> returns the variance of A</para>
|
---|
63 | /// <para>If A is a m x n matrix, where each of the n columns is an m-dimensional observation, <c>cov(A)</c> is the n x n covariance matrix.</para>
|
---|
64 | /// <para>The mean is removed from each column before calculating the result.</para>
|
---|
65 | /// </remarks>
|
---|
66 | public static ILRetArray<double> cov(ILInArray<double> A, bool unbiased = true) {
|
---|
67 | using (ILScope.Enter(A)) {
|
---|
68 | if (isnull(A)) {
|
---|
69 | throw new ILArgumentException("Parameter A must not be null");
|
---|
70 | }
|
---|
71 | if (!A.IsMatrix)
|
---|
72 | throw new ILArgumentException("Input array A must be a matrix (2d)");
|
---|
73 | if (A.IsEmpty) {
|
---|
74 | if (A.S[0] == 0 && A.S[1] == 0)
|
---|
75 | return array<double>(double.NaN, 1, 1);
|
---|
76 | return array<double>(double.NaN, A.S[0], A.S[0]);
|
---|
77 | }
|
---|
78 |
|
---|
79 | if (A.IsVector)
|
---|
80 | {
|
---|
81 | // A vector, return variance
|
---|
82 | int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
|
---|
83 | ILArray<double> AnoMean = A - mean(A);
|
---|
84 | return sum(multiplyElem(AnoMean, AnoMean)) / (double )normFactor;
|
---|
85 | // return zeros<double>(A.D[0], A.D[0]);
|
---|
86 | }
|
---|
87 | else
|
---|
88 | {
|
---|
89 | int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
|
---|
90 | ILArray<double> AnoMean = A - mean(A, 1);
|
---|
91 | return multiply(AnoMean, AnoMean.T) / (double )normFactor;
|
---|
92 | }
|
---|
93 | }
|
---|
94 | }
|
---|
95 | |
---|
96 | #region HYCALPER AUTO GENERATED CODE
|
---|
97 | |
---|
98 |
|
---|
99 | /// <summary>
|
---|
100 | /// Covariance matrix of A
|
---|
101 | /// </summary>
|
---|
102 | /// <param name="A">Input vector or data matrix, samples in columns, variables in rows</param>
|
---|
103 | /// <param name="unbiased">[Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.</param>
|
---|
104 | /// <returns>Variance of vector A/Covariance matrix of A</returns>
|
---|
105 | /// <remarks><para>If A is a vector <c>cov(A)</c> returns the variance of A</para>
|
---|
106 | /// <para>If A is a m x n matrix, where each of the n columns is an m-dimensional observation, <c>cov(A)</c> is the n x n covariance matrix.</para>
|
---|
107 | /// <para>The mean is removed from each column before calculating the result.</para>
|
---|
108 | /// </remarks>
|
---|
109 | public static ILRetArray<float> cov(ILInArray<float> A, bool unbiased = true) {
|
---|
110 | using (ILScope.Enter(A)) {
|
---|
111 | if (isnull(A)) {
|
---|
112 | throw new ILArgumentException("Parameter A must not be null");
|
---|
113 | }
|
---|
114 | if (!A.IsMatrix)
|
---|
115 | throw new ILArgumentException("Input array A must be a matrix (2d)");
|
---|
116 | if (A.IsEmpty) {
|
---|
117 | if (A.S[0] == 0 && A.S[1] == 0)
|
---|
118 | return array<float>(float.NaN, 1, 1);
|
---|
119 | return array<float>(float.NaN, A.S[0], A.S[0]);
|
---|
120 | }
|
---|
121 |
|
---|
122 | if (A.IsVector)
|
---|
123 | {
|
---|
124 | // A vector, return variance
|
---|
125 | int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
|
---|
126 | ILArray<float> AnoMean = A - mean(A);
|
---|
127 | return sum(multiplyElem(AnoMean, AnoMean)) / (float )normFactor;
|
---|
128 | // return zeros<float>(A.D[0], A.D[0]);
|
---|
129 | }
|
---|
130 | else
|
---|
131 | {
|
---|
132 | int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
|
---|
133 | ILArray<float> AnoMean = A - mean(A, 1);
|
---|
134 | return multiply(AnoMean, AnoMean.T) / (float )normFactor;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
140 |
|
---|
141 | }
|
---|
142 | } |
---|