1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Storage;
|
---|
44 | using ILNumerics.Misc;
|
---|
45 | using ILNumerics.Exceptions;
|
---|
46 | using System.Runtime.InteropServices;
|
---|
47 | using System.Numerics;
|
---|
48 |
|
---|
49 |
|
---|
50 | namespace ILNumerics {
|
---|
51 | public partial class ILMath {
|
---|
52 | /// <summary>
|
---|
53 | /// Convert a numeric array to another numeric type
|
---|
54 | /// </summary>
|
---|
55 | /// <param name="X">Input array</param>
|
---|
56 | /// <typeparam name="inT">Type of array to convert</typeparam>
|
---|
57 | /// <typeparam name="outT">Type of array to return</typeparam>
|
---|
58 | /// <returns>Converted array</returns>
|
---|
59 | /// <remarks> The newly created array will be converted to the required type.
|
---|
60 | /// <para>The array returned will always use new memory! Even if the type requested
|
---|
61 | /// matches the incoming type.</para></remarks>
|
---|
62 | public static unsafe ILRetArray<outT> convert<inT, outT>(ILInArray<inT> X) {
|
---|
63 | using (ILScope.Enter(X)) {
|
---|
64 | outT[] retArrGen = ILMemoryPool.Pool.New<outT>(X.Size.NumberOfElements);
|
---|
65 | inT[] inArrGen = X.GetArrayForRead();
|
---|
66 | if (inArrGen is double[]) {
|
---|
67 | #region input double
|
---|
68 | double[] inArr = (double[])(object)inArrGen;
|
---|
69 | if (false) {
|
---|
70 | |
---|
71 | } else if (retArrGen is double []) {
|
---|
72 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
73 | fixed ( double * pretArr = dummyArray)
|
---|
74 | fixed (double * pinArr = inArr) {
|
---|
75 | double * pInWalk = pinArr;
|
---|
76 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
77 | double * pRetWalk = pretArr;
|
---|
78 | while (pInWalk < pInEnd) {
|
---|
79 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
80 | }
|
---|
81 | }
|
---|
82 | |
---|
83 | #region HYCALPER AUTO GENERATED CODE
|
---|
84 | |
---|
85 | } else if (retArrGen is Int64 []) {
|
---|
86 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
87 | fixed ( Int64 * pretArr = dummyArray)
|
---|
88 | fixed (double * pinArr = inArr) {
|
---|
89 | double * pInWalk = pinArr;
|
---|
90 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
91 | Int64 * pRetWalk = pretArr;
|
---|
92 | while (pInWalk < pInEnd) {
|
---|
93 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
94 | }
|
---|
95 | }
|
---|
96 | } else if (retArrGen is Int32 []) {
|
---|
97 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
98 | fixed ( Int32 * pretArr = dummyArray)
|
---|
99 | fixed (double * pinArr = inArr) {
|
---|
100 | double * pInWalk = pinArr;
|
---|
101 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
102 | Int32 * pRetWalk = pretArr;
|
---|
103 | while (pInWalk < pInEnd) {
|
---|
104 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
105 | }
|
---|
106 | }
|
---|
107 | } else if (retArrGen is byte []) {
|
---|
108 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
109 | fixed ( byte * pretArr = dummyArray)
|
---|
110 | fixed (double * pinArr = inArr) {
|
---|
111 | double * pInWalk = pinArr;
|
---|
112 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
113 | byte * pRetWalk = pretArr;
|
---|
114 | while (pInWalk < pInEnd) {
|
---|
115 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
116 | }
|
---|
117 | }
|
---|
118 | } else if (retArrGen is fcomplex []) {
|
---|
119 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
120 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
121 | fixed (double * pinArr = inArr) {
|
---|
122 | double * pInWalk = pinArr;
|
---|
123 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
124 | fcomplex * pRetWalk = pretArr;
|
---|
125 | while (pInWalk < pInEnd) {
|
---|
126 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
127 | }
|
---|
128 | }
|
---|
129 | } else if (retArrGen is complex []) {
|
---|
130 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
131 | fixed ( complex * pretArr = dummyArray)
|
---|
132 | fixed (double * pinArr = inArr) {
|
---|
133 | double * pInWalk = pinArr;
|
---|
134 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
135 | complex * pRetWalk = pretArr;
|
---|
136 | while (pInWalk < pInEnd) {
|
---|
137 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
138 | }
|
---|
139 | }
|
---|
140 | } else if (retArrGen is float []) {
|
---|
141 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
142 | fixed ( float * pretArr = dummyArray)
|
---|
143 | fixed (double * pinArr = inArr) {
|
---|
144 | double * pInWalk = pinArr;
|
---|
145 | double * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
146 | float * pRetWalk = pretArr;
|
---|
147 | while (pInWalk < pInEnd) {
|
---|
148 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
149 | }
|
---|
150 | }
|
---|
151 |
|
---|
152 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
153 | } else
|
---|
154 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
155 | #endregion
|
---|
156 | } else if (inArrGen is float[]) {
|
---|
157 | #region input float
|
---|
158 | float[] inArr = (float[])(object)inArrGen;
|
---|
159 | if (false) {
|
---|
160 | |
---|
161 | } else if (retArrGen is double []) {
|
---|
162 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
163 | fixed ( double * pretArr = dummyArray)
|
---|
164 | fixed (float * pinArr = inArr) {
|
---|
165 | float * pInWalk = pinArr;
|
---|
166 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
167 | double * pRetWalk = pretArr;
|
---|
168 | while (pInWalk < pInEnd) {
|
---|
169 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
170 | }
|
---|
171 | }
|
---|
172 | |
---|
173 | #region HYCALPER AUTO GENERATED CODE
|
---|
174 | |
---|
175 | } else if (retArrGen is Int64 []) {
|
---|
176 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
177 | fixed ( Int64 * pretArr = dummyArray)
|
---|
178 | fixed (float * pinArr = inArr) {
|
---|
179 | float * pInWalk = pinArr;
|
---|
180 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
181 | Int64 * pRetWalk = pretArr;
|
---|
182 | while (pInWalk < pInEnd) {
|
---|
183 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
184 | }
|
---|
185 | }
|
---|
186 | } else if (retArrGen is Int32 []) {
|
---|
187 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
188 | fixed ( Int32 * pretArr = dummyArray)
|
---|
189 | fixed (float * pinArr = inArr) {
|
---|
190 | float * pInWalk = pinArr;
|
---|
191 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
192 | Int32 * pRetWalk = pretArr;
|
---|
193 | while (pInWalk < pInEnd) {
|
---|
194 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
195 | }
|
---|
196 | }
|
---|
197 | } else if (retArrGen is byte []) {
|
---|
198 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
199 | fixed ( byte * pretArr = dummyArray)
|
---|
200 | fixed (float * pinArr = inArr) {
|
---|
201 | float * pInWalk = pinArr;
|
---|
202 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
203 | byte * pRetWalk = pretArr;
|
---|
204 | while (pInWalk < pInEnd) {
|
---|
205 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
206 | }
|
---|
207 | }
|
---|
208 | } else if (retArrGen is fcomplex []) {
|
---|
209 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
210 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
211 | fixed (float * pinArr = inArr) {
|
---|
212 | float * pInWalk = pinArr;
|
---|
213 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
214 | fcomplex * pRetWalk = pretArr;
|
---|
215 | while (pInWalk < pInEnd) {
|
---|
216 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
217 | }
|
---|
218 | }
|
---|
219 | } else if (retArrGen is complex []) {
|
---|
220 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
221 | fixed ( complex * pretArr = dummyArray)
|
---|
222 | fixed (float * pinArr = inArr) {
|
---|
223 | float * pInWalk = pinArr;
|
---|
224 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
225 | complex * pRetWalk = pretArr;
|
---|
226 | while (pInWalk < pInEnd) {
|
---|
227 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
228 | }
|
---|
229 | }
|
---|
230 | } else if (retArrGen is float []) {
|
---|
231 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
232 | fixed ( float * pretArr = dummyArray)
|
---|
233 | fixed (float * pinArr = inArr) {
|
---|
234 | float * pInWalk = pinArr;
|
---|
235 | float * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
236 | float * pRetWalk = pretArr;
|
---|
237 | while (pInWalk < pInEnd) {
|
---|
238 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
243 | } else
|
---|
244 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
245 | #endregion
|
---|
246 | } else if (inArrGen is complex[]) {
|
---|
247 | #region input complex
|
---|
248 | complex[] inArr = (complex[])(object)inArrGen;
|
---|
249 | if (false) {
|
---|
250 | |
---|
251 | } else if (retArrGen is double []) {
|
---|
252 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
253 | fixed ( double * pretArr = dummyArray)
|
---|
254 | fixed (complex * pinArr = inArr) {
|
---|
255 | complex * pInWalk = pinArr;
|
---|
256 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
257 | double * pRetWalk = pretArr;
|
---|
258 | while (pInWalk < pInEnd) {
|
---|
259 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
260 | }
|
---|
261 | }
|
---|
262 | |
---|
263 | #region HYCALPER AUTO GENERATED CODE
|
---|
264 | |
---|
265 | } else if (retArrGen is Int64 []) {
|
---|
266 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
267 | fixed ( Int64 * pretArr = dummyArray)
|
---|
268 | fixed (complex * pinArr = inArr) {
|
---|
269 | complex * pInWalk = pinArr;
|
---|
270 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
271 | Int64 * pRetWalk = pretArr;
|
---|
272 | while (pInWalk < pInEnd) {
|
---|
273 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
274 | }
|
---|
275 | }
|
---|
276 | } else if (retArrGen is Int32 []) {
|
---|
277 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
278 | fixed ( Int32 * pretArr = dummyArray)
|
---|
279 | fixed (complex * pinArr = inArr) {
|
---|
280 | complex * pInWalk = pinArr;
|
---|
281 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
282 | Int32 * pRetWalk = pretArr;
|
---|
283 | while (pInWalk < pInEnd) {
|
---|
284 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
285 | }
|
---|
286 | }
|
---|
287 | } else if (retArrGen is byte []) {
|
---|
288 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
289 | fixed ( byte * pretArr = dummyArray)
|
---|
290 | fixed (complex * pinArr = inArr) {
|
---|
291 | complex * pInWalk = pinArr;
|
---|
292 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
293 | byte * pRetWalk = pretArr;
|
---|
294 | while (pInWalk < pInEnd) {
|
---|
295 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
296 | }
|
---|
297 | }
|
---|
298 | } else if (retArrGen is fcomplex []) {
|
---|
299 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
300 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
301 | fixed (complex * pinArr = inArr) {
|
---|
302 | complex * pInWalk = pinArr;
|
---|
303 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
304 | fcomplex * pRetWalk = pretArr;
|
---|
305 | while (pInWalk < pInEnd) {
|
---|
306 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
307 | }
|
---|
308 | }
|
---|
309 | } else if (retArrGen is complex []) {
|
---|
310 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
311 | fixed ( complex * pretArr = dummyArray)
|
---|
312 | fixed (complex * pinArr = inArr) {
|
---|
313 | complex * pInWalk = pinArr;
|
---|
314 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
315 | complex * pRetWalk = pretArr;
|
---|
316 | while (pInWalk < pInEnd) {
|
---|
317 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
318 | }
|
---|
319 | }
|
---|
320 | } else if (retArrGen is float []) {
|
---|
321 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
322 | fixed ( float * pretArr = dummyArray)
|
---|
323 | fixed (complex * pinArr = inArr) {
|
---|
324 | complex * pInWalk = pinArr;
|
---|
325 | complex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
326 | float * pRetWalk = pretArr;
|
---|
327 | while (pInWalk < pInEnd) {
|
---|
328 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
329 | }
|
---|
330 | }
|
---|
331 |
|
---|
332 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
333 | } else if (retArrGen is Complex[]) {
|
---|
334 | GCHandle retHandle = GCHandle.Alloc(retArrGen,GCHandleType.Pinned);
|
---|
335 | GCHandle inHandle = GCHandle.Alloc(inArrGen,GCHandleType.Pinned);
|
---|
336 | complex* retP = (complex*)retHandle.AddrOfPinnedObject();
|
---|
337 | complex* inP = (complex*)inHandle.AddrOfPinnedObject();
|
---|
338 | complex2ComplexHelper(inP, retP, X.S.NumberOfElements);
|
---|
339 | retHandle.Free();
|
---|
340 | inHandle.Free();
|
---|
341 | } else
|
---|
342 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
343 | #endregion
|
---|
344 | } else if (inArrGen is fcomplex[]) {
|
---|
345 | #region input fcomplex
|
---|
346 | fcomplex[] inArr = (fcomplex[])(object)inArrGen;
|
---|
347 | if (false) {
|
---|
348 | |
---|
349 | } else if (retArrGen is double []) {
|
---|
350 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
351 | fixed ( double * pretArr = dummyArray)
|
---|
352 | fixed (fcomplex * pinArr = inArr) {
|
---|
353 | fcomplex * pInWalk = pinArr;
|
---|
354 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
355 | double * pRetWalk = pretArr;
|
---|
356 | while (pInWalk < pInEnd) {
|
---|
357 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
358 | }
|
---|
359 | }
|
---|
360 | |
---|
361 | #region HYCALPER AUTO GENERATED CODE
|
---|
362 | |
---|
363 | } else if (retArrGen is Int64 []) {
|
---|
364 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
365 | fixed ( Int64 * pretArr = dummyArray)
|
---|
366 | fixed (fcomplex * pinArr = inArr) {
|
---|
367 | fcomplex * pInWalk = pinArr;
|
---|
368 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
369 | Int64 * pRetWalk = pretArr;
|
---|
370 | while (pInWalk < pInEnd) {
|
---|
371 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
372 | }
|
---|
373 | }
|
---|
374 | } else if (retArrGen is Int32 []) {
|
---|
375 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
376 | fixed ( Int32 * pretArr = dummyArray)
|
---|
377 | fixed (fcomplex * pinArr = inArr) {
|
---|
378 | fcomplex * pInWalk = pinArr;
|
---|
379 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
380 | Int32 * pRetWalk = pretArr;
|
---|
381 | while (pInWalk < pInEnd) {
|
---|
382 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
383 | }
|
---|
384 | }
|
---|
385 | } else if (retArrGen is byte []) {
|
---|
386 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
387 | fixed ( byte * pretArr = dummyArray)
|
---|
388 | fixed (fcomplex * pinArr = inArr) {
|
---|
389 | fcomplex * pInWalk = pinArr;
|
---|
390 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
391 | byte * pRetWalk = pretArr;
|
---|
392 | while (pInWalk < pInEnd) {
|
---|
393 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
394 | }
|
---|
395 | }
|
---|
396 | } else if (retArrGen is fcomplex []) {
|
---|
397 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
398 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
399 | fixed (fcomplex * pinArr = inArr) {
|
---|
400 | fcomplex * pInWalk = pinArr;
|
---|
401 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
402 | fcomplex * pRetWalk = pretArr;
|
---|
403 | while (pInWalk < pInEnd) {
|
---|
404 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
405 | }
|
---|
406 | }
|
---|
407 | } else if (retArrGen is complex []) {
|
---|
408 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
409 | fixed ( complex * pretArr = dummyArray)
|
---|
410 | fixed (fcomplex * pinArr = inArr) {
|
---|
411 | fcomplex * pInWalk = pinArr;
|
---|
412 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
413 | complex * pRetWalk = pretArr;
|
---|
414 | while (pInWalk < pInEnd) {
|
---|
415 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
416 | }
|
---|
417 | }
|
---|
418 | } else if (retArrGen is float []) {
|
---|
419 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
420 | fixed ( float * pretArr = dummyArray)
|
---|
421 | fixed (fcomplex * pinArr = inArr) {
|
---|
422 | fcomplex * pInWalk = pinArr;
|
---|
423 | fcomplex * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
424 | float * pRetWalk = pretArr;
|
---|
425 | while (pInWalk < pInEnd) {
|
---|
426 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
427 | }
|
---|
428 | }
|
---|
429 |
|
---|
430 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
431 | } else
|
---|
432 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
433 | #endregion
|
---|
434 | } else if (inArrGen is byte[]) {
|
---|
435 | #region input byte
|
---|
436 | byte[] inArr = (byte[])(object)inArrGen;
|
---|
437 | if (false) {
|
---|
438 | |
---|
439 | } else if (retArrGen is double []) {
|
---|
440 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
441 | fixed ( double * pretArr = dummyArray)
|
---|
442 | fixed (byte * pinArr = inArr) {
|
---|
443 | byte * pInWalk = pinArr;
|
---|
444 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
445 | double * pRetWalk = pretArr;
|
---|
446 | while (pInWalk < pInEnd) {
|
---|
447 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
448 | }
|
---|
449 | }
|
---|
450 | |
---|
451 | #region HYCALPER AUTO GENERATED CODE
|
---|
452 | |
---|
453 | } else if (retArrGen is Int64 []) {
|
---|
454 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
455 | fixed ( Int64 * pretArr = dummyArray)
|
---|
456 | fixed (byte * pinArr = inArr) {
|
---|
457 | byte * pInWalk = pinArr;
|
---|
458 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
459 | Int64 * pRetWalk = pretArr;
|
---|
460 | while (pInWalk < pInEnd) {
|
---|
461 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
462 | }
|
---|
463 | }
|
---|
464 | } else if (retArrGen is Int32 []) {
|
---|
465 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
466 | fixed ( Int32 * pretArr = dummyArray)
|
---|
467 | fixed (byte * pinArr = inArr) {
|
---|
468 | byte * pInWalk = pinArr;
|
---|
469 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
470 | Int32 * pRetWalk = pretArr;
|
---|
471 | while (pInWalk < pInEnd) {
|
---|
472 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
473 | }
|
---|
474 | }
|
---|
475 | } else if (retArrGen is byte []) {
|
---|
476 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
477 | fixed ( byte * pretArr = dummyArray)
|
---|
478 | fixed (byte * pinArr = inArr) {
|
---|
479 | byte * pInWalk = pinArr;
|
---|
480 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
481 | byte * pRetWalk = pretArr;
|
---|
482 | while (pInWalk < pInEnd) {
|
---|
483 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
484 | }
|
---|
485 | }
|
---|
486 | } else if (retArrGen is fcomplex []) {
|
---|
487 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
488 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
489 | fixed (byte * pinArr = inArr) {
|
---|
490 | byte * pInWalk = pinArr;
|
---|
491 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
492 | fcomplex * pRetWalk = pretArr;
|
---|
493 | while (pInWalk < pInEnd) {
|
---|
494 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
495 | }
|
---|
496 | }
|
---|
497 | } else if (retArrGen is complex []) {
|
---|
498 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
499 | fixed ( complex * pretArr = dummyArray)
|
---|
500 | fixed (byte * pinArr = inArr) {
|
---|
501 | byte * pInWalk = pinArr;
|
---|
502 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
503 | complex * pRetWalk = pretArr;
|
---|
504 | while (pInWalk < pInEnd) {
|
---|
505 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
506 | }
|
---|
507 | }
|
---|
508 | } else if (retArrGen is float []) {
|
---|
509 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
510 | fixed ( float * pretArr = dummyArray)
|
---|
511 | fixed (byte * pinArr = inArr) {
|
---|
512 | byte * pInWalk = pinArr;
|
---|
513 | byte * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
514 | float * pRetWalk = pretArr;
|
---|
515 | while (pInWalk < pInEnd) {
|
---|
516 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
517 | }
|
---|
518 | }
|
---|
519 |
|
---|
520 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
521 | } else
|
---|
522 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
523 | #endregion
|
---|
524 | } else if (inArrGen is Int32[]) {
|
---|
525 | #region input Int32
|
---|
526 | Int32[] inArr = (Int32[])(object)inArrGen;
|
---|
527 | if (false) {
|
---|
528 | |
---|
529 | } else if (retArrGen is double []) {
|
---|
530 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
531 | fixed ( double * pretArr = dummyArray)
|
---|
532 | fixed (Int32 * pinArr = inArr) {
|
---|
533 | Int32 * pInWalk = pinArr;
|
---|
534 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
535 | double * pRetWalk = pretArr;
|
---|
536 | while (pInWalk < pInEnd) {
|
---|
537 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
538 | }
|
---|
539 | }
|
---|
540 | |
---|
541 | #region HYCALPER AUTO GENERATED CODE
|
---|
542 | |
---|
543 | } else if (retArrGen is Int64 []) {
|
---|
544 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
545 | fixed ( Int64 * pretArr = dummyArray)
|
---|
546 | fixed (Int32 * pinArr = inArr) {
|
---|
547 | Int32 * pInWalk = pinArr;
|
---|
548 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
549 | Int64 * pRetWalk = pretArr;
|
---|
550 | while (pInWalk < pInEnd) {
|
---|
551 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
552 | }
|
---|
553 | }
|
---|
554 | } else if (retArrGen is Int32 []) {
|
---|
555 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
556 | fixed ( Int32 * pretArr = dummyArray)
|
---|
557 | fixed (Int32 * pinArr = inArr) {
|
---|
558 | Int32 * pInWalk = pinArr;
|
---|
559 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
560 | Int32 * pRetWalk = pretArr;
|
---|
561 | while (pInWalk < pInEnd) {
|
---|
562 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
563 | }
|
---|
564 | }
|
---|
565 | } else if (retArrGen is byte []) {
|
---|
566 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
567 | fixed ( byte * pretArr = dummyArray)
|
---|
568 | fixed (Int32 * pinArr = inArr) {
|
---|
569 | Int32 * pInWalk = pinArr;
|
---|
570 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
571 | byte * pRetWalk = pretArr;
|
---|
572 | while (pInWalk < pInEnd) {
|
---|
573 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
574 | }
|
---|
575 | }
|
---|
576 | } else if (retArrGen is fcomplex []) {
|
---|
577 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
578 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
579 | fixed (Int32 * pinArr = inArr) {
|
---|
580 | Int32 * pInWalk = pinArr;
|
---|
581 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
582 | fcomplex * pRetWalk = pretArr;
|
---|
583 | while (pInWalk < pInEnd) {
|
---|
584 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
585 | }
|
---|
586 | }
|
---|
587 | } else if (retArrGen is complex []) {
|
---|
588 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
589 | fixed ( complex * pretArr = dummyArray)
|
---|
590 | fixed (Int32 * pinArr = inArr) {
|
---|
591 | Int32 * pInWalk = pinArr;
|
---|
592 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
593 | complex * pRetWalk = pretArr;
|
---|
594 | while (pInWalk < pInEnd) {
|
---|
595 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
596 | }
|
---|
597 | }
|
---|
598 | } else if (retArrGen is float []) {
|
---|
599 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
600 | fixed ( float * pretArr = dummyArray)
|
---|
601 | fixed (Int32 * pinArr = inArr) {
|
---|
602 | Int32 * pInWalk = pinArr;
|
---|
603 | Int32 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
604 | float * pRetWalk = pretArr;
|
---|
605 | while (pInWalk < pInEnd) {
|
---|
606 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
607 | }
|
---|
608 | }
|
---|
609 |
|
---|
610 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
611 | } else
|
---|
612 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
613 | #endregion
|
---|
614 | } else if (inArrGen is Int64[]) {
|
---|
615 | #region input Int64
|
---|
616 | Int64[] inArr = (Int64[])(object)inArrGen;
|
---|
617 | if (false) {
|
---|
618 | |
---|
619 | } else if (retArrGen is double []) {
|
---|
620 | double [] dummyArray = ( double [])(object)retArrGen;
|
---|
621 | fixed ( double * pretArr = dummyArray)
|
---|
622 | fixed (Int64 * pinArr = inArr) {
|
---|
623 | Int64 * pInWalk = pinArr;
|
---|
624 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
625 | double * pRetWalk = pretArr;
|
---|
626 | while (pInWalk < pInEnd) {
|
---|
627 | *(pRetWalk++) = ( double ) (*(pInWalk++));
|
---|
628 | }
|
---|
629 | }
|
---|
630 | |
---|
631 | #region HYCALPER AUTO GENERATED CODE
|
---|
632 | |
---|
633 | } else if (retArrGen is Int64 []) {
|
---|
634 | Int64 [] dummyArray = ( Int64 [])(object)retArrGen;
|
---|
635 | fixed ( Int64 * pretArr = dummyArray)
|
---|
636 | fixed (Int64 * pinArr = inArr) {
|
---|
637 | Int64 * pInWalk = pinArr;
|
---|
638 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
639 | Int64 * pRetWalk = pretArr;
|
---|
640 | while (pInWalk < pInEnd) {
|
---|
641 | *(pRetWalk++) = ( Int64 ) (*(pInWalk++));
|
---|
642 | }
|
---|
643 | }
|
---|
644 | } else if (retArrGen is Int32 []) {
|
---|
645 | Int32 [] dummyArray = ( Int32 [])(object)retArrGen;
|
---|
646 | fixed ( Int32 * pretArr = dummyArray)
|
---|
647 | fixed (Int64 * pinArr = inArr) {
|
---|
648 | Int64 * pInWalk = pinArr;
|
---|
649 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
650 | Int32 * pRetWalk = pretArr;
|
---|
651 | while (pInWalk < pInEnd) {
|
---|
652 | *(pRetWalk++) = ( Int32 ) (*(pInWalk++));
|
---|
653 | }
|
---|
654 | }
|
---|
655 | } else if (retArrGen is byte []) {
|
---|
656 | byte [] dummyArray = ( byte [])(object)retArrGen;
|
---|
657 | fixed ( byte * pretArr = dummyArray)
|
---|
658 | fixed (Int64 * pinArr = inArr) {
|
---|
659 | Int64 * pInWalk = pinArr;
|
---|
660 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
661 | byte * pRetWalk = pretArr;
|
---|
662 | while (pInWalk < pInEnd) {
|
---|
663 | *(pRetWalk++) = ( byte ) (*(pInWalk++));
|
---|
664 | }
|
---|
665 | }
|
---|
666 | } else if (retArrGen is fcomplex []) {
|
---|
667 | fcomplex [] dummyArray = ( fcomplex [])(object)retArrGen;
|
---|
668 | fixed ( fcomplex * pretArr = dummyArray)
|
---|
669 | fixed (Int64 * pinArr = inArr) {
|
---|
670 | Int64 * pInWalk = pinArr;
|
---|
671 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
672 | fcomplex * pRetWalk = pretArr;
|
---|
673 | while (pInWalk < pInEnd) {
|
---|
674 | *(pRetWalk++) = ( fcomplex ) (*(pInWalk++));
|
---|
675 | }
|
---|
676 | }
|
---|
677 | } else if (retArrGen is complex []) {
|
---|
678 | complex [] dummyArray = ( complex [])(object)retArrGen;
|
---|
679 | fixed ( complex * pretArr = dummyArray)
|
---|
680 | fixed (Int64 * pinArr = inArr) {
|
---|
681 | Int64 * pInWalk = pinArr;
|
---|
682 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
683 | complex * pRetWalk = pretArr;
|
---|
684 | while (pInWalk < pInEnd) {
|
---|
685 | *(pRetWalk++) = ( complex ) (*(pInWalk++));
|
---|
686 | }
|
---|
687 | }
|
---|
688 | } else if (retArrGen is float []) {
|
---|
689 | float [] dummyArray = ( float [])(object)retArrGen;
|
---|
690 | fixed ( float * pretArr = dummyArray)
|
---|
691 | fixed (Int64 * pinArr = inArr) {
|
---|
692 | Int64 * pInWalk = pinArr;
|
---|
693 | Int64 * pInEnd = pinArr + X.S.NumberOfElements;
|
---|
694 | float * pRetWalk = pretArr;
|
---|
695 | while (pInWalk < pInEnd) {
|
---|
696 | *(pRetWalk++) = ( float ) (*(pInWalk++));
|
---|
697 | }
|
---|
698 | }
|
---|
699 |
|
---|
700 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
701 | } else
|
---|
702 | throw new ILArgumentException("unsupported target type: " + typeof(outT).Name);
|
---|
703 | #endregion
|
---|
704 | } else if (inArrGen is Complex[] && retArrGen is complex[]) {
|
---|
705 | GCHandle retHandle = GCHandle.Alloc(retArrGen, GCHandleType.Pinned);
|
---|
706 | GCHandle inHandle = GCHandle.Alloc(inArrGen, GCHandleType.Pinned);
|
---|
707 | complex* retP = (complex*)retHandle.AddrOfPinnedObject();
|
---|
708 | complex* inP = (complex*)inHandle.AddrOfPinnedObject();
|
---|
709 | complex2ComplexHelper(inP, retP, X.S.NumberOfElements);
|
---|
710 | retHandle.Free();
|
---|
711 | inHandle.Free();
|
---|
712 | } else
|
---|
713 | throw new ILArgumentException(String.Format("conversion from {0} to {1} is currently not supported.", typeof(inT).Name, typeof(outT).Name));
|
---|
714 | return new ILRetArray<outT>(retArrGen,X.Size);
|
---|
715 | }
|
---|
716 | }
|
---|
717 |
|
---|
718 | unsafe internal static void complex2ComplexHelper(complex* inArr, complex* outArr, int len) {
|
---|
719 | while (len > 8) {
|
---|
720 | outArr[0] = inArr[0];
|
---|
721 | outArr[1] = inArr[1];
|
---|
722 | outArr[2] = inArr[2];
|
---|
723 | outArr[3] = inArr[3];
|
---|
724 | outArr[4] = inArr[4];
|
---|
725 | outArr[5] = inArr[5];
|
---|
726 | outArr[6] = inArr[6];
|
---|
727 | outArr[7] = inArr[7];
|
---|
728 | inArr += 8; outArr += 8; len -= 8;
|
---|
729 | }
|
---|
730 | while (len-- > 0) *outArr++ = *inArr++;
|
---|
731 | }
|
---|
732 |
|
---|
733 | |
---|
734 | /// <summary>
|
---|
735 | /// Convert numeric array to double array
|
---|
736 | /// </summary>
|
---|
737 | /// <param name="X">Input array</param>
|
---|
738 | /// <returns>double array</returns>
|
---|
739 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
740 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
741 | public static ILRetArray<double> todouble(ILInArray< double > X) {
|
---|
742 | return convert< double ,double>(X);
|
---|
743 | }
|
---|
744 | /// <summary>
|
---|
745 | /// Convert numeric array to float array
|
---|
746 | /// </summary>
|
---|
747 | /// <param name="X">Input array</param>
|
---|
748 | /// <returns>float array</returns>
|
---|
749 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
750 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
751 | public static ILRetArray<float> tosingle(ILInArray< double > X) {
|
---|
752 | return convert< double ,float>(X);
|
---|
753 | }
|
---|
754 | /// <summary>
|
---|
755 | /// Convert numeric array to complex array
|
---|
756 | /// </summary>
|
---|
757 | /// <param name="X">Input array </param>
|
---|
758 | /// <returns>complex array</returns>
|
---|
759 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
760 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
761 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
762 | public static ILRetArray<complex> tocomplex(ILInArray< double > X) {
|
---|
763 | return convert< double ,complex>(X);
|
---|
764 | }
|
---|
765 | /// <summary>
|
---|
766 | /// Convert numeric array to fcomplex array
|
---|
767 | /// </summary>
|
---|
768 | /// <param name="X">Input array </param>
|
---|
769 | /// <returns>fcomplex array</returns>
|
---|
770 | /// <remarks>
|
---|
771 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
772 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
773 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
774 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< double > X) {
|
---|
775 | return convert< double ,fcomplex>(X);
|
---|
776 | }
|
---|
777 | /// <summary>
|
---|
778 | /// Convert numeric array to byte array
|
---|
779 | /// </summary>
|
---|
780 | /// <param name="X">Input array </param>
|
---|
781 | /// <returns>byte array</returns>
|
---|
782 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
783 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
784 | public static ILRetArray<byte> tobyte(ILInArray< double > X) {
|
---|
785 | return convert< double ,byte>(X);
|
---|
786 | }
|
---|
787 | /// <summary>
|
---|
788 | /// Convert numeric array to logical array
|
---|
789 | /// </summary>
|
---|
790 | /// <param name="X">Input array </param>
|
---|
791 | /// <returns>Logical array</returns>
|
---|
792 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
793 | /// elements are converted to true, zero-elements are converted to false.
|
---|
794 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
795 | public static ILRetLogical tological(ILInArray< double > X) {
|
---|
796 | return new ILRetLogical (convert< double ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
797 | }
|
---|
798 | /// <summary>
|
---|
799 | /// Convert numeric array to Int32 array
|
---|
800 | /// </summary>
|
---|
801 | /// <param name="X">Input array </param>
|
---|
802 | /// <returns>Int32 array</returns>
|
---|
803 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
804 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
805 | public static ILRetArray<Int32> toint32(ILInArray< double > X) {
|
---|
806 | return convert< double ,Int32>(X);
|
---|
807 | }
|
---|
808 | /// <summary>
|
---|
809 | /// Convert numeric array to Int64 array
|
---|
810 | /// </summary>
|
---|
811 | /// <param name="X">Input array </param>
|
---|
812 | /// <returns>Int64 array</returns>
|
---|
813 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
814 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
815 | public static ILRetArray<Int64> toint64(ILInArray< double > X) {
|
---|
816 | return convert< double ,Int64>(X);
|
---|
817 | }
|
---|
818 | |
---|
819 | #region HYCALPER AUTO GENERATED CODE
|
---|
820 | |
---|
821 | /// <summary>
|
---|
822 | /// Convert numeric array to double array
|
---|
823 | /// </summary>
|
---|
824 | /// <param name="X">Input array</param>
|
---|
825 | /// <returns>double array</returns>
|
---|
826 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
827 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
828 | public static ILRetArray<double> todouble(ILInArray< Int64 > X) {
|
---|
829 | return convert< Int64 ,double>(X);
|
---|
830 | }
|
---|
831 | /// <summary>
|
---|
832 | /// Convert numeric array to float array
|
---|
833 | /// </summary>
|
---|
834 | /// <param name="X">Input array</param>
|
---|
835 | /// <returns>float array</returns>
|
---|
836 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
837 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
838 | public static ILRetArray<float> tosingle(ILInArray< Int64 > X) {
|
---|
839 | return convert< Int64 ,float>(X);
|
---|
840 | }
|
---|
841 | /// <summary>
|
---|
842 | /// Convert numeric array to complex array
|
---|
843 | /// </summary>
|
---|
844 | /// <param name="X">Input array </param>
|
---|
845 | /// <returns>complex array</returns>
|
---|
846 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
847 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
848 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
849 | public static ILRetArray<complex> tocomplex(ILInArray< Int64 > X) {
|
---|
850 | return convert< Int64 ,complex>(X);
|
---|
851 | }
|
---|
852 | /// <summary>
|
---|
853 | /// Convert numeric array to fcomplex array
|
---|
854 | /// </summary>
|
---|
855 | /// <param name="X">Input array </param>
|
---|
856 | /// <returns>fcomplex array</returns>
|
---|
857 | /// <remarks>
|
---|
858 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
859 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
860 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
861 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< Int64 > X) {
|
---|
862 | return convert< Int64 ,fcomplex>(X);
|
---|
863 | }
|
---|
864 | /// <summary>
|
---|
865 | /// Convert numeric array to byte array
|
---|
866 | /// </summary>
|
---|
867 | /// <param name="X">Input array </param>
|
---|
868 | /// <returns>byte array</returns>
|
---|
869 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
870 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
871 | public static ILRetArray<byte> tobyte(ILInArray< Int64 > X) {
|
---|
872 | return convert< Int64 ,byte>(X);
|
---|
873 | }
|
---|
874 | /// <summary>
|
---|
875 | /// Convert numeric array to logical array
|
---|
876 | /// </summary>
|
---|
877 | /// <param name="X">Input array </param>
|
---|
878 | /// <returns>Logical array</returns>
|
---|
879 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
880 | /// elements are converted to true, zero-elements are converted to false.
|
---|
881 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
882 | public static ILRetLogical tological(ILInArray< Int64 > X) {
|
---|
883 | return new ILRetLogical (convert< Int64 ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
884 | }
|
---|
885 | /// <summary>
|
---|
886 | /// Convert numeric array to Int32 array
|
---|
887 | /// </summary>
|
---|
888 | /// <param name="X">Input array </param>
|
---|
889 | /// <returns>Int32 array</returns>
|
---|
890 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
891 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
892 | public static ILRetArray<Int32> toint32(ILInArray< Int64 > X) {
|
---|
893 | return convert< Int64 ,Int32>(X);
|
---|
894 | }
|
---|
895 | /// <summary>
|
---|
896 | /// Convert numeric array to Int64 array
|
---|
897 | /// </summary>
|
---|
898 | /// <param name="X">Input array </param>
|
---|
899 | /// <returns>Int64 array</returns>
|
---|
900 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
901 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
902 | public static ILRetArray<Int64> toint64(ILInArray< Int64 > X) {
|
---|
903 | return convert< Int64 ,Int64>(X);
|
---|
904 | }
|
---|
905 | /// <summary>
|
---|
906 | /// Convert numeric array to double array
|
---|
907 | /// </summary>
|
---|
908 | /// <param name="X">Input array</param>
|
---|
909 | /// <returns>double array</returns>
|
---|
910 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
911 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
912 | public static ILRetArray<double> todouble(ILInArray< Int32 > X) {
|
---|
913 | return convert< Int32 ,double>(X);
|
---|
914 | }
|
---|
915 | /// <summary>
|
---|
916 | /// Convert numeric array to float array
|
---|
917 | /// </summary>
|
---|
918 | /// <param name="X">Input array</param>
|
---|
919 | /// <returns>float array</returns>
|
---|
920 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
921 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
922 | public static ILRetArray<float> tosingle(ILInArray< Int32 > X) {
|
---|
923 | return convert< Int32 ,float>(X);
|
---|
924 | }
|
---|
925 | /// <summary>
|
---|
926 | /// Convert numeric array to complex array
|
---|
927 | /// </summary>
|
---|
928 | /// <param name="X">Input array </param>
|
---|
929 | /// <returns>complex array</returns>
|
---|
930 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
931 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
932 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
933 | public static ILRetArray<complex> tocomplex(ILInArray< Int32 > X) {
|
---|
934 | return convert< Int32 ,complex>(X);
|
---|
935 | }
|
---|
936 | /// <summary>
|
---|
937 | /// Convert numeric array to fcomplex array
|
---|
938 | /// </summary>
|
---|
939 | /// <param name="X">Input array </param>
|
---|
940 | /// <returns>fcomplex array</returns>
|
---|
941 | /// <remarks>
|
---|
942 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
943 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
944 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
945 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< Int32 > X) {
|
---|
946 | return convert< Int32 ,fcomplex>(X);
|
---|
947 | }
|
---|
948 | /// <summary>
|
---|
949 | /// Convert numeric array to byte array
|
---|
950 | /// </summary>
|
---|
951 | /// <param name="X">Input array </param>
|
---|
952 | /// <returns>byte array</returns>
|
---|
953 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
954 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
955 | public static ILRetArray<byte> tobyte(ILInArray< Int32 > X) {
|
---|
956 | return convert< Int32 ,byte>(X);
|
---|
957 | }
|
---|
958 | /// <summary>
|
---|
959 | /// Convert numeric array to logical array
|
---|
960 | /// </summary>
|
---|
961 | /// <param name="X">Input array </param>
|
---|
962 | /// <returns>Logical array</returns>
|
---|
963 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
964 | /// elements are converted to true, zero-elements are converted to false.
|
---|
965 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
966 | public static ILRetLogical tological(ILInArray< Int32 > X) {
|
---|
967 | return new ILRetLogical (convert< Int32 ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
968 | }
|
---|
969 | /// <summary>
|
---|
970 | /// Convert numeric array to Int32 array
|
---|
971 | /// </summary>
|
---|
972 | /// <param name="X">Input array </param>
|
---|
973 | /// <returns>Int32 array</returns>
|
---|
974 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
975 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
976 | public static ILRetArray<Int32> toint32(ILInArray< Int32 > X) {
|
---|
977 | return convert< Int32 ,Int32>(X);
|
---|
978 | }
|
---|
979 | /// <summary>
|
---|
980 | /// Convert numeric array to Int64 array
|
---|
981 | /// </summary>
|
---|
982 | /// <param name="X">Input array </param>
|
---|
983 | /// <returns>Int64 array</returns>
|
---|
984 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
985 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
986 | public static ILRetArray<Int64> toint64(ILInArray< Int32 > X) {
|
---|
987 | return convert< Int32 ,Int64>(X);
|
---|
988 | }
|
---|
989 | /// <summary>
|
---|
990 | /// Convert numeric array to double array
|
---|
991 | /// </summary>
|
---|
992 | /// <param name="X">Input array</param>
|
---|
993 | /// <returns>double array</returns>
|
---|
994 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
995 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
996 | public static ILRetArray<double> todouble(ILInArray< byte > X) {
|
---|
997 | return convert< byte ,double>(X);
|
---|
998 | }
|
---|
999 | /// <summary>
|
---|
1000 | /// Convert numeric array to float array
|
---|
1001 | /// </summary>
|
---|
1002 | /// <param name="X">Input array</param>
|
---|
1003 | /// <returns>float array</returns>
|
---|
1004 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
1005 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1006 | public static ILRetArray<float> tosingle(ILInArray< byte > X) {
|
---|
1007 | return convert< byte ,float>(X);
|
---|
1008 | }
|
---|
1009 | /// <summary>
|
---|
1010 | /// Convert numeric array to complex array
|
---|
1011 | /// </summary>
|
---|
1012 | /// <param name="X">Input array </param>
|
---|
1013 | /// <returns>complex array</returns>
|
---|
1014 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
1015 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
1016 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1017 | public static ILRetArray<complex> tocomplex(ILInArray< byte > X) {
|
---|
1018 | return convert< byte ,complex>(X);
|
---|
1019 | }
|
---|
1020 | /// <summary>
|
---|
1021 | /// Convert numeric array to fcomplex array
|
---|
1022 | /// </summary>
|
---|
1023 | /// <param name="X">Input array </param>
|
---|
1024 | /// <returns>fcomplex array</returns>
|
---|
1025 | /// <remarks>
|
---|
1026 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
1027 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
1028 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1029 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< byte > X) {
|
---|
1030 | return convert< byte ,fcomplex>(X);
|
---|
1031 | }
|
---|
1032 | /// <summary>
|
---|
1033 | /// Convert numeric array to byte array
|
---|
1034 | /// </summary>
|
---|
1035 | /// <param name="X">Input array </param>
|
---|
1036 | /// <returns>byte array</returns>
|
---|
1037 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
1038 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1039 | public static ILRetArray<byte> tobyte(ILInArray< byte > X) {
|
---|
1040 | return convert< byte ,byte>(X);
|
---|
1041 | }
|
---|
1042 | /// <summary>
|
---|
1043 | /// Convert numeric array to logical array
|
---|
1044 | /// </summary>
|
---|
1045 | /// <param name="X">Input array </param>
|
---|
1046 | /// <returns>Logical array</returns>
|
---|
1047 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
1048 | /// elements are converted to true, zero-elements are converted to false.
|
---|
1049 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1050 | public static ILRetLogical tological(ILInArray< byte > X) {
|
---|
1051 | return new ILRetLogical (convert< byte ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
1052 | }
|
---|
1053 | /// <summary>
|
---|
1054 | /// Convert numeric array to Int32 array
|
---|
1055 | /// </summary>
|
---|
1056 | /// <param name="X">Input array </param>
|
---|
1057 | /// <returns>Int32 array</returns>
|
---|
1058 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
1059 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1060 | public static ILRetArray<Int32> toint32(ILInArray< byte > X) {
|
---|
1061 | return convert< byte ,Int32>(X);
|
---|
1062 | }
|
---|
1063 | /// <summary>
|
---|
1064 | /// Convert numeric array to Int64 array
|
---|
1065 | /// </summary>
|
---|
1066 | /// <param name="X">Input array </param>
|
---|
1067 | /// <returns>Int64 array</returns>
|
---|
1068 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
1069 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1070 | public static ILRetArray<Int64> toint64(ILInArray< byte > X) {
|
---|
1071 | return convert< byte ,Int64>(X);
|
---|
1072 | }
|
---|
1073 | /// <summary>
|
---|
1074 | /// Convert numeric array to double array
|
---|
1075 | /// </summary>
|
---|
1076 | /// <param name="X">Input array</param>
|
---|
1077 | /// <returns>double array</returns>
|
---|
1078 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
1079 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1080 | public static ILRetArray<double> todouble(ILInArray< fcomplex > X) {
|
---|
1081 | return convert< fcomplex ,double>(X);
|
---|
1082 | }
|
---|
1083 | /// <summary>
|
---|
1084 | /// Convert numeric array to float array
|
---|
1085 | /// </summary>
|
---|
1086 | /// <param name="X">Input array</param>
|
---|
1087 | /// <returns>float array</returns>
|
---|
1088 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
1089 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1090 | public static ILRetArray<float> tosingle(ILInArray< fcomplex > X) {
|
---|
1091 | return convert< fcomplex ,float>(X);
|
---|
1092 | }
|
---|
1093 | /// <summary>
|
---|
1094 | /// Convert numeric array to complex array
|
---|
1095 | /// </summary>
|
---|
1096 | /// <param name="X">Input array </param>
|
---|
1097 | /// <returns>complex array</returns>
|
---|
1098 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
1099 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
1100 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1101 | public static ILRetArray<complex> tocomplex(ILInArray< fcomplex > X) {
|
---|
1102 | return convert< fcomplex ,complex>(X);
|
---|
1103 | }
|
---|
1104 | /// <summary>
|
---|
1105 | /// Convert numeric array to fcomplex array
|
---|
1106 | /// </summary>
|
---|
1107 | /// <param name="X">Input array </param>
|
---|
1108 | /// <returns>fcomplex array</returns>
|
---|
1109 | /// <remarks>
|
---|
1110 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
1111 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
1112 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1113 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< fcomplex > X) {
|
---|
1114 | return convert< fcomplex ,fcomplex>(X);
|
---|
1115 | }
|
---|
1116 | /// <summary>
|
---|
1117 | /// Convert numeric array to byte array
|
---|
1118 | /// </summary>
|
---|
1119 | /// <param name="X">Input array </param>
|
---|
1120 | /// <returns>byte array</returns>
|
---|
1121 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
1122 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1123 | public static ILRetArray<byte> tobyte(ILInArray< fcomplex > X) {
|
---|
1124 | return convert< fcomplex ,byte>(X);
|
---|
1125 | }
|
---|
1126 | /// <summary>
|
---|
1127 | /// Convert numeric array to logical array
|
---|
1128 | /// </summary>
|
---|
1129 | /// <param name="X">Input array </param>
|
---|
1130 | /// <returns>Logical array</returns>
|
---|
1131 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
1132 | /// elements are converted to true, zero-elements are converted to false.
|
---|
1133 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1134 | public static ILRetLogical tological(ILInArray< fcomplex > X) {
|
---|
1135 | return new ILRetLogical (convert< fcomplex ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
1136 | }
|
---|
1137 | /// <summary>
|
---|
1138 | /// Convert numeric array to Int32 array
|
---|
1139 | /// </summary>
|
---|
1140 | /// <param name="X">Input array </param>
|
---|
1141 | /// <returns>Int32 array</returns>
|
---|
1142 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
1143 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1144 | public static ILRetArray<Int32> toint32(ILInArray< fcomplex > X) {
|
---|
1145 | return convert< fcomplex ,Int32>(X);
|
---|
1146 | }
|
---|
1147 | /// <summary>
|
---|
1148 | /// Convert numeric array to Int64 array
|
---|
1149 | /// </summary>
|
---|
1150 | /// <param name="X">Input array </param>
|
---|
1151 | /// <returns>Int64 array</returns>
|
---|
1152 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
1153 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1154 | public static ILRetArray<Int64> toint64(ILInArray< fcomplex > X) {
|
---|
1155 | return convert< fcomplex ,Int64>(X);
|
---|
1156 | }
|
---|
1157 | /// <summary>
|
---|
1158 | /// Convert numeric array to double array
|
---|
1159 | /// </summary>
|
---|
1160 | /// <param name="X">Input array</param>
|
---|
1161 | /// <returns>double array</returns>
|
---|
1162 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
1163 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1164 | public static ILRetArray<double> todouble(ILInArray< complex > X) {
|
---|
1165 | return convert< complex ,double>(X);
|
---|
1166 | }
|
---|
1167 | /// <summary>
|
---|
1168 | /// Convert numeric array to float array
|
---|
1169 | /// </summary>
|
---|
1170 | /// <param name="X">Input array</param>
|
---|
1171 | /// <returns>float array</returns>
|
---|
1172 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
1173 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1174 | public static ILRetArray<float> tosingle(ILInArray< complex > X) {
|
---|
1175 | return convert< complex ,float>(X);
|
---|
1176 | }
|
---|
1177 | /// <summary>
|
---|
1178 | /// Convert numeric array to complex array
|
---|
1179 | /// </summary>
|
---|
1180 | /// <param name="X">Input array </param>
|
---|
1181 | /// <returns>complex array</returns>
|
---|
1182 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
1183 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
1184 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1185 | public static ILRetArray<complex> tocomplex(ILInArray< complex > X) {
|
---|
1186 | return convert< complex ,complex>(X);
|
---|
1187 | }
|
---|
1188 | /// <summary>
|
---|
1189 | /// Convert numeric array to fcomplex array
|
---|
1190 | /// </summary>
|
---|
1191 | /// <param name="X">Input array </param>
|
---|
1192 | /// <returns>fcomplex array</returns>
|
---|
1193 | /// <remarks>
|
---|
1194 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
1195 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
1196 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1197 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< complex > X) {
|
---|
1198 | return convert< complex ,fcomplex>(X);
|
---|
1199 | }
|
---|
1200 | /// <summary>
|
---|
1201 | /// Convert numeric array to byte array
|
---|
1202 | /// </summary>
|
---|
1203 | /// <param name="X">Input array </param>
|
---|
1204 | /// <returns>byte array</returns>
|
---|
1205 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
1206 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1207 | public static ILRetArray<byte> tobyte(ILInArray< complex > X) {
|
---|
1208 | return convert< complex ,byte>(X);
|
---|
1209 | }
|
---|
1210 | /// <summary>
|
---|
1211 | /// Convert numeric array to logical array
|
---|
1212 | /// </summary>
|
---|
1213 | /// <param name="X">Input array </param>
|
---|
1214 | /// <returns>Logical array</returns>
|
---|
1215 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
1216 | /// elements are converted to true, zero-elements are converted to false.
|
---|
1217 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1218 | public static ILRetLogical tological(ILInArray< complex > X) {
|
---|
1219 | return new ILRetLogical (convert< complex ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
1220 | }
|
---|
1221 | /// <summary>
|
---|
1222 | /// Convert numeric array to Int32 array
|
---|
1223 | /// </summary>
|
---|
1224 | /// <param name="X">Input array </param>
|
---|
1225 | /// <returns>Int32 array</returns>
|
---|
1226 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
1227 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1228 | public static ILRetArray<Int32> toint32(ILInArray< complex > X) {
|
---|
1229 | return convert< complex ,Int32>(X);
|
---|
1230 | }
|
---|
1231 | /// <summary>
|
---|
1232 | /// Convert numeric array to Int64 array
|
---|
1233 | /// </summary>
|
---|
1234 | /// <param name="X">Input array </param>
|
---|
1235 | /// <returns>Int64 array</returns>
|
---|
1236 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
1237 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1238 | public static ILRetArray<Int64> toint64(ILInArray< complex > X) {
|
---|
1239 | return convert< complex ,Int64>(X);
|
---|
1240 | }
|
---|
1241 | /// <summary>
|
---|
1242 | /// Convert numeric array to double array
|
---|
1243 | /// </summary>
|
---|
1244 | /// <param name="X">Input array</param>
|
---|
1245 | /// <returns>double array</returns>
|
---|
1246 | /// <remarks><para>The function converts elements of X to double using standard explicit system conversions.
|
---|
1247 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1248 | public static ILRetArray<double> todouble(ILInArray< float > X) {
|
---|
1249 | return convert< float ,double>(X);
|
---|
1250 | }
|
---|
1251 | /// <summary>
|
---|
1252 | /// Convert numeric array to float array
|
---|
1253 | /// </summary>
|
---|
1254 | /// <param name="X">Input array</param>
|
---|
1255 | /// <returns>float array</returns>
|
---|
1256 | /// <remarks><para>The new array converts elements of X to float using standard explicit system conversions.
|
---|
1257 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1258 | public static ILRetArray<float> tosingle(ILInArray< float > X) {
|
---|
1259 | return convert< float ,float>(X);
|
---|
1260 | }
|
---|
1261 | /// <summary>
|
---|
1262 | /// Convert numeric array to complex array
|
---|
1263 | /// </summary>
|
---|
1264 | /// <param name="X">Input array </param>
|
---|
1265 | /// <returns>complex array</returns>
|
---|
1266 | /// <remarks><para>Real input arrays will be converted to the real part of the complex array returned.</para>
|
---|
1267 | /// <para>The function converts elements of X to complex using standard explicit system conversions.
|
---|
1268 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1269 | public static ILRetArray<complex> tocomplex(ILInArray< float > X) {
|
---|
1270 | return convert< float ,complex>(X);
|
---|
1271 | }
|
---|
1272 | /// <summary>
|
---|
1273 | /// Convert numeric array to fcomplex array
|
---|
1274 | /// </summary>
|
---|
1275 | /// <param name="X">Input array </param>
|
---|
1276 | /// <returns>fcomplex array</returns>
|
---|
1277 | /// <remarks>
|
---|
1278 | /// <para>Real input arrays are converted to the real part of the complex array returned.</para>
|
---|
1279 | /// <para>The function converts elements of X to fcomplex using standard explicit system conversions.
|
---|
1280 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1281 | public static ILRetArray<fcomplex> tofcomplex(ILInArray< float > X) {
|
---|
1282 | return convert< float ,fcomplex>(X);
|
---|
1283 | }
|
---|
1284 | /// <summary>
|
---|
1285 | /// Convert numeric array to byte array
|
---|
1286 | /// </summary>
|
---|
1287 | /// <param name="X">Input array </param>
|
---|
1288 | /// <returns>byte array</returns>
|
---|
1289 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions.
|
---|
1290 | /// The new array uses new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1291 | public static ILRetArray<byte> tobyte(ILInArray< float > X) {
|
---|
1292 | return convert< float ,byte>(X);
|
---|
1293 | }
|
---|
1294 | /// <summary>
|
---|
1295 | /// Convert numeric array to logical array
|
---|
1296 | /// </summary>
|
---|
1297 | /// <param name="X">Input array </param>
|
---|
1298 | /// <returns>Logical array</returns>
|
---|
1299 | /// <remarks><para>The function converts elements of X to byte using standard explicit system conversions. Non-zero
|
---|
1300 | /// elements are converted to true, zero-elements are converted to false.
|
---|
1301 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1302 | public static ILRetLogical tological(ILInArray< float > X) {
|
---|
1303 | return new ILRetLogical (convert< float ,byte>(X).Storage as ILDenseStorage<byte>);
|
---|
1304 | }
|
---|
1305 | /// <summary>
|
---|
1306 | /// Convert numeric array to Int32 array
|
---|
1307 | /// </summary>
|
---|
1308 | /// <param name="X">Input array </param>
|
---|
1309 | /// <returns>Int32 array</returns>
|
---|
1310 | /// <remarks><para>The function converts elements of X to Int32 using standard explicit system conversions.
|
---|
1311 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1312 | public static ILRetArray<Int32> toint32(ILInArray< float > X) {
|
---|
1313 | return convert< float ,Int32>(X);
|
---|
1314 | }
|
---|
1315 | /// <summary>
|
---|
1316 | /// Convert numeric array to Int64 array
|
---|
1317 | /// </summary>
|
---|
1318 | /// <param name="X">Input array </param>
|
---|
1319 | /// <returns>Int64 array</returns>
|
---|
1320 | /// <remarks><para>The function converts elements of X to Int64 using standard explicit system conversions.
|
---|
1321 | /// The new array will always use new memory, even if the incoming type is the same as the output type.</para></remarks>
|
---|
1322 | public static ILRetArray<Int64> toint64(ILInArray< float > X) {
|
---|
1323 | return convert< float ,Int64>(X);
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1327 |
|
---|
1328 | |
---|
1329 |
|
---|
1330 | /// <summary>
|
---|
1331 | /// convert arbitrary numeric array to double array
|
---|
1332 | /// </summary>
|
---|
1333 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1334 | /// <returns>double array</returns>
|
---|
1335 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1336 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1337 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1338 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1339 | /// arrays have the same element type.</para>
|
---|
1340 | /// </remarks>
|
---|
1341 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1342 | /// not of any supported numeric type</exception>
|
---|
1343 | public static ILRetArray< double> todouble(ILBaseArray X) {
|
---|
1344 | using (ILScope.Enter(X)) {
|
---|
1345 | if (X is ILDenseArray<double>)
|
---|
1346 | return convert<double, double>((X as ILDenseArray<double>).C);
|
---|
1347 | else if (X is ILDenseArray<float>)
|
---|
1348 | return convert<float, double>((X as ILDenseArray<float>).C);
|
---|
1349 | else if (X is ILDenseArray<complex>)
|
---|
1350 | return convert<complex, double>((X as ILDenseArray<complex>).C);
|
---|
1351 | else if (X is ILDenseArray<fcomplex>)
|
---|
1352 | return convert<fcomplex, double>((X as ILDenseArray<fcomplex>).C);
|
---|
1353 | else if (X is ILDenseArray<byte>)
|
---|
1354 | return convert<byte, double>((X as ILDenseArray<byte>).C);
|
---|
1355 | else if (X is ILDenseArray<Int32>)
|
---|
1356 | return convert<Int32, double>((X as ILDenseArray<Int32>).C);
|
---|
1357 | else if (X is ILDenseArray<Int64>)
|
---|
1358 | return convert<Int64, double>((X as ILDenseArray<Int64>).C);
|
---|
1359 | else
|
---|
1360 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1361 | }
|
---|
1362 | }
|
---|
1363 | |
---|
1364 | #region HYCALPER AUTO GENERATED CODE
|
---|
1365 | |
---|
1366 |
|
---|
1367 | /// <summary>convert arbitrary numeric array to Int64 array</summary>
|
---|
1368 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1369 | /// <returns>Int64 array</returns>
|
---|
1370 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1371 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1372 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1373 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1374 | /// arrays have the same element type.</para>
|
---|
1375 | /// </remarks>
|
---|
1376 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1377 | /// not of any supported numeric type</exception>
|
---|
1378 | public static ILRetArray< Int64> toint64(ILBaseArray X) {
|
---|
1379 | using (ILScope.Enter(X)) {
|
---|
1380 | if (X is ILDenseArray<double>)
|
---|
1381 | return convert<double, Int64>((X as ILDenseArray<double>).C);
|
---|
1382 | else if (X is ILDenseArray<float>)
|
---|
1383 | return convert<float, Int64>((X as ILDenseArray<float>).C);
|
---|
1384 | else if (X is ILDenseArray<complex>)
|
---|
1385 | return convert<complex, Int64>((X as ILDenseArray<complex>).C);
|
---|
1386 | else if (X is ILDenseArray<fcomplex>)
|
---|
1387 | return convert<fcomplex, Int64>((X as ILDenseArray<fcomplex>).C);
|
---|
1388 | else if (X is ILDenseArray<byte>)
|
---|
1389 | return convert<byte, Int64>((X as ILDenseArray<byte>).C);
|
---|
1390 | else if (X is ILDenseArray<Int32>)
|
---|
1391 | return convert<Int32, Int64>((X as ILDenseArray<Int32>).C);
|
---|
1392 | else if (X is ILDenseArray<Int64>)
|
---|
1393 | return convert<Int64, Int64>((X as ILDenseArray<Int64>).C);
|
---|
1394 | else
|
---|
1395 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1396 | }
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | /// <summary>convert arbitrary numeric array to Int32 array</summary>
|
---|
1400 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1401 | /// <returns>Int32 array</returns>
|
---|
1402 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1403 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1404 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1405 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1406 | /// arrays have the same element type.</para>
|
---|
1407 | /// </remarks>
|
---|
1408 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1409 | /// not of any supported numeric type</exception>
|
---|
1410 | public static ILRetArray< Int32> toint32(ILBaseArray X) {
|
---|
1411 | using (ILScope.Enter(X)) {
|
---|
1412 | if (X is ILDenseArray<double>)
|
---|
1413 | return convert<double, Int32>((X as ILDenseArray<double>).C);
|
---|
1414 | else if (X is ILDenseArray<float>)
|
---|
1415 | return convert<float, Int32>((X as ILDenseArray<float>).C);
|
---|
1416 | else if (X is ILDenseArray<complex>)
|
---|
1417 | return convert<complex, Int32>((X as ILDenseArray<complex>).C);
|
---|
1418 | else if (X is ILDenseArray<fcomplex>)
|
---|
1419 | return convert<fcomplex, Int32>((X as ILDenseArray<fcomplex>).C);
|
---|
1420 | else if (X is ILDenseArray<byte>)
|
---|
1421 | return convert<byte, Int32>((X as ILDenseArray<byte>).C);
|
---|
1422 | else if (X is ILDenseArray<Int32>)
|
---|
1423 | return convert<Int32, Int32>((X as ILDenseArray<Int32>).C);
|
---|
1424 | else if (X is ILDenseArray<Int64>)
|
---|
1425 | return convert<Int64, Int32>((X as ILDenseArray<Int64>).C);
|
---|
1426 | else
|
---|
1427 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1428 | }
|
---|
1429 | }
|
---|
1430 |
|
---|
1431 | /// <summary>convert arbitrary numeric array to byte array</summary>
|
---|
1432 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1433 | /// <returns>byte array</returns>
|
---|
1434 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1435 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1436 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1437 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1438 | /// arrays have the same element type.</para>
|
---|
1439 | /// </remarks>
|
---|
1440 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1441 | /// not of any supported numeric type</exception>
|
---|
1442 | public static ILRetArray< byte> tobyte(ILBaseArray X) {
|
---|
1443 | using (ILScope.Enter(X)) {
|
---|
1444 | if (X is ILDenseArray<double>)
|
---|
1445 | return convert<double, byte>((X as ILDenseArray<double>).C);
|
---|
1446 | else if (X is ILDenseArray<float>)
|
---|
1447 | return convert<float, byte>((X as ILDenseArray<float>).C);
|
---|
1448 | else if (X is ILDenseArray<complex>)
|
---|
1449 | return convert<complex, byte>((X as ILDenseArray<complex>).C);
|
---|
1450 | else if (X is ILDenseArray<fcomplex>)
|
---|
1451 | return convert<fcomplex, byte>((X as ILDenseArray<fcomplex>).C);
|
---|
1452 | else if (X is ILDenseArray<byte>)
|
---|
1453 | return convert<byte, byte>((X as ILDenseArray<byte>).C);
|
---|
1454 | else if (X is ILDenseArray<Int32>)
|
---|
1455 | return convert<Int32, byte>((X as ILDenseArray<Int32>).C);
|
---|
1456 | else if (X is ILDenseArray<Int64>)
|
---|
1457 | return convert<Int64, byte>((X as ILDenseArray<Int64>).C);
|
---|
1458 | else
|
---|
1459 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1460 | }
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | /// <summary>convert arbitrary numeric array to fcomplex array</summary>
|
---|
1464 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1465 | /// <returns>fcomplex array</returns>
|
---|
1466 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1467 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1468 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1469 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1470 | /// arrays have the same element type.</para>
|
---|
1471 | /// </remarks>
|
---|
1472 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1473 | /// not of any supported numeric type</exception>
|
---|
1474 | public static ILRetArray< fcomplex> tofcomplex(ILBaseArray X) {
|
---|
1475 | using (ILScope.Enter(X)) {
|
---|
1476 | if (X is ILDenseArray<double>)
|
---|
1477 | return convert<double, fcomplex>((X as ILDenseArray<double>).C);
|
---|
1478 | else if (X is ILDenseArray<float>)
|
---|
1479 | return convert<float, fcomplex>((X as ILDenseArray<float>).C);
|
---|
1480 | else if (X is ILDenseArray<complex>)
|
---|
1481 | return convert<complex, fcomplex>((X as ILDenseArray<complex>).C);
|
---|
1482 | else if (X is ILDenseArray<fcomplex>)
|
---|
1483 | return convert<fcomplex, fcomplex>((X as ILDenseArray<fcomplex>).C);
|
---|
1484 | else if (X is ILDenseArray<byte>)
|
---|
1485 | return convert<byte, fcomplex>((X as ILDenseArray<byte>).C);
|
---|
1486 | else if (X is ILDenseArray<Int32>)
|
---|
1487 | return convert<Int32, fcomplex>((X as ILDenseArray<Int32>).C);
|
---|
1488 | else if (X is ILDenseArray<Int64>)
|
---|
1489 | return convert<Int64, fcomplex>((X as ILDenseArray<Int64>).C);
|
---|
1490 | else
|
---|
1491 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1492 | }
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 | /// <summary>convert arbitrary numeric array to complex array</summary>
|
---|
1496 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1497 | /// <returns>complex array</returns>
|
---|
1498 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1499 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1500 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1501 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1502 | /// arrays have the same element type.</para>
|
---|
1503 | /// </remarks>
|
---|
1504 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1505 | /// not of any supported numeric type</exception>
|
---|
1506 | public static ILRetArray< complex> tocomplex(ILBaseArray X) {
|
---|
1507 | using (ILScope.Enter(X)) {
|
---|
1508 | if (X is ILDenseArray<double>)
|
---|
1509 | return convert<double, complex>((X as ILDenseArray<double>).C);
|
---|
1510 | else if (X is ILDenseArray<float>)
|
---|
1511 | return convert<float, complex>((X as ILDenseArray<float>).C);
|
---|
1512 | else if (X is ILDenseArray<complex>)
|
---|
1513 | return convert<complex, complex>((X as ILDenseArray<complex>).C);
|
---|
1514 | else if (X is ILDenseArray<fcomplex>)
|
---|
1515 | return convert<fcomplex, complex>((X as ILDenseArray<fcomplex>).C);
|
---|
1516 | else if (X is ILDenseArray<byte>)
|
---|
1517 | return convert<byte, complex>((X as ILDenseArray<byte>).C);
|
---|
1518 | else if (X is ILDenseArray<Int32>)
|
---|
1519 | return convert<Int32, complex>((X as ILDenseArray<Int32>).C);
|
---|
1520 | else if (X is ILDenseArray<Int64>)
|
---|
1521 | return convert<Int64, complex>((X as ILDenseArray<Int64>).C);
|
---|
1522 | else
|
---|
1523 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1524 | }
|
---|
1525 | }
|
---|
1526 |
|
---|
1527 | /// <summary>convert arbitrary numeric array to float array</summary>
|
---|
1528 | /// <param name="X">numeric array, one of supported numeric type</param>
|
---|
1529 | /// <returns>float array</returns>
|
---|
1530 | /// <remarks>This function enables to convert arbitrary numeric (dense) arrays to a known output array type
|
---|
1531 | /// - without knowing the concrete numeric type of the source. Supported element types include: double,
|
---|
1532 | /// float, complex, fcomplex, byte, logical, Int32, Int64.
|
---|
1533 | /// <para>This function will always create new memory for the new array, even if both
|
---|
1534 | /// arrays have the same element type.</para>
|
---|
1535 | /// </remarks>
|
---|
1536 | /// <exception cref="ILNumerics.Exceptions.ILArgumentException">if elements of X are
|
---|
1537 | /// not of any supported numeric type</exception>
|
---|
1538 | public static ILRetArray< float> tosingle(ILBaseArray X) {
|
---|
1539 | using (ILScope.Enter(X)) {
|
---|
1540 | if (X is ILDenseArray<double>)
|
---|
1541 | return convert<double, float>((X as ILDenseArray<double>).C);
|
---|
1542 | else if (X is ILDenseArray<float>)
|
---|
1543 | return convert<float, float>((X as ILDenseArray<float>).C);
|
---|
1544 | else if (X is ILDenseArray<complex>)
|
---|
1545 | return convert<complex, float>((X as ILDenseArray<complex>).C);
|
---|
1546 | else if (X is ILDenseArray<fcomplex>)
|
---|
1547 | return convert<fcomplex, float>((X as ILDenseArray<fcomplex>).C);
|
---|
1548 | else if (X is ILDenseArray<byte>)
|
---|
1549 | return convert<byte, float>((X as ILDenseArray<byte>).C);
|
---|
1550 | else if (X is ILDenseArray<Int32>)
|
---|
1551 | return convert<Int32, float>((X as ILDenseArray<Int32>).C);
|
---|
1552 | else if (X is ILDenseArray<Int64>)
|
---|
1553 | return convert<Int64, float>((X as ILDenseArray<Int64>).C);
|
---|
1554 | else
|
---|
1555 | throw new ILArgumentException("input type not supported: " + X.GetType().Name);
|
---|
1556 | }
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1560 |
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | }
|
---|