1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 | using ILNumerics.Storage;
|
---|
46 | using ILNumerics.Misc;
|
---|
47 |
|
---|
48 |
|
---|
49 | namespace ILNumerics {
|
---|
50 | public partial class ILMath {
|
---|
51 |
|
---|
52 | |
---|
53 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
54 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
55 | /// <param name="A">Input array A</param>
|
---|
56 | /// <param name="B">Input array B</param>
|
---|
57 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
58 | /// <item>
|
---|
59 | /// <term>size(A) == size(B)</term>
|
---|
60 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
61 | /// </item>
|
---|
62 | /// <item>
|
---|
63 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
64 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
65 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
66 | /// </item>
|
---|
67 | /// <item>
|
---|
68 | /// <term>All other cases</term>
|
---|
69 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
70 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
71 | /// </item>
|
---|
72 | /// </list></returns>
|
---|
73 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
74 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
75 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
76 | public unsafe static ILRetArray<double> apply(Func<double, double, double> func, ILInArray<double> A, ILInArray<double> B) {
|
---|
77 | using (ILScope.Enter(A, B)) {
|
---|
78 | int outLen;
|
---|
79 | BinOpItMode mode;
|
---|
80 |
|
---|
81 | double[] retArr;
|
---|
82 |
|
---|
83 | double[] arrA = A.GetArrayForRead();
|
---|
84 |
|
---|
85 | double[] arrB = B.GetArrayForRead();
|
---|
86 | ILSize outDims;
|
---|
87 | #region determine operation mode
|
---|
88 | if (A.IsScalar) {
|
---|
89 | outDims = B.Size;
|
---|
90 | if (B.IsScalar) {
|
---|
91 |
|
---|
92 | return new ILRetArray<double>(new double[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
93 | } else if (B.IsEmpty) {
|
---|
94 | return ILRetArray<double>.empty(outDims);
|
---|
95 | } else {
|
---|
96 | outLen = outDims.NumberOfElements;
|
---|
97 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
98 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
99 | mode = BinOpItMode.SAN;
|
---|
100 | } else {
|
---|
101 | mode = BinOpItMode.SAI;
|
---|
102 | }
|
---|
103 | }
|
---|
104 | } else {
|
---|
105 | outDims = A.Size;
|
---|
106 | if (B.IsScalar) {
|
---|
107 | if (A.IsEmpty) {
|
---|
108 | return ILRetArray<double>.empty(A.Size);
|
---|
109 | }
|
---|
110 | outLen = A.S.NumberOfElements;
|
---|
111 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
112 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
113 | mode = BinOpItMode.ASN;
|
---|
114 | } else {
|
---|
115 | mode = BinOpItMode.ASI;
|
---|
116 | }
|
---|
117 | } else {
|
---|
118 | // array + array
|
---|
119 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
120 | return applyEx(func,A,B);
|
---|
121 | }
|
---|
122 | outLen = A.S.NumberOfElements;
|
---|
123 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
124 | mode = BinOpItMode.AAIA;
|
---|
125 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
126 | mode = BinOpItMode.AAIB;
|
---|
127 | } else {
|
---|
128 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
129 | mode = BinOpItMode.AAN;
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|
133 | #endregion
|
---|
134 | ILDenseStorage<double> retStorage = new ILDenseStorage<double>(retArr, outDims);
|
---|
135 | int i = 0, workerCount = 1;
|
---|
136 | Action<object> worker = data => {
|
---|
137 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
138 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
139 |
|
---|
140 | double* cLast, cp = (double*)range.Item5 + range.Item1;
|
---|
141 |
|
---|
142 | double scalar;
|
---|
143 | cLast = cp + range.Item2;
|
---|
144 | #region loops
|
---|
145 | switch (mode) {
|
---|
146 | case BinOpItMode.AAIA:
|
---|
147 |
|
---|
148 | double* bp = ((double*)range.Item4 + range.Item1);
|
---|
149 | while (cp < cLast) {
|
---|
150 |
|
---|
151 | *cp = func(*cp, *bp++);
|
---|
152 | cp++;
|
---|
153 | }
|
---|
154 | break;
|
---|
155 | case BinOpItMode.AAIB:
|
---|
156 |
|
---|
157 | double* ap = ((double*)range.Item3 + range.Item1);
|
---|
158 | while (cp < cLast) {
|
---|
159 |
|
---|
160 | *cp = func(*ap++, *cp);
|
---|
161 | cp++;
|
---|
162 |
|
---|
163 | }
|
---|
164 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
165 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
166 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
167 | //}
|
---|
168 | //int ie = range.Item1 + range.Item2-1;
|
---|
169 | //double[] locRetArr = retArr;
|
---|
170 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
171 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
172 | // if (i2 >= ie) break;
|
---|
173 | //}
|
---|
174 |
|
---|
175 | break;
|
---|
176 | case BinOpItMode.AAN:
|
---|
177 | ap = ((double*)range.Item3 + range.Item1);
|
---|
178 | bp = ((double*)range.Item4 + range.Item1);
|
---|
179 | while (cp < cLast) {
|
---|
180 |
|
---|
181 | *cp++ = func(*ap++, *bp++);
|
---|
182 | }
|
---|
183 | break;
|
---|
184 | case BinOpItMode.ASI:
|
---|
185 | scalar = *((double*)range.Item4);
|
---|
186 | while (cp < cLast) {
|
---|
187 |
|
---|
188 | *cp = func(*cp, scalar);
|
---|
189 | cp++;
|
---|
190 | }
|
---|
191 | break;
|
---|
192 | case BinOpItMode.ASN:
|
---|
193 | ap = ((double*)range.Item3 + range.Item1);
|
---|
194 | scalar = *((double*)range.Item4);
|
---|
195 | while (cp < cLast) {
|
---|
196 |
|
---|
197 | *cp++ = func(*ap++, scalar);
|
---|
198 | }
|
---|
199 | break;
|
---|
200 | case BinOpItMode.SAI:
|
---|
201 | scalar = *((double*)range.Item3);
|
---|
202 | while (cp < cLast) {
|
---|
203 |
|
---|
204 | *cp = func(scalar, *cp);
|
---|
205 | cp++;
|
---|
206 | }
|
---|
207 | break;
|
---|
208 | case BinOpItMode.SAN:
|
---|
209 | scalar = *((double*)range.Item3);
|
---|
210 | bp = ((double*)range.Item4 + range.Item1);
|
---|
211 | while (cp < cLast) {
|
---|
212 |
|
---|
213 | *cp++ = func(scalar, *bp++);
|
---|
214 | }
|
---|
215 | break;
|
---|
216 | default:
|
---|
217 | break;
|
---|
218 | }
|
---|
219 | #endregion
|
---|
220 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
221 | //retStorage.PendingEvents.Signal();
|
---|
222 | };
|
---|
223 |
|
---|
224 | #region do the work
|
---|
225 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
226 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
227 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
228 | workItemLength = outLen / workItemCount;
|
---|
229 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
230 | } else {
|
---|
231 | workItemLength = outLen / 2;
|
---|
232 | workItemCount = 2;
|
---|
233 | }
|
---|
234 | } else {
|
---|
235 | workItemLength = outLen;
|
---|
236 | workItemCount = 1;
|
---|
237 | }
|
---|
238 |
|
---|
239 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
240 |
|
---|
241 | fixed ( double* arrAP = arrA)
|
---|
242 | fixed ( double* arrBP = arrB)
|
---|
243 | fixed ( double* retArrP = retArr) {
|
---|
244 |
|
---|
245 | for (; i < workItemCount - 1; i++) {
|
---|
246 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
247 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
248 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
249 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
250 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
251 | }
|
---|
252 | // the last (or may the only) chunk is done right here
|
---|
253 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
254 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
255 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
256 |
|
---|
257 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
258 | return workerCount <= 0;
|
---|
259 | });
|
---|
260 | //while (workerCount > 0) ;
|
---|
261 | }
|
---|
262 |
|
---|
263 | #endregion
|
---|
264 | return new ILRetArray<double>(retStorage);
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 | private static unsafe ILRetArray<double> applyEx(Func<double, double, double> applyFunc, ILInArray<double> A, ILInArray<double> B) {
|
---|
269 | #region parameter checking
|
---|
270 | if (isnull(A) || isnull(B))
|
---|
271 | return empty<double>(ILSize.Empty00);
|
---|
272 | if (A.IsEmpty) {
|
---|
273 | return empty<double>(B.S);
|
---|
274 | } else if (B.IsEmpty) {
|
---|
275 | return empty<double>(A.S);
|
---|
276 | }
|
---|
277 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
278 | // return add(A,B);
|
---|
279 | int dim = -1;
|
---|
280 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
281 | if (A.S[_L] != B.S[_L]) {
|
---|
282 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
283 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
284 | }
|
---|
285 | dim = _L;
|
---|
286 | }
|
---|
287 | }
|
---|
288 | if (dim > 1)
|
---|
289 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
290 | #endregion
|
---|
291 |
|
---|
292 | #region parameter preparation
|
---|
293 |
|
---|
294 |
|
---|
295 | double[] retArr;
|
---|
296 |
|
---|
297 |
|
---|
298 | double[] arrA = A.GetArrayForRead();
|
---|
299 |
|
---|
300 |
|
---|
301 | double[] arrB = B.GetArrayForRead();
|
---|
302 | ILSize outDims;
|
---|
303 | BinOptItExMode mode;
|
---|
304 | int arrInc = 0;
|
---|
305 | int arrStepInc = 0;
|
---|
306 | int dimLen = 0;
|
---|
307 | if (A.IsVector) {
|
---|
308 | outDims = B.S;
|
---|
309 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
310 | retArr = ILMemoryPool.Pool.New<double>(outDims.NumberOfElements);
|
---|
311 | mode = BinOptItExMode.VAN;
|
---|
312 | } else {
|
---|
313 | mode = BinOptItExMode.VAI;
|
---|
314 | }
|
---|
315 | dimLen = A.Length;
|
---|
316 | } else if (B.IsVector) {
|
---|
317 | outDims = A.S;
|
---|
318 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
319 | retArr = ILMemoryPool.Pool.New<double>(outDims.NumberOfElements);
|
---|
320 | mode = BinOptItExMode.AVN;
|
---|
321 | } else {
|
---|
322 | mode = BinOptItExMode.AVI;
|
---|
323 | }
|
---|
324 | dimLen = B.Length;
|
---|
325 | } else {
|
---|
326 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
327 | }
|
---|
328 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
329 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
330 | #endregion
|
---|
331 |
|
---|
332 | #region worker loops definition
|
---|
333 | ILDenseStorage<double> retStorage = new ILDenseStorage<double>(retArr, outDims);
|
---|
334 | int workerCount = 1;
|
---|
335 | Action<object> worker = data => {
|
---|
336 | // expects: iStart, iLen, ap, bp, cp
|
---|
337 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
338 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
339 |
|
---|
340 | double* ap;
|
---|
341 |
|
---|
342 | double* bp;
|
---|
343 |
|
---|
344 | double* cp;
|
---|
345 | switch (mode) {
|
---|
346 | case BinOptItExMode.VAN:
|
---|
347 | for (int s = 0; s < range.Item2; s++) {
|
---|
348 | ap = (double*)range.Item3;
|
---|
349 | bp = (double*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
350 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
351 | for (int l = 0; l < dimLen; l++) {
|
---|
352 |
|
---|
353 | *cp = applyFunc(*ap, *bp);
|
---|
354 | ap++;
|
---|
355 | bp += arrInc;
|
---|
356 | cp += arrInc;
|
---|
357 | }
|
---|
358 | }
|
---|
359 | break;
|
---|
360 | case BinOptItExMode.VAI:
|
---|
361 | for (int s = 0; s < range.Item2; s++) {
|
---|
362 | ap = (double*)range.Item3;
|
---|
363 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
364 | for (int l = 0; l < dimLen; l++) {
|
---|
365 |
|
---|
366 | *cp = applyFunc(*ap, *cp);
|
---|
367 | ap++;
|
---|
368 | cp += arrInc;
|
---|
369 | }
|
---|
370 | }
|
---|
371 | break;
|
---|
372 | case BinOptItExMode.AVN:
|
---|
373 | for (int s = 0; s < range.Item2; s++) {
|
---|
374 | ap = (double*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
375 | bp = (double*)range.Item4;
|
---|
376 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
377 | for (int l = 0; l < dimLen; l++) {
|
---|
378 |
|
---|
379 | *cp = applyFunc(*ap, *bp);
|
---|
380 | ap += arrInc;
|
---|
381 | bp++;
|
---|
382 | cp += arrInc;
|
---|
383 | }
|
---|
384 | }
|
---|
385 | break;
|
---|
386 | case BinOptItExMode.AVI:
|
---|
387 | for (int s = 0; s < range.Item2; s++) {
|
---|
388 | bp = (double*)range.Item4;
|
---|
389 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
390 | for (int l = 0; l < dimLen; l++) {
|
---|
391 |
|
---|
392 | *cp = applyFunc(*cp, *bp);
|
---|
393 | bp++;
|
---|
394 | cp += arrInc;
|
---|
395 | }
|
---|
396 | }
|
---|
397 | break;
|
---|
398 | }
|
---|
399 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
400 | };
|
---|
401 | #endregion
|
---|
402 |
|
---|
403 | #region work distribution
|
---|
404 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
405 | int outLen = outDims.NumberOfElements;
|
---|
406 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
407 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
408 | workItemLength = outLen / dimLen / workItemCount;
|
---|
409 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
410 | } else {
|
---|
411 | workItemLength = outLen / dimLen / 2;
|
---|
412 | workItemCount = 2;
|
---|
413 | }
|
---|
414 | } else {
|
---|
415 | workItemLength = outLen / dimLen;
|
---|
416 | workItemCount = 1;
|
---|
417 | }
|
---|
418 |
|
---|
419 | fixed (double* arrAP = arrA)
|
---|
420 | fixed (double* arrBP = arrB)
|
---|
421 | fixed (double* retArrP = retArr) {
|
---|
422 |
|
---|
423 | for (; i < workItemCount - 1; i++) {
|
---|
424 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
425 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
426 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
427 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
428 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
429 | }
|
---|
430 | // the last (or may the only) chunk is done right here
|
---|
431 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
432 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
433 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
434 |
|
---|
435 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
436 | }
|
---|
437 | #endregion
|
---|
438 |
|
---|
439 | return new ILRetArray<double>(retStorage);
|
---|
440 | }
|
---|
441 | |
---|
442 | #region HYCALPER AUTO GENERATED CODE
|
---|
443 | |
---|
444 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
445 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
446 | /// <param name="A">Input array A</param>
|
---|
447 | /// <param name="B">Input array B</param>
|
---|
448 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
449 | /// <item>
|
---|
450 | /// <term>size(A) == size(B)</term>
|
---|
451 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
452 | /// </item>
|
---|
453 | /// <item>
|
---|
454 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
455 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
456 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
457 | /// </item>
|
---|
458 | /// <item>
|
---|
459 | /// <term>All other cases</term>
|
---|
460 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
461 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
462 | /// </item>
|
---|
463 | /// </list></returns>
|
---|
464 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
465 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
466 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
467 | public unsafe static ILRetArray<float> apply(Func<float, float, float> func, ILInArray<float> A, ILInArray<float> B) {
|
---|
468 | using (ILScope.Enter(A, B)) {
|
---|
469 | int outLen;
|
---|
470 | BinOpItMode mode;
|
---|
471 |
|
---|
472 | float[] retArr;
|
---|
473 |
|
---|
474 | float[] arrA = A.GetArrayForRead();
|
---|
475 |
|
---|
476 | float[] arrB = B.GetArrayForRead();
|
---|
477 | ILSize outDims;
|
---|
478 | #region determine operation mode
|
---|
479 | if (A.IsScalar) {
|
---|
480 | outDims = B.Size;
|
---|
481 | if (B.IsScalar) {
|
---|
482 |
|
---|
483 | return new ILRetArray<float>(new float[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
484 | } else if (B.IsEmpty) {
|
---|
485 | return ILRetArray<float>.empty(outDims);
|
---|
486 | } else {
|
---|
487 | outLen = outDims.NumberOfElements;
|
---|
488 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
489 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
490 | mode = BinOpItMode.SAN;
|
---|
491 | } else {
|
---|
492 | mode = BinOpItMode.SAI;
|
---|
493 | }
|
---|
494 | }
|
---|
495 | } else {
|
---|
496 | outDims = A.Size;
|
---|
497 | if (B.IsScalar) {
|
---|
498 | if (A.IsEmpty) {
|
---|
499 | return ILRetArray<float>.empty(A.Size);
|
---|
500 | }
|
---|
501 | outLen = A.S.NumberOfElements;
|
---|
502 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
503 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
504 | mode = BinOpItMode.ASN;
|
---|
505 | } else {
|
---|
506 | mode = BinOpItMode.ASI;
|
---|
507 | }
|
---|
508 | } else {
|
---|
509 | // array + array
|
---|
510 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
511 | return applyEx(func,A,B);
|
---|
512 | }
|
---|
513 | outLen = A.S.NumberOfElements;
|
---|
514 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
515 | mode = BinOpItMode.AAIA;
|
---|
516 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
517 | mode = BinOpItMode.AAIB;
|
---|
518 | } else {
|
---|
519 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
520 | mode = BinOpItMode.AAN;
|
---|
521 | }
|
---|
522 | }
|
---|
523 | }
|
---|
524 | #endregion
|
---|
525 | ILDenseStorage<float> retStorage = new ILDenseStorage<float>(retArr, outDims);
|
---|
526 | int i = 0, workerCount = 1;
|
---|
527 | Action<object> worker = data => {
|
---|
528 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
529 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
530 |
|
---|
531 | float* cLast, cp = (float*)range.Item5 + range.Item1;
|
---|
532 |
|
---|
533 | float scalar;
|
---|
534 | cLast = cp + range.Item2;
|
---|
535 | #region loops
|
---|
536 | switch (mode) {
|
---|
537 | case BinOpItMode.AAIA:
|
---|
538 |
|
---|
539 | float* bp = ((float*)range.Item4 + range.Item1);
|
---|
540 | while (cp < cLast) {
|
---|
541 |
|
---|
542 | *cp = func(*cp, *bp++);
|
---|
543 | cp++;
|
---|
544 | }
|
---|
545 | break;
|
---|
546 | case BinOpItMode.AAIB:
|
---|
547 |
|
---|
548 | float* ap = ((float*)range.Item3 + range.Item1);
|
---|
549 | while (cp < cLast) {
|
---|
550 |
|
---|
551 | *cp = func(*ap++, *cp);
|
---|
552 | cp++;
|
---|
553 |
|
---|
554 | }
|
---|
555 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
556 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
557 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
558 | //}
|
---|
559 | //int ie = range.Item1 + range.Item2-1;
|
---|
560 | //double[] locRetArr = retArr;
|
---|
561 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
562 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
563 | // if (i2 >= ie) break;
|
---|
564 | //}
|
---|
565 |
|
---|
566 | break;
|
---|
567 | case BinOpItMode.AAN:
|
---|
568 | ap = ((float*)range.Item3 + range.Item1);
|
---|
569 | bp = ((float*)range.Item4 + range.Item1);
|
---|
570 | while (cp < cLast) {
|
---|
571 |
|
---|
572 | *cp++ = func(*ap++, *bp++);
|
---|
573 | }
|
---|
574 | break;
|
---|
575 | case BinOpItMode.ASI:
|
---|
576 | scalar = *((float*)range.Item4);
|
---|
577 | while (cp < cLast) {
|
---|
578 |
|
---|
579 | *cp = func(*cp, scalar);
|
---|
580 | cp++;
|
---|
581 | }
|
---|
582 | break;
|
---|
583 | case BinOpItMode.ASN:
|
---|
584 | ap = ((float*)range.Item3 + range.Item1);
|
---|
585 | scalar = *((float*)range.Item4);
|
---|
586 | while (cp < cLast) {
|
---|
587 |
|
---|
588 | *cp++ = func(*ap++, scalar);
|
---|
589 | }
|
---|
590 | break;
|
---|
591 | case BinOpItMode.SAI:
|
---|
592 | scalar = *((float*)range.Item3);
|
---|
593 | while (cp < cLast) {
|
---|
594 |
|
---|
595 | *cp = func(scalar, *cp);
|
---|
596 | cp++;
|
---|
597 | }
|
---|
598 | break;
|
---|
599 | case BinOpItMode.SAN:
|
---|
600 | scalar = *((float*)range.Item3);
|
---|
601 | bp = ((float*)range.Item4 + range.Item1);
|
---|
602 | while (cp < cLast) {
|
---|
603 |
|
---|
604 | *cp++ = func(scalar, *bp++);
|
---|
605 | }
|
---|
606 | break;
|
---|
607 | default:
|
---|
608 | break;
|
---|
609 | }
|
---|
610 | #endregion
|
---|
611 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
612 | //retStorage.PendingEvents.Signal();
|
---|
613 | };
|
---|
614 |
|
---|
615 | #region do the work
|
---|
616 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
617 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
618 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
619 | workItemLength = outLen / workItemCount;
|
---|
620 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
621 | } else {
|
---|
622 | workItemLength = outLen / 2;
|
---|
623 | workItemCount = 2;
|
---|
624 | }
|
---|
625 | } else {
|
---|
626 | workItemLength = outLen;
|
---|
627 | workItemCount = 1;
|
---|
628 | }
|
---|
629 |
|
---|
630 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
631 |
|
---|
632 | fixed ( float* arrAP = arrA)
|
---|
633 | fixed ( float* arrBP = arrB)
|
---|
634 | fixed ( float* retArrP = retArr) {
|
---|
635 |
|
---|
636 | for (; i < workItemCount - 1; i++) {
|
---|
637 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
638 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
639 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
640 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
641 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
642 | }
|
---|
643 | // the last (or may the only) chunk is done right here
|
---|
644 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
645 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
646 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
647 |
|
---|
648 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
649 | return workerCount <= 0;
|
---|
650 | });
|
---|
651 | //while (workerCount > 0) ;
|
---|
652 | }
|
---|
653 |
|
---|
654 | #endregion
|
---|
655 | return new ILRetArray<float>(retStorage);
|
---|
656 | }
|
---|
657 | }
|
---|
658 |
|
---|
659 | private static unsafe ILRetArray<float> applyEx(Func<float, float, float> applyFunc, ILInArray<float> A, ILInArray<float> B) {
|
---|
660 | #region parameter checking
|
---|
661 | if (isnull(A) || isnull(B))
|
---|
662 | return empty<float>(ILSize.Empty00);
|
---|
663 | if (A.IsEmpty) {
|
---|
664 | return empty<float>(B.S);
|
---|
665 | } else if (B.IsEmpty) {
|
---|
666 | return empty<float>(A.S);
|
---|
667 | }
|
---|
668 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
669 | // return add(A,B);
|
---|
670 | int dim = -1;
|
---|
671 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
672 | if (A.S[_L] != B.S[_L]) {
|
---|
673 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
674 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
675 | }
|
---|
676 | dim = _L;
|
---|
677 | }
|
---|
678 | }
|
---|
679 | if (dim > 1)
|
---|
680 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
681 | #endregion
|
---|
682 |
|
---|
683 | #region parameter preparation
|
---|
684 |
|
---|
685 |
|
---|
686 | float[] retArr;
|
---|
687 |
|
---|
688 |
|
---|
689 | float[] arrA = A.GetArrayForRead();
|
---|
690 |
|
---|
691 |
|
---|
692 | float[] arrB = B.GetArrayForRead();
|
---|
693 | ILSize outDims;
|
---|
694 | BinOptItExMode mode;
|
---|
695 | int arrInc = 0;
|
---|
696 | int arrStepInc = 0;
|
---|
697 | int dimLen = 0;
|
---|
698 | if (A.IsVector) {
|
---|
699 | outDims = B.S;
|
---|
700 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
701 | retArr = ILMemoryPool.Pool.New<float>(outDims.NumberOfElements);
|
---|
702 | mode = BinOptItExMode.VAN;
|
---|
703 | } else {
|
---|
704 | mode = BinOptItExMode.VAI;
|
---|
705 | }
|
---|
706 | dimLen = A.Length;
|
---|
707 | } else if (B.IsVector) {
|
---|
708 | outDims = A.S;
|
---|
709 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
710 | retArr = ILMemoryPool.Pool.New<float>(outDims.NumberOfElements);
|
---|
711 | mode = BinOptItExMode.AVN;
|
---|
712 | } else {
|
---|
713 | mode = BinOptItExMode.AVI;
|
---|
714 | }
|
---|
715 | dimLen = B.Length;
|
---|
716 | } else {
|
---|
717 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
718 | }
|
---|
719 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
720 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
721 | #endregion
|
---|
722 |
|
---|
723 | #region worker loops definition
|
---|
724 | ILDenseStorage<float> retStorage = new ILDenseStorage<float>(retArr, outDims);
|
---|
725 | int workerCount = 1;
|
---|
726 | Action<object> worker = data => {
|
---|
727 | // expects: iStart, iLen, ap, bp, cp
|
---|
728 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
729 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
730 |
|
---|
731 | float* ap;
|
---|
732 |
|
---|
733 | float* bp;
|
---|
734 |
|
---|
735 | float* cp;
|
---|
736 | switch (mode) {
|
---|
737 | case BinOptItExMode.VAN:
|
---|
738 | for (int s = 0; s < range.Item2; s++) {
|
---|
739 | ap = (float*)range.Item3;
|
---|
740 | bp = (float*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
741 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
742 | for (int l = 0; l < dimLen; l++) {
|
---|
743 |
|
---|
744 | *cp = applyFunc(*ap, *bp);
|
---|
745 | ap++;
|
---|
746 | bp += arrInc;
|
---|
747 | cp += arrInc;
|
---|
748 | }
|
---|
749 | }
|
---|
750 | break;
|
---|
751 | case BinOptItExMode.VAI:
|
---|
752 | for (int s = 0; s < range.Item2; s++) {
|
---|
753 | ap = (float*)range.Item3;
|
---|
754 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
755 | for (int l = 0; l < dimLen; l++) {
|
---|
756 |
|
---|
757 | *cp = applyFunc(*ap, *cp);
|
---|
758 | ap++;
|
---|
759 | cp += arrInc;
|
---|
760 | }
|
---|
761 | }
|
---|
762 | break;
|
---|
763 | case BinOptItExMode.AVN:
|
---|
764 | for (int s = 0; s < range.Item2; s++) {
|
---|
765 | ap = (float*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
766 | bp = (float*)range.Item4;
|
---|
767 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
768 | for (int l = 0; l < dimLen; l++) {
|
---|
769 |
|
---|
770 | *cp = applyFunc(*ap, *bp);
|
---|
771 | ap += arrInc;
|
---|
772 | bp++;
|
---|
773 | cp += arrInc;
|
---|
774 | }
|
---|
775 | }
|
---|
776 | break;
|
---|
777 | case BinOptItExMode.AVI:
|
---|
778 | for (int s = 0; s < range.Item2; s++) {
|
---|
779 | bp = (float*)range.Item4;
|
---|
780 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
781 | for (int l = 0; l < dimLen; l++) {
|
---|
782 |
|
---|
783 | *cp = applyFunc(*cp, *bp);
|
---|
784 | bp++;
|
---|
785 | cp += arrInc;
|
---|
786 | }
|
---|
787 | }
|
---|
788 | break;
|
---|
789 | }
|
---|
790 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
791 | };
|
---|
792 | #endregion
|
---|
793 |
|
---|
794 | #region work distribution
|
---|
795 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
796 | int outLen = outDims.NumberOfElements;
|
---|
797 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
798 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
799 | workItemLength = outLen / dimLen / workItemCount;
|
---|
800 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
801 | } else {
|
---|
802 | workItemLength = outLen / dimLen / 2;
|
---|
803 | workItemCount = 2;
|
---|
804 | }
|
---|
805 | } else {
|
---|
806 | workItemLength = outLen / dimLen;
|
---|
807 | workItemCount = 1;
|
---|
808 | }
|
---|
809 |
|
---|
810 | fixed (float* arrAP = arrA)
|
---|
811 | fixed (float* arrBP = arrB)
|
---|
812 | fixed (float* retArrP = retArr) {
|
---|
813 |
|
---|
814 | for (; i < workItemCount - 1; i++) {
|
---|
815 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
816 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
817 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
818 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
819 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
820 | }
|
---|
821 | // the last (or may the only) chunk is done right here
|
---|
822 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
823 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
824 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
825 |
|
---|
826 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
827 | }
|
---|
828 | #endregion
|
---|
829 |
|
---|
830 | return new ILRetArray<float>(retStorage);
|
---|
831 | }
|
---|
832 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
833 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
834 | /// <param name="A">Input array A</param>
|
---|
835 | /// <param name="B">Input array B</param>
|
---|
836 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
837 | /// <item>
|
---|
838 | /// <term>size(A) == size(B)</term>
|
---|
839 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
840 | /// </item>
|
---|
841 | /// <item>
|
---|
842 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
843 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
844 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
845 | /// </item>
|
---|
846 | /// <item>
|
---|
847 | /// <term>All other cases</term>
|
---|
848 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
849 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
850 | /// </item>
|
---|
851 | /// </list></returns>
|
---|
852 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
853 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
854 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
855 | public unsafe static ILRetArray<fcomplex> apply(Func<fcomplex, fcomplex, fcomplex> func, ILInArray<fcomplex> A, ILInArray<fcomplex> B) {
|
---|
856 | using (ILScope.Enter(A, B)) {
|
---|
857 | int outLen;
|
---|
858 | BinOpItMode mode;
|
---|
859 |
|
---|
860 | fcomplex[] retArr;
|
---|
861 |
|
---|
862 | fcomplex[] arrA = A.GetArrayForRead();
|
---|
863 |
|
---|
864 | fcomplex[] arrB = B.GetArrayForRead();
|
---|
865 | ILSize outDims;
|
---|
866 | #region determine operation mode
|
---|
867 | if (A.IsScalar) {
|
---|
868 | outDims = B.Size;
|
---|
869 | if (B.IsScalar) {
|
---|
870 |
|
---|
871 | return new ILRetArray<fcomplex>(new fcomplex[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
872 | } else if (B.IsEmpty) {
|
---|
873 | return ILRetArray<fcomplex>.empty(outDims);
|
---|
874 | } else {
|
---|
875 | outLen = outDims.NumberOfElements;
|
---|
876 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
877 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
878 | mode = BinOpItMode.SAN;
|
---|
879 | } else {
|
---|
880 | mode = BinOpItMode.SAI;
|
---|
881 | }
|
---|
882 | }
|
---|
883 | } else {
|
---|
884 | outDims = A.Size;
|
---|
885 | if (B.IsScalar) {
|
---|
886 | if (A.IsEmpty) {
|
---|
887 | return ILRetArray<fcomplex>.empty(A.Size);
|
---|
888 | }
|
---|
889 | outLen = A.S.NumberOfElements;
|
---|
890 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
891 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
892 | mode = BinOpItMode.ASN;
|
---|
893 | } else {
|
---|
894 | mode = BinOpItMode.ASI;
|
---|
895 | }
|
---|
896 | } else {
|
---|
897 | // array + array
|
---|
898 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
899 | return applyEx(func,A,B);
|
---|
900 | }
|
---|
901 | outLen = A.S.NumberOfElements;
|
---|
902 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
903 | mode = BinOpItMode.AAIA;
|
---|
904 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
905 | mode = BinOpItMode.AAIB;
|
---|
906 | } else {
|
---|
907 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
908 | mode = BinOpItMode.AAN;
|
---|
909 | }
|
---|
910 | }
|
---|
911 | }
|
---|
912 | #endregion
|
---|
913 | ILDenseStorage<fcomplex> retStorage = new ILDenseStorage<fcomplex>(retArr, outDims);
|
---|
914 | int i = 0, workerCount = 1;
|
---|
915 | Action<object> worker = data => {
|
---|
916 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
917 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
918 |
|
---|
919 | fcomplex* cLast, cp = (fcomplex*)range.Item5 + range.Item1;
|
---|
920 |
|
---|
921 | fcomplex scalar;
|
---|
922 | cLast = cp + range.Item2;
|
---|
923 | #region loops
|
---|
924 | switch (mode) {
|
---|
925 | case BinOpItMode.AAIA:
|
---|
926 |
|
---|
927 | fcomplex* bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
928 | while (cp < cLast) {
|
---|
929 |
|
---|
930 | *cp = func(*cp, *bp++);
|
---|
931 | cp++;
|
---|
932 | }
|
---|
933 | break;
|
---|
934 | case BinOpItMode.AAIB:
|
---|
935 |
|
---|
936 | fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
937 | while (cp < cLast) {
|
---|
938 |
|
---|
939 | *cp = func(*ap++, *cp);
|
---|
940 | cp++;
|
---|
941 |
|
---|
942 | }
|
---|
943 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
944 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
945 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
946 | //}
|
---|
947 | //int ie = range.Item1 + range.Item2-1;
|
---|
948 | //double[] locRetArr = retArr;
|
---|
949 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
950 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
951 | // if (i2 >= ie) break;
|
---|
952 | //}
|
---|
953 |
|
---|
954 | break;
|
---|
955 | case BinOpItMode.AAN:
|
---|
956 | ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
957 | bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
958 | while (cp < cLast) {
|
---|
959 |
|
---|
960 | *cp++ = func(*ap++, *bp++);
|
---|
961 | }
|
---|
962 | break;
|
---|
963 | case BinOpItMode.ASI:
|
---|
964 | scalar = *((fcomplex*)range.Item4);
|
---|
965 | while (cp < cLast) {
|
---|
966 |
|
---|
967 | *cp = func(*cp, scalar);
|
---|
968 | cp++;
|
---|
969 | }
|
---|
970 | break;
|
---|
971 | case BinOpItMode.ASN:
|
---|
972 | ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
973 | scalar = *((fcomplex*)range.Item4);
|
---|
974 | while (cp < cLast) {
|
---|
975 |
|
---|
976 | *cp++ = func(*ap++, scalar);
|
---|
977 | }
|
---|
978 | break;
|
---|
979 | case BinOpItMode.SAI:
|
---|
980 | scalar = *((fcomplex*)range.Item3);
|
---|
981 | while (cp < cLast) {
|
---|
982 |
|
---|
983 | *cp = func(scalar, *cp);
|
---|
984 | cp++;
|
---|
985 | }
|
---|
986 | break;
|
---|
987 | case BinOpItMode.SAN:
|
---|
988 | scalar = *((fcomplex*)range.Item3);
|
---|
989 | bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
990 | while (cp < cLast) {
|
---|
991 |
|
---|
992 | *cp++ = func(scalar, *bp++);
|
---|
993 | }
|
---|
994 | break;
|
---|
995 | default:
|
---|
996 | break;
|
---|
997 | }
|
---|
998 | #endregion
|
---|
999 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1000 | //retStorage.PendingEvents.Signal();
|
---|
1001 | };
|
---|
1002 |
|
---|
1003 | #region do the work
|
---|
1004 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1005 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
1006 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1007 | workItemLength = outLen / workItemCount;
|
---|
1008 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1009 | } else {
|
---|
1010 | workItemLength = outLen / 2;
|
---|
1011 | workItemCount = 2;
|
---|
1012 | }
|
---|
1013 | } else {
|
---|
1014 | workItemLength = outLen;
|
---|
1015 | workItemCount = 1;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
1019 |
|
---|
1020 | fixed ( fcomplex* arrAP = arrA)
|
---|
1021 | fixed ( fcomplex* arrBP = arrB)
|
---|
1022 | fixed ( fcomplex* retArrP = retArr) {
|
---|
1023 |
|
---|
1024 | for (; i < workItemCount - 1; i++) {
|
---|
1025 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
1026 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1027 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
1028 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1029 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1030 | }
|
---|
1031 | // the last (or may the only) chunk is done right here
|
---|
1032 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1033 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1034 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
1035 |
|
---|
1036 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
1037 | return workerCount <= 0;
|
---|
1038 | });
|
---|
1039 | //while (workerCount > 0) ;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | #endregion
|
---|
1043 | return new ILRetArray<fcomplex>(retStorage);
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | private static unsafe ILRetArray<fcomplex> applyEx(Func<fcomplex, fcomplex, fcomplex> applyFunc, ILInArray<fcomplex> A, ILInArray<fcomplex> B) {
|
---|
1048 | #region parameter checking
|
---|
1049 | if (isnull(A) || isnull(B))
|
---|
1050 | return empty<fcomplex>(ILSize.Empty00);
|
---|
1051 | if (A.IsEmpty) {
|
---|
1052 | return empty<fcomplex>(B.S);
|
---|
1053 | } else if (B.IsEmpty) {
|
---|
1054 | return empty<fcomplex>(A.S);
|
---|
1055 | }
|
---|
1056 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
1057 | // return add(A,B);
|
---|
1058 | int dim = -1;
|
---|
1059 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
1060 | if (A.S[_L] != B.S[_L]) {
|
---|
1061 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
1062 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
1063 | }
|
---|
1064 | dim = _L;
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 | if (dim > 1)
|
---|
1068 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
1069 | #endregion
|
---|
1070 |
|
---|
1071 | #region parameter preparation
|
---|
1072 |
|
---|
1073 |
|
---|
1074 | fcomplex[] retArr;
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | fcomplex[] arrA = A.GetArrayForRead();
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | fcomplex[] arrB = B.GetArrayForRead();
|
---|
1081 | ILSize outDims;
|
---|
1082 | BinOptItExMode mode;
|
---|
1083 | int arrInc = 0;
|
---|
1084 | int arrStepInc = 0;
|
---|
1085 | int dimLen = 0;
|
---|
1086 | if (A.IsVector) {
|
---|
1087 | outDims = B.S;
|
---|
1088 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1089 | retArr = ILMemoryPool.Pool.New<fcomplex>(outDims.NumberOfElements);
|
---|
1090 | mode = BinOptItExMode.VAN;
|
---|
1091 | } else {
|
---|
1092 | mode = BinOptItExMode.VAI;
|
---|
1093 | }
|
---|
1094 | dimLen = A.Length;
|
---|
1095 | } else if (B.IsVector) {
|
---|
1096 | outDims = A.S;
|
---|
1097 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1098 | retArr = ILMemoryPool.Pool.New<fcomplex>(outDims.NumberOfElements);
|
---|
1099 | mode = BinOptItExMode.AVN;
|
---|
1100 | } else {
|
---|
1101 | mode = BinOptItExMode.AVI;
|
---|
1102 | }
|
---|
1103 | dimLen = B.Length;
|
---|
1104 | } else {
|
---|
1105 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
1106 | }
|
---|
1107 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
1108 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
1109 | #endregion
|
---|
1110 |
|
---|
1111 | #region worker loops definition
|
---|
1112 | ILDenseStorage<fcomplex> retStorage = new ILDenseStorage<fcomplex>(retArr, outDims);
|
---|
1113 | int workerCount = 1;
|
---|
1114 | Action<object> worker = data => {
|
---|
1115 | // expects: iStart, iLen, ap, bp, cp
|
---|
1116 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
1117 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
1118 |
|
---|
1119 | fcomplex* ap;
|
---|
1120 |
|
---|
1121 | fcomplex* bp;
|
---|
1122 |
|
---|
1123 | fcomplex* cp;
|
---|
1124 | switch (mode) {
|
---|
1125 | case BinOptItExMode.VAN:
|
---|
1126 | for (int s = 0; s < range.Item2; s++) {
|
---|
1127 | ap = (fcomplex*)range.Item3;
|
---|
1128 | bp = (fcomplex*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
1129 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1130 | for (int l = 0; l < dimLen; l++) {
|
---|
1131 |
|
---|
1132 | *cp = applyFunc(*ap, *bp);
|
---|
1133 | ap++;
|
---|
1134 | bp += arrInc;
|
---|
1135 | cp += arrInc;
|
---|
1136 | }
|
---|
1137 | }
|
---|
1138 | break;
|
---|
1139 | case BinOptItExMode.VAI:
|
---|
1140 | for (int s = 0; s < range.Item2; s++) {
|
---|
1141 | ap = (fcomplex*)range.Item3;
|
---|
1142 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1143 | for (int l = 0; l < dimLen; l++) {
|
---|
1144 |
|
---|
1145 | *cp = applyFunc(*ap, *cp);
|
---|
1146 | ap++;
|
---|
1147 | cp += arrInc;
|
---|
1148 | }
|
---|
1149 | }
|
---|
1150 | break;
|
---|
1151 | case BinOptItExMode.AVN:
|
---|
1152 | for (int s = 0; s < range.Item2; s++) {
|
---|
1153 | ap = (fcomplex*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
1154 | bp = (fcomplex*)range.Item4;
|
---|
1155 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1156 | for (int l = 0; l < dimLen; l++) {
|
---|
1157 |
|
---|
1158 | *cp = applyFunc(*ap, *bp);
|
---|
1159 | ap += arrInc;
|
---|
1160 | bp++;
|
---|
1161 | cp += arrInc;
|
---|
1162 | }
|
---|
1163 | }
|
---|
1164 | break;
|
---|
1165 | case BinOptItExMode.AVI:
|
---|
1166 | for (int s = 0; s < range.Item2; s++) {
|
---|
1167 | bp = (fcomplex*)range.Item4;
|
---|
1168 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1169 | for (int l = 0; l < dimLen; l++) {
|
---|
1170 |
|
---|
1171 | *cp = applyFunc(*cp, *bp);
|
---|
1172 | bp++;
|
---|
1173 | cp += arrInc;
|
---|
1174 | }
|
---|
1175 | }
|
---|
1176 | break;
|
---|
1177 | }
|
---|
1178 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1179 | };
|
---|
1180 | #endregion
|
---|
1181 |
|
---|
1182 | #region work distribution
|
---|
1183 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1184 | int outLen = outDims.NumberOfElements;
|
---|
1185 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
1186 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1187 | workItemLength = outLen / dimLen / workItemCount;
|
---|
1188 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1189 | } else {
|
---|
1190 | workItemLength = outLen / dimLen / 2;
|
---|
1191 | workItemCount = 2;
|
---|
1192 | }
|
---|
1193 | } else {
|
---|
1194 | workItemLength = outLen / dimLen;
|
---|
1195 | workItemCount = 1;
|
---|
1196 | }
|
---|
1197 |
|
---|
1198 | fixed (fcomplex* arrAP = arrA)
|
---|
1199 | fixed (fcomplex* arrBP = arrB)
|
---|
1200 | fixed (fcomplex* retArrP = retArr) {
|
---|
1201 |
|
---|
1202 | for (; i < workItemCount - 1; i++) {
|
---|
1203 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
1204 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1205 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
1206 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1207 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1208 | }
|
---|
1209 | // the last (or may the only) chunk is done right here
|
---|
1210 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1211 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1212 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
1213 |
|
---|
1214 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
1215 | }
|
---|
1216 | #endregion
|
---|
1217 |
|
---|
1218 | return new ILRetArray<fcomplex>(retStorage);
|
---|
1219 | }
|
---|
1220 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
1221 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
1222 | /// <param name="A">Input array A</param>
|
---|
1223 | /// <param name="B">Input array B</param>
|
---|
1224 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
1225 | /// <item>
|
---|
1226 | /// <term>size(A) == size(B)</term>
|
---|
1227 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
1228 | /// </item>
|
---|
1229 | /// <item>
|
---|
1230 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
1231 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
1232 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
1233 | /// </item>
|
---|
1234 | /// <item>
|
---|
1235 | /// <term>All other cases</term>
|
---|
1236 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
1237 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
1238 | /// </item>
|
---|
1239 | /// </list></returns>
|
---|
1240 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
1241 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
1242 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
1243 | public unsafe static ILRetArray<complex> apply(Func<complex, complex, complex> func, ILInArray<complex> A, ILInArray<complex> B) {
|
---|
1244 | using (ILScope.Enter(A, B)) {
|
---|
1245 | int outLen;
|
---|
1246 | BinOpItMode mode;
|
---|
1247 |
|
---|
1248 | complex[] retArr;
|
---|
1249 |
|
---|
1250 | complex[] arrA = A.GetArrayForRead();
|
---|
1251 |
|
---|
1252 | complex[] arrB = B.GetArrayForRead();
|
---|
1253 | ILSize outDims;
|
---|
1254 | #region determine operation mode
|
---|
1255 | if (A.IsScalar) {
|
---|
1256 | outDims = B.Size;
|
---|
1257 | if (B.IsScalar) {
|
---|
1258 |
|
---|
1259 | return new ILRetArray<complex>(new complex[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
1260 | } else if (B.IsEmpty) {
|
---|
1261 | return ILRetArray<complex>.empty(outDims);
|
---|
1262 | } else {
|
---|
1263 | outLen = outDims.NumberOfElements;
|
---|
1264 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1265 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
1266 | mode = BinOpItMode.SAN;
|
---|
1267 | } else {
|
---|
1268 | mode = BinOpItMode.SAI;
|
---|
1269 | }
|
---|
1270 | }
|
---|
1271 | } else {
|
---|
1272 | outDims = A.Size;
|
---|
1273 | if (B.IsScalar) {
|
---|
1274 | if (A.IsEmpty) {
|
---|
1275 | return ILRetArray<complex>.empty(A.Size);
|
---|
1276 | }
|
---|
1277 | outLen = A.S.NumberOfElements;
|
---|
1278 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1279 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
1280 | mode = BinOpItMode.ASN;
|
---|
1281 | } else {
|
---|
1282 | mode = BinOpItMode.ASI;
|
---|
1283 | }
|
---|
1284 | } else {
|
---|
1285 | // array + array
|
---|
1286 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
1287 | return applyEx(func,A,B);
|
---|
1288 | }
|
---|
1289 | outLen = A.S.NumberOfElements;
|
---|
1290 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
1291 | mode = BinOpItMode.AAIA;
|
---|
1292 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1293 | mode = BinOpItMode.AAIB;
|
---|
1294 | } else {
|
---|
1295 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
1296 | mode = BinOpItMode.AAN;
|
---|
1297 | }
|
---|
1298 | }
|
---|
1299 | }
|
---|
1300 | #endregion
|
---|
1301 | ILDenseStorage<complex> retStorage = new ILDenseStorage<complex>(retArr, outDims);
|
---|
1302 | int i = 0, workerCount = 1;
|
---|
1303 | Action<object> worker = data => {
|
---|
1304 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
1305 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
1306 |
|
---|
1307 | complex* cLast, cp = (complex*)range.Item5 + range.Item1;
|
---|
1308 |
|
---|
1309 | complex scalar;
|
---|
1310 | cLast = cp + range.Item2;
|
---|
1311 | #region loops
|
---|
1312 | switch (mode) {
|
---|
1313 | case BinOpItMode.AAIA:
|
---|
1314 |
|
---|
1315 | complex* bp = ((complex*)range.Item4 + range.Item1);
|
---|
1316 | while (cp < cLast) {
|
---|
1317 |
|
---|
1318 | *cp = func(*cp, *bp++);
|
---|
1319 | cp++;
|
---|
1320 | }
|
---|
1321 | break;
|
---|
1322 | case BinOpItMode.AAIB:
|
---|
1323 |
|
---|
1324 | complex* ap = ((complex*)range.Item3 + range.Item1);
|
---|
1325 | while (cp < cLast) {
|
---|
1326 |
|
---|
1327 | *cp = func(*ap++, *cp);
|
---|
1328 | cp++;
|
---|
1329 |
|
---|
1330 | }
|
---|
1331 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
1332 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
1333 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
1334 | //}
|
---|
1335 | //int ie = range.Item1 + range.Item2-1;
|
---|
1336 | //double[] locRetArr = retArr;
|
---|
1337 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
1338 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
1339 | // if (i2 >= ie) break;
|
---|
1340 | //}
|
---|
1341 |
|
---|
1342 | break;
|
---|
1343 | case BinOpItMode.AAN:
|
---|
1344 | ap = ((complex*)range.Item3 + range.Item1);
|
---|
1345 | bp = ((complex*)range.Item4 + range.Item1);
|
---|
1346 | while (cp < cLast) {
|
---|
1347 |
|
---|
1348 | *cp++ = func(*ap++, *bp++);
|
---|
1349 | }
|
---|
1350 | break;
|
---|
1351 | case BinOpItMode.ASI:
|
---|
1352 | scalar = *((complex*)range.Item4);
|
---|
1353 | while (cp < cLast) {
|
---|
1354 |
|
---|
1355 | *cp = func(*cp, scalar);
|
---|
1356 | cp++;
|
---|
1357 | }
|
---|
1358 | break;
|
---|
1359 | case BinOpItMode.ASN:
|
---|
1360 | ap = ((complex*)range.Item3 + range.Item1);
|
---|
1361 | scalar = *((complex*)range.Item4);
|
---|
1362 | while (cp < cLast) {
|
---|
1363 |
|
---|
1364 | *cp++ = func(*ap++, scalar);
|
---|
1365 | }
|
---|
1366 | break;
|
---|
1367 | case BinOpItMode.SAI:
|
---|
1368 | scalar = *((complex*)range.Item3);
|
---|
1369 | while (cp < cLast) {
|
---|
1370 |
|
---|
1371 | *cp = func(scalar, *cp);
|
---|
1372 | cp++;
|
---|
1373 | }
|
---|
1374 | break;
|
---|
1375 | case BinOpItMode.SAN:
|
---|
1376 | scalar = *((complex*)range.Item3);
|
---|
1377 | bp = ((complex*)range.Item4 + range.Item1);
|
---|
1378 | while (cp < cLast) {
|
---|
1379 |
|
---|
1380 | *cp++ = func(scalar, *bp++);
|
---|
1381 | }
|
---|
1382 | break;
|
---|
1383 | default:
|
---|
1384 | break;
|
---|
1385 | }
|
---|
1386 | #endregion
|
---|
1387 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1388 | //retStorage.PendingEvents.Signal();
|
---|
1389 | };
|
---|
1390 |
|
---|
1391 | #region do the work
|
---|
1392 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1393 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
1394 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1395 | workItemLength = outLen / workItemCount;
|
---|
1396 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1397 | } else {
|
---|
1398 | workItemLength = outLen / 2;
|
---|
1399 | workItemCount = 2;
|
---|
1400 | }
|
---|
1401 | } else {
|
---|
1402 | workItemLength = outLen;
|
---|
1403 | workItemCount = 1;
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
1407 |
|
---|
1408 | fixed ( complex* arrAP = arrA)
|
---|
1409 | fixed ( complex* arrBP = arrB)
|
---|
1410 | fixed ( complex* retArrP = retArr) {
|
---|
1411 |
|
---|
1412 | for (; i < workItemCount - 1; i++) {
|
---|
1413 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
1414 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1415 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
1416 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1417 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1418 | }
|
---|
1419 | // the last (or may the only) chunk is done right here
|
---|
1420 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1421 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1422 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
1423 |
|
---|
1424 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
1425 | return workerCount <= 0;
|
---|
1426 | });
|
---|
1427 | //while (workerCount > 0) ;
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 | #endregion
|
---|
1431 | return new ILRetArray<complex>(retStorage);
|
---|
1432 | }
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | private static unsafe ILRetArray<complex> applyEx(Func<complex, complex, complex> applyFunc, ILInArray<complex> A, ILInArray<complex> B) {
|
---|
1436 | #region parameter checking
|
---|
1437 | if (isnull(A) || isnull(B))
|
---|
1438 | return empty<complex>(ILSize.Empty00);
|
---|
1439 | if (A.IsEmpty) {
|
---|
1440 | return empty<complex>(B.S);
|
---|
1441 | } else if (B.IsEmpty) {
|
---|
1442 | return empty<complex>(A.S);
|
---|
1443 | }
|
---|
1444 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
1445 | // return add(A,B);
|
---|
1446 | int dim = -1;
|
---|
1447 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
1448 | if (A.S[_L] != B.S[_L]) {
|
---|
1449 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
1450 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
1451 | }
|
---|
1452 | dim = _L;
|
---|
1453 | }
|
---|
1454 | }
|
---|
1455 | if (dim > 1)
|
---|
1456 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
1457 | #endregion
|
---|
1458 |
|
---|
1459 | #region parameter preparation
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | complex[] retArr;
|
---|
1463 |
|
---|
1464 |
|
---|
1465 | complex[] arrA = A.GetArrayForRead();
|
---|
1466 |
|
---|
1467 |
|
---|
1468 | complex[] arrB = B.GetArrayForRead();
|
---|
1469 | ILSize outDims;
|
---|
1470 | BinOptItExMode mode;
|
---|
1471 | int arrInc = 0;
|
---|
1472 | int arrStepInc = 0;
|
---|
1473 | int dimLen = 0;
|
---|
1474 | if (A.IsVector) {
|
---|
1475 | outDims = B.S;
|
---|
1476 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1477 | retArr = ILMemoryPool.Pool.New<complex>(outDims.NumberOfElements);
|
---|
1478 | mode = BinOptItExMode.VAN;
|
---|
1479 | } else {
|
---|
1480 | mode = BinOptItExMode.VAI;
|
---|
1481 | }
|
---|
1482 | dimLen = A.Length;
|
---|
1483 | } else if (B.IsVector) {
|
---|
1484 | outDims = A.S;
|
---|
1485 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1486 | retArr = ILMemoryPool.Pool.New<complex>(outDims.NumberOfElements);
|
---|
1487 | mode = BinOptItExMode.AVN;
|
---|
1488 | } else {
|
---|
1489 | mode = BinOptItExMode.AVI;
|
---|
1490 | }
|
---|
1491 | dimLen = B.Length;
|
---|
1492 | } else {
|
---|
1493 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
1494 | }
|
---|
1495 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
1496 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
1497 | #endregion
|
---|
1498 |
|
---|
1499 | #region worker loops definition
|
---|
1500 | ILDenseStorage<complex> retStorage = new ILDenseStorage<complex>(retArr, outDims);
|
---|
1501 | int workerCount = 1;
|
---|
1502 | Action<object> worker = data => {
|
---|
1503 | // expects: iStart, iLen, ap, bp, cp
|
---|
1504 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
1505 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
1506 |
|
---|
1507 | complex* ap;
|
---|
1508 |
|
---|
1509 | complex* bp;
|
---|
1510 |
|
---|
1511 | complex* cp;
|
---|
1512 | switch (mode) {
|
---|
1513 | case BinOptItExMode.VAN:
|
---|
1514 | for (int s = 0; s < range.Item2; s++) {
|
---|
1515 | ap = (complex*)range.Item3;
|
---|
1516 | bp = (complex*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
1517 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1518 | for (int l = 0; l < dimLen; l++) {
|
---|
1519 |
|
---|
1520 | *cp = applyFunc(*ap, *bp);
|
---|
1521 | ap++;
|
---|
1522 | bp += arrInc;
|
---|
1523 | cp += arrInc;
|
---|
1524 | }
|
---|
1525 | }
|
---|
1526 | break;
|
---|
1527 | case BinOptItExMode.VAI:
|
---|
1528 | for (int s = 0; s < range.Item2; s++) {
|
---|
1529 | ap = (complex*)range.Item3;
|
---|
1530 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1531 | for (int l = 0; l < dimLen; l++) {
|
---|
1532 |
|
---|
1533 | *cp = applyFunc(*ap, *cp);
|
---|
1534 | ap++;
|
---|
1535 | cp += arrInc;
|
---|
1536 | }
|
---|
1537 | }
|
---|
1538 | break;
|
---|
1539 | case BinOptItExMode.AVN:
|
---|
1540 | for (int s = 0; s < range.Item2; s++) {
|
---|
1541 | ap = (complex*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
1542 | bp = (complex*)range.Item4;
|
---|
1543 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1544 | for (int l = 0; l < dimLen; l++) {
|
---|
1545 |
|
---|
1546 | *cp = applyFunc(*ap, *bp);
|
---|
1547 | ap += arrInc;
|
---|
1548 | bp++;
|
---|
1549 | cp += arrInc;
|
---|
1550 | }
|
---|
1551 | }
|
---|
1552 | break;
|
---|
1553 | case BinOptItExMode.AVI:
|
---|
1554 | for (int s = 0; s < range.Item2; s++) {
|
---|
1555 | bp = (complex*)range.Item4;
|
---|
1556 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1557 | for (int l = 0; l < dimLen; l++) {
|
---|
1558 |
|
---|
1559 | *cp = applyFunc(*cp, *bp);
|
---|
1560 | bp++;
|
---|
1561 | cp += arrInc;
|
---|
1562 | }
|
---|
1563 | }
|
---|
1564 | break;
|
---|
1565 | }
|
---|
1566 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1567 | };
|
---|
1568 | #endregion
|
---|
1569 |
|
---|
1570 | #region work distribution
|
---|
1571 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1572 | int outLen = outDims.NumberOfElements;
|
---|
1573 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
1574 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1575 | workItemLength = outLen / dimLen / workItemCount;
|
---|
1576 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1577 | } else {
|
---|
1578 | workItemLength = outLen / dimLen / 2;
|
---|
1579 | workItemCount = 2;
|
---|
1580 | }
|
---|
1581 | } else {
|
---|
1582 | workItemLength = outLen / dimLen;
|
---|
1583 | workItemCount = 1;
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 | fixed (complex* arrAP = arrA)
|
---|
1587 | fixed (complex* arrBP = arrB)
|
---|
1588 | fixed (complex* retArrP = retArr) {
|
---|
1589 |
|
---|
1590 | for (; i < workItemCount - 1; i++) {
|
---|
1591 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
1592 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1593 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
1594 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1595 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1596 | }
|
---|
1597 | // the last (or may the only) chunk is done right here
|
---|
1598 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1599 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1600 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
1601 |
|
---|
1602 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
1603 | }
|
---|
1604 | #endregion
|
---|
1605 |
|
---|
1606 | return new ILRetArray<complex>(retStorage);
|
---|
1607 | }
|
---|
1608 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
1609 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
1610 | /// <param name="A">Input array A</param>
|
---|
1611 | /// <param name="B">Input array B</param>
|
---|
1612 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
1613 | /// <item>
|
---|
1614 | /// <term>size(A) == size(B)</term>
|
---|
1615 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
1616 | /// </item>
|
---|
1617 | /// <item>
|
---|
1618 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
1619 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
1620 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
1621 | /// </item>
|
---|
1622 | /// <item>
|
---|
1623 | /// <term>All other cases</term>
|
---|
1624 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
1625 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
1626 | /// </item>
|
---|
1627 | /// </list></returns>
|
---|
1628 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
1629 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
1630 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
1631 | public unsafe static ILRetArray<Int64> apply(Func<Int64, Int64, Int64> func, ILInArray<Int64> A, ILInArray<Int64> B) {
|
---|
1632 | using (ILScope.Enter(A, B)) {
|
---|
1633 | int outLen;
|
---|
1634 | BinOpItMode mode;
|
---|
1635 |
|
---|
1636 | Int64[] retArr;
|
---|
1637 |
|
---|
1638 | Int64[] arrA = A.GetArrayForRead();
|
---|
1639 |
|
---|
1640 | Int64[] arrB = B.GetArrayForRead();
|
---|
1641 | ILSize outDims;
|
---|
1642 | #region determine operation mode
|
---|
1643 | if (A.IsScalar) {
|
---|
1644 | outDims = B.Size;
|
---|
1645 | if (B.IsScalar) {
|
---|
1646 |
|
---|
1647 | return new ILRetArray<Int64>(new Int64[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
1648 | } else if (B.IsEmpty) {
|
---|
1649 | return ILRetArray<Int64>.empty(outDims);
|
---|
1650 | } else {
|
---|
1651 | outLen = outDims.NumberOfElements;
|
---|
1652 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1653 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
1654 | mode = BinOpItMode.SAN;
|
---|
1655 | } else {
|
---|
1656 | mode = BinOpItMode.SAI;
|
---|
1657 | }
|
---|
1658 | }
|
---|
1659 | } else {
|
---|
1660 | outDims = A.Size;
|
---|
1661 | if (B.IsScalar) {
|
---|
1662 | if (A.IsEmpty) {
|
---|
1663 | return ILRetArray<Int64>.empty(A.Size);
|
---|
1664 | }
|
---|
1665 | outLen = A.S.NumberOfElements;
|
---|
1666 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1667 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
1668 | mode = BinOpItMode.ASN;
|
---|
1669 | } else {
|
---|
1670 | mode = BinOpItMode.ASI;
|
---|
1671 | }
|
---|
1672 | } else {
|
---|
1673 | // array + array
|
---|
1674 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
1675 | return applyEx(func,A,B);
|
---|
1676 | }
|
---|
1677 | outLen = A.S.NumberOfElements;
|
---|
1678 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
1679 | mode = BinOpItMode.AAIA;
|
---|
1680 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1681 | mode = BinOpItMode.AAIB;
|
---|
1682 | } else {
|
---|
1683 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
1684 | mode = BinOpItMode.AAN;
|
---|
1685 | }
|
---|
1686 | }
|
---|
1687 | }
|
---|
1688 | #endregion
|
---|
1689 | ILDenseStorage<Int64> retStorage = new ILDenseStorage<Int64>(retArr, outDims);
|
---|
1690 | int i = 0, workerCount = 1;
|
---|
1691 | Action<object> worker = data => {
|
---|
1692 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
1693 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
1694 |
|
---|
1695 | Int64* cLast, cp = (Int64*)range.Item5 + range.Item1;
|
---|
1696 |
|
---|
1697 | Int64 scalar;
|
---|
1698 | cLast = cp + range.Item2;
|
---|
1699 | #region loops
|
---|
1700 | switch (mode) {
|
---|
1701 | case BinOpItMode.AAIA:
|
---|
1702 |
|
---|
1703 | Int64* bp = ((Int64*)range.Item4 + range.Item1);
|
---|
1704 | while (cp < cLast) {
|
---|
1705 |
|
---|
1706 | *cp = func(*cp, *bp++);
|
---|
1707 | cp++;
|
---|
1708 | }
|
---|
1709 | break;
|
---|
1710 | case BinOpItMode.AAIB:
|
---|
1711 |
|
---|
1712 | Int64* ap = ((Int64*)range.Item3 + range.Item1);
|
---|
1713 | while (cp < cLast) {
|
---|
1714 |
|
---|
1715 | *cp = func(*ap++, *cp);
|
---|
1716 | cp++;
|
---|
1717 |
|
---|
1718 | }
|
---|
1719 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
1720 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
1721 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
1722 | //}
|
---|
1723 | //int ie = range.Item1 + range.Item2-1;
|
---|
1724 | //double[] locRetArr = retArr;
|
---|
1725 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
1726 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
1727 | // if (i2 >= ie) break;
|
---|
1728 | //}
|
---|
1729 |
|
---|
1730 | break;
|
---|
1731 | case BinOpItMode.AAN:
|
---|
1732 | ap = ((Int64*)range.Item3 + range.Item1);
|
---|
1733 | bp = ((Int64*)range.Item4 + range.Item1);
|
---|
1734 | while (cp < cLast) {
|
---|
1735 |
|
---|
1736 | *cp++ = func(*ap++, *bp++);
|
---|
1737 | }
|
---|
1738 | break;
|
---|
1739 | case BinOpItMode.ASI:
|
---|
1740 | scalar = *((Int64*)range.Item4);
|
---|
1741 | while (cp < cLast) {
|
---|
1742 |
|
---|
1743 | *cp = func(*cp, scalar);
|
---|
1744 | cp++;
|
---|
1745 | }
|
---|
1746 | break;
|
---|
1747 | case BinOpItMode.ASN:
|
---|
1748 | ap = ((Int64*)range.Item3 + range.Item1);
|
---|
1749 | scalar = *((Int64*)range.Item4);
|
---|
1750 | while (cp < cLast) {
|
---|
1751 |
|
---|
1752 | *cp++ = func(*ap++, scalar);
|
---|
1753 | }
|
---|
1754 | break;
|
---|
1755 | case BinOpItMode.SAI:
|
---|
1756 | scalar = *((Int64*)range.Item3);
|
---|
1757 | while (cp < cLast) {
|
---|
1758 |
|
---|
1759 | *cp = func(scalar, *cp);
|
---|
1760 | cp++;
|
---|
1761 | }
|
---|
1762 | break;
|
---|
1763 | case BinOpItMode.SAN:
|
---|
1764 | scalar = *((Int64*)range.Item3);
|
---|
1765 | bp = ((Int64*)range.Item4 + range.Item1);
|
---|
1766 | while (cp < cLast) {
|
---|
1767 |
|
---|
1768 | *cp++ = func(scalar, *bp++);
|
---|
1769 | }
|
---|
1770 | break;
|
---|
1771 | default:
|
---|
1772 | break;
|
---|
1773 | }
|
---|
1774 | #endregion
|
---|
1775 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1776 | //retStorage.PendingEvents.Signal();
|
---|
1777 | };
|
---|
1778 |
|
---|
1779 | #region do the work
|
---|
1780 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1781 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
1782 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1783 | workItemLength = outLen / workItemCount;
|
---|
1784 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1785 | } else {
|
---|
1786 | workItemLength = outLen / 2;
|
---|
1787 | workItemCount = 2;
|
---|
1788 | }
|
---|
1789 | } else {
|
---|
1790 | workItemLength = outLen;
|
---|
1791 | workItemCount = 1;
|
---|
1792 | }
|
---|
1793 |
|
---|
1794 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
1795 |
|
---|
1796 | fixed ( Int64* arrAP = arrA)
|
---|
1797 | fixed ( Int64* arrBP = arrB)
|
---|
1798 | fixed ( Int64* retArrP = retArr) {
|
---|
1799 |
|
---|
1800 | for (; i < workItemCount - 1; i++) {
|
---|
1801 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
1802 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1803 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
1804 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1805 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1806 | }
|
---|
1807 | // the last (or may the only) chunk is done right here
|
---|
1808 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1809 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
1810 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
1811 |
|
---|
1812 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
1813 | return workerCount <= 0;
|
---|
1814 | });
|
---|
1815 | //while (workerCount > 0) ;
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | #endregion
|
---|
1819 | return new ILRetArray<Int64>(retStorage);
|
---|
1820 | }
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | private static unsafe ILRetArray<Int64> applyEx(Func<Int64, Int64, Int64> applyFunc, ILInArray<Int64> A, ILInArray<Int64> B) {
|
---|
1824 | #region parameter checking
|
---|
1825 | if (isnull(A) || isnull(B))
|
---|
1826 | return empty<Int64>(ILSize.Empty00);
|
---|
1827 | if (A.IsEmpty) {
|
---|
1828 | return empty<Int64>(B.S);
|
---|
1829 | } else if (B.IsEmpty) {
|
---|
1830 | return empty<Int64>(A.S);
|
---|
1831 | }
|
---|
1832 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
1833 | // return add(A,B);
|
---|
1834 | int dim = -1;
|
---|
1835 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
1836 | if (A.S[_L] != B.S[_L]) {
|
---|
1837 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
1838 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
1839 | }
|
---|
1840 | dim = _L;
|
---|
1841 | }
|
---|
1842 | }
|
---|
1843 | if (dim > 1)
|
---|
1844 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
1845 | #endregion
|
---|
1846 |
|
---|
1847 | #region parameter preparation
|
---|
1848 |
|
---|
1849 |
|
---|
1850 | Int64[] retArr;
|
---|
1851 |
|
---|
1852 |
|
---|
1853 | Int64[] arrA = A.GetArrayForRead();
|
---|
1854 |
|
---|
1855 |
|
---|
1856 | Int64[] arrB = B.GetArrayForRead();
|
---|
1857 | ILSize outDims;
|
---|
1858 | BinOptItExMode mode;
|
---|
1859 | int arrInc = 0;
|
---|
1860 | int arrStepInc = 0;
|
---|
1861 | int dimLen = 0;
|
---|
1862 | if (A.IsVector) {
|
---|
1863 | outDims = B.S;
|
---|
1864 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1865 | retArr = ILMemoryPool.Pool.New<Int64>(outDims.NumberOfElements);
|
---|
1866 | mode = BinOptItExMode.VAN;
|
---|
1867 | } else {
|
---|
1868 | mode = BinOptItExMode.VAI;
|
---|
1869 | }
|
---|
1870 | dimLen = A.Length;
|
---|
1871 | } else if (B.IsVector) {
|
---|
1872 | outDims = A.S;
|
---|
1873 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
1874 | retArr = ILMemoryPool.Pool.New<Int64>(outDims.NumberOfElements);
|
---|
1875 | mode = BinOptItExMode.AVN;
|
---|
1876 | } else {
|
---|
1877 | mode = BinOptItExMode.AVI;
|
---|
1878 | }
|
---|
1879 | dimLen = B.Length;
|
---|
1880 | } else {
|
---|
1881 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
1882 | }
|
---|
1883 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
1884 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
1885 | #endregion
|
---|
1886 |
|
---|
1887 | #region worker loops definition
|
---|
1888 | ILDenseStorage<Int64> retStorage = new ILDenseStorage<Int64>(retArr, outDims);
|
---|
1889 | int workerCount = 1;
|
---|
1890 | Action<object> worker = data => {
|
---|
1891 | // expects: iStart, iLen, ap, bp, cp
|
---|
1892 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
1893 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
1894 |
|
---|
1895 | Int64* ap;
|
---|
1896 |
|
---|
1897 | Int64* bp;
|
---|
1898 |
|
---|
1899 | Int64* cp;
|
---|
1900 | switch (mode) {
|
---|
1901 | case BinOptItExMode.VAN:
|
---|
1902 | for (int s = 0; s < range.Item2; s++) {
|
---|
1903 | ap = (Int64*)range.Item3;
|
---|
1904 | bp = (Int64*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
1905 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1906 | for (int l = 0; l < dimLen; l++) {
|
---|
1907 |
|
---|
1908 | *cp = applyFunc(*ap, *bp);
|
---|
1909 | ap++;
|
---|
1910 | bp += arrInc;
|
---|
1911 | cp += arrInc;
|
---|
1912 | }
|
---|
1913 | }
|
---|
1914 | break;
|
---|
1915 | case BinOptItExMode.VAI:
|
---|
1916 | for (int s = 0; s < range.Item2; s++) {
|
---|
1917 | ap = (Int64*)range.Item3;
|
---|
1918 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1919 | for (int l = 0; l < dimLen; l++) {
|
---|
1920 |
|
---|
1921 | *cp = applyFunc(*ap, *cp);
|
---|
1922 | ap++;
|
---|
1923 | cp += arrInc;
|
---|
1924 | }
|
---|
1925 | }
|
---|
1926 | break;
|
---|
1927 | case BinOptItExMode.AVN:
|
---|
1928 | for (int s = 0; s < range.Item2; s++) {
|
---|
1929 | ap = (Int64*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
1930 | bp = (Int64*)range.Item4;
|
---|
1931 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1932 | for (int l = 0; l < dimLen; l++) {
|
---|
1933 |
|
---|
1934 | *cp = applyFunc(*ap, *bp);
|
---|
1935 | ap += arrInc;
|
---|
1936 | bp++;
|
---|
1937 | cp += arrInc;
|
---|
1938 | }
|
---|
1939 | }
|
---|
1940 | break;
|
---|
1941 | case BinOptItExMode.AVI:
|
---|
1942 | for (int s = 0; s < range.Item2; s++) {
|
---|
1943 | bp = (Int64*)range.Item4;
|
---|
1944 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
1945 | for (int l = 0; l < dimLen; l++) {
|
---|
1946 |
|
---|
1947 | *cp = applyFunc(*cp, *bp);
|
---|
1948 | bp++;
|
---|
1949 | cp += arrInc;
|
---|
1950 | }
|
---|
1951 | }
|
---|
1952 | break;
|
---|
1953 | }
|
---|
1954 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
1955 | };
|
---|
1956 | #endregion
|
---|
1957 |
|
---|
1958 | #region work distribution
|
---|
1959 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
1960 | int outLen = outDims.NumberOfElements;
|
---|
1961 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
1962 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
1963 | workItemLength = outLen / dimLen / workItemCount;
|
---|
1964 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
1965 | } else {
|
---|
1966 | workItemLength = outLen / dimLen / 2;
|
---|
1967 | workItemCount = 2;
|
---|
1968 | }
|
---|
1969 | } else {
|
---|
1970 | workItemLength = outLen / dimLen;
|
---|
1971 | workItemCount = 1;
|
---|
1972 | }
|
---|
1973 |
|
---|
1974 | fixed (Int64* arrAP = arrA)
|
---|
1975 | fixed (Int64* arrBP = arrB)
|
---|
1976 | fixed (Int64* retArrP = retArr) {
|
---|
1977 |
|
---|
1978 | for (; i < workItemCount - 1; i++) {
|
---|
1979 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
1980 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1981 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
1982 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
1983 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
1984 | }
|
---|
1985 | // the last (or may the only) chunk is done right here
|
---|
1986 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
1987 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
1988 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
1989 |
|
---|
1990 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
1991 | }
|
---|
1992 | #endregion
|
---|
1993 |
|
---|
1994 | return new ILRetArray<Int64>(retStorage);
|
---|
1995 | }
|
---|
1996 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
1997 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
1998 | /// <param name="A">Input array A</param>
|
---|
1999 | /// <param name="B">Input array B</param>
|
---|
2000 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
2001 | /// <item>
|
---|
2002 | /// <term>size(A) == size(B)</term>
|
---|
2003 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
2004 | /// </item>
|
---|
2005 | /// <item>
|
---|
2006 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
2007 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
2008 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
2009 | /// </item>
|
---|
2010 | /// <item>
|
---|
2011 | /// <term>All other cases</term>
|
---|
2012 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
2013 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
2014 | /// </item>
|
---|
2015 | /// </list></returns>
|
---|
2016 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
2017 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
2018 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
2019 | public unsafe static ILRetArray<Int32> apply(Func<Int32, Int32, Int32> func, ILInArray<Int32> A, ILInArray<Int32> B) {
|
---|
2020 | using (ILScope.Enter(A, B)) {
|
---|
2021 | int outLen;
|
---|
2022 | BinOpItMode mode;
|
---|
2023 |
|
---|
2024 | Int32[] retArr;
|
---|
2025 |
|
---|
2026 | Int32[] arrA = A.GetArrayForRead();
|
---|
2027 |
|
---|
2028 | Int32[] arrB = B.GetArrayForRead();
|
---|
2029 | ILSize outDims;
|
---|
2030 | #region determine operation mode
|
---|
2031 | if (A.IsScalar) {
|
---|
2032 | outDims = B.Size;
|
---|
2033 | if (B.IsScalar) {
|
---|
2034 |
|
---|
2035 | return new ILRetArray<Int32>(new Int32[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
2036 | } else if (B.IsEmpty) {
|
---|
2037 | return ILRetArray<Int32>.empty(outDims);
|
---|
2038 | } else {
|
---|
2039 | outLen = outDims.NumberOfElements;
|
---|
2040 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2041 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
2042 | mode = BinOpItMode.SAN;
|
---|
2043 | } else {
|
---|
2044 | mode = BinOpItMode.SAI;
|
---|
2045 | }
|
---|
2046 | }
|
---|
2047 | } else {
|
---|
2048 | outDims = A.Size;
|
---|
2049 | if (B.IsScalar) {
|
---|
2050 | if (A.IsEmpty) {
|
---|
2051 | return ILRetArray<Int32>.empty(A.Size);
|
---|
2052 | }
|
---|
2053 | outLen = A.S.NumberOfElements;
|
---|
2054 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2055 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
2056 | mode = BinOpItMode.ASN;
|
---|
2057 | } else {
|
---|
2058 | mode = BinOpItMode.ASI;
|
---|
2059 | }
|
---|
2060 | } else {
|
---|
2061 | // array + array
|
---|
2062 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
2063 | return applyEx(func,A,B);
|
---|
2064 | }
|
---|
2065 | outLen = A.S.NumberOfElements;
|
---|
2066 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
2067 | mode = BinOpItMode.AAIA;
|
---|
2068 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2069 | mode = BinOpItMode.AAIB;
|
---|
2070 | } else {
|
---|
2071 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
2072 | mode = BinOpItMode.AAN;
|
---|
2073 | }
|
---|
2074 | }
|
---|
2075 | }
|
---|
2076 | #endregion
|
---|
2077 | ILDenseStorage<Int32> retStorage = new ILDenseStorage<Int32>(retArr, outDims);
|
---|
2078 | int i = 0, workerCount = 1;
|
---|
2079 | Action<object> worker = data => {
|
---|
2080 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
2081 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
2082 |
|
---|
2083 | Int32* cLast, cp = (Int32*)range.Item5 + range.Item1;
|
---|
2084 |
|
---|
2085 | Int32 scalar;
|
---|
2086 | cLast = cp + range.Item2;
|
---|
2087 | #region loops
|
---|
2088 | switch (mode) {
|
---|
2089 | case BinOpItMode.AAIA:
|
---|
2090 |
|
---|
2091 | Int32* bp = ((Int32*)range.Item4 + range.Item1);
|
---|
2092 | while (cp < cLast) {
|
---|
2093 |
|
---|
2094 | *cp = func(*cp, *bp++);
|
---|
2095 | cp++;
|
---|
2096 | }
|
---|
2097 | break;
|
---|
2098 | case BinOpItMode.AAIB:
|
---|
2099 |
|
---|
2100 | Int32* ap = ((Int32*)range.Item3 + range.Item1);
|
---|
2101 | while (cp < cLast) {
|
---|
2102 |
|
---|
2103 | *cp = func(*ap++, *cp);
|
---|
2104 | cp++;
|
---|
2105 |
|
---|
2106 | }
|
---|
2107 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
2108 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
2109 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
2110 | //}
|
---|
2111 | //int ie = range.Item1 + range.Item2-1;
|
---|
2112 | //double[] locRetArr = retArr;
|
---|
2113 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
2114 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
2115 | // if (i2 >= ie) break;
|
---|
2116 | //}
|
---|
2117 |
|
---|
2118 | break;
|
---|
2119 | case BinOpItMode.AAN:
|
---|
2120 | ap = ((Int32*)range.Item3 + range.Item1);
|
---|
2121 | bp = ((Int32*)range.Item4 + range.Item1);
|
---|
2122 | while (cp < cLast) {
|
---|
2123 |
|
---|
2124 | *cp++ = func(*ap++, *bp++);
|
---|
2125 | }
|
---|
2126 | break;
|
---|
2127 | case BinOpItMode.ASI:
|
---|
2128 | scalar = *((Int32*)range.Item4);
|
---|
2129 | while (cp < cLast) {
|
---|
2130 |
|
---|
2131 | *cp = func(*cp, scalar);
|
---|
2132 | cp++;
|
---|
2133 | }
|
---|
2134 | break;
|
---|
2135 | case BinOpItMode.ASN:
|
---|
2136 | ap = ((Int32*)range.Item3 + range.Item1);
|
---|
2137 | scalar = *((Int32*)range.Item4);
|
---|
2138 | while (cp < cLast) {
|
---|
2139 |
|
---|
2140 | *cp++ = func(*ap++, scalar);
|
---|
2141 | }
|
---|
2142 | break;
|
---|
2143 | case BinOpItMode.SAI:
|
---|
2144 | scalar = *((Int32*)range.Item3);
|
---|
2145 | while (cp < cLast) {
|
---|
2146 |
|
---|
2147 | *cp = func(scalar, *cp);
|
---|
2148 | cp++;
|
---|
2149 | }
|
---|
2150 | break;
|
---|
2151 | case BinOpItMode.SAN:
|
---|
2152 | scalar = *((Int32*)range.Item3);
|
---|
2153 | bp = ((Int32*)range.Item4 + range.Item1);
|
---|
2154 | while (cp < cLast) {
|
---|
2155 |
|
---|
2156 | *cp++ = func(scalar, *bp++);
|
---|
2157 | }
|
---|
2158 | break;
|
---|
2159 | default:
|
---|
2160 | break;
|
---|
2161 | }
|
---|
2162 | #endregion
|
---|
2163 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
2164 | //retStorage.PendingEvents.Signal();
|
---|
2165 | };
|
---|
2166 |
|
---|
2167 | #region do the work
|
---|
2168 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
2169 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
2170 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
2171 | workItemLength = outLen / workItemCount;
|
---|
2172 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
2173 | } else {
|
---|
2174 | workItemLength = outLen / 2;
|
---|
2175 | workItemCount = 2;
|
---|
2176 | }
|
---|
2177 | } else {
|
---|
2178 | workItemLength = outLen;
|
---|
2179 | workItemCount = 1;
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
2183 |
|
---|
2184 | fixed ( Int32* arrAP = arrA)
|
---|
2185 | fixed ( Int32* arrBP = arrB)
|
---|
2186 | fixed ( Int32* retArrP = retArr) {
|
---|
2187 |
|
---|
2188 | for (; i < workItemCount - 1; i++) {
|
---|
2189 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
2190 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
2191 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
2192 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
2193 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
2194 | }
|
---|
2195 | // the last (or may the only) chunk is done right here
|
---|
2196 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
2197 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
2198 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
2199 |
|
---|
2200 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
2201 | return workerCount <= 0;
|
---|
2202 | });
|
---|
2203 | //while (workerCount > 0) ;
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | #endregion
|
---|
2207 | return new ILRetArray<Int32>(retStorage);
|
---|
2208 | }
|
---|
2209 | }
|
---|
2210 |
|
---|
2211 | private static unsafe ILRetArray<Int32> applyEx(Func<Int32, Int32, Int32> applyFunc, ILInArray<Int32> A, ILInArray<Int32> B) {
|
---|
2212 | #region parameter checking
|
---|
2213 | if (isnull(A) || isnull(B))
|
---|
2214 | return empty<Int32>(ILSize.Empty00);
|
---|
2215 | if (A.IsEmpty) {
|
---|
2216 | return empty<Int32>(B.S);
|
---|
2217 | } else if (B.IsEmpty) {
|
---|
2218 | return empty<Int32>(A.S);
|
---|
2219 | }
|
---|
2220 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
2221 | // return add(A,B);
|
---|
2222 | int dim = -1;
|
---|
2223 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
2224 | if (A.S[_L] != B.S[_L]) {
|
---|
2225 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
2226 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
2227 | }
|
---|
2228 | dim = _L;
|
---|
2229 | }
|
---|
2230 | }
|
---|
2231 | if (dim > 1)
|
---|
2232 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
2233 | #endregion
|
---|
2234 |
|
---|
2235 | #region parameter preparation
|
---|
2236 |
|
---|
2237 |
|
---|
2238 | Int32[] retArr;
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | Int32[] arrA = A.GetArrayForRead();
|
---|
2242 |
|
---|
2243 |
|
---|
2244 | Int32[] arrB = B.GetArrayForRead();
|
---|
2245 | ILSize outDims;
|
---|
2246 | BinOptItExMode mode;
|
---|
2247 | int arrInc = 0;
|
---|
2248 | int arrStepInc = 0;
|
---|
2249 | int dimLen = 0;
|
---|
2250 | if (A.IsVector) {
|
---|
2251 | outDims = B.S;
|
---|
2252 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2253 | retArr = ILMemoryPool.Pool.New<Int32>(outDims.NumberOfElements);
|
---|
2254 | mode = BinOptItExMode.VAN;
|
---|
2255 | } else {
|
---|
2256 | mode = BinOptItExMode.VAI;
|
---|
2257 | }
|
---|
2258 | dimLen = A.Length;
|
---|
2259 | } else if (B.IsVector) {
|
---|
2260 | outDims = A.S;
|
---|
2261 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2262 | retArr = ILMemoryPool.Pool.New<Int32>(outDims.NumberOfElements);
|
---|
2263 | mode = BinOptItExMode.AVN;
|
---|
2264 | } else {
|
---|
2265 | mode = BinOptItExMode.AVI;
|
---|
2266 | }
|
---|
2267 | dimLen = B.Length;
|
---|
2268 | } else {
|
---|
2269 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
2270 | }
|
---|
2271 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
2272 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
2273 | #endregion
|
---|
2274 |
|
---|
2275 | #region worker loops definition
|
---|
2276 | ILDenseStorage<Int32> retStorage = new ILDenseStorage<Int32>(retArr, outDims);
|
---|
2277 | int workerCount = 1;
|
---|
2278 | Action<object> worker = data => {
|
---|
2279 | // expects: iStart, iLen, ap, bp, cp
|
---|
2280 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
2281 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
2282 |
|
---|
2283 | Int32* ap;
|
---|
2284 |
|
---|
2285 | Int32* bp;
|
---|
2286 |
|
---|
2287 | Int32* cp;
|
---|
2288 | switch (mode) {
|
---|
2289 | case BinOptItExMode.VAN:
|
---|
2290 | for (int s = 0; s < range.Item2; s++) {
|
---|
2291 | ap = (Int32*)range.Item3;
|
---|
2292 | bp = (Int32*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
2293 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2294 | for (int l = 0; l < dimLen; l++) {
|
---|
2295 |
|
---|
2296 | *cp = applyFunc(*ap, *bp);
|
---|
2297 | ap++;
|
---|
2298 | bp += arrInc;
|
---|
2299 | cp += arrInc;
|
---|
2300 | }
|
---|
2301 | }
|
---|
2302 | break;
|
---|
2303 | case BinOptItExMode.VAI:
|
---|
2304 | for (int s = 0; s < range.Item2; s++) {
|
---|
2305 | ap = (Int32*)range.Item3;
|
---|
2306 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2307 | for (int l = 0; l < dimLen; l++) {
|
---|
2308 |
|
---|
2309 | *cp = applyFunc(*ap, *cp);
|
---|
2310 | ap++;
|
---|
2311 | cp += arrInc;
|
---|
2312 | }
|
---|
2313 | }
|
---|
2314 | break;
|
---|
2315 | case BinOptItExMode.AVN:
|
---|
2316 | for (int s = 0; s < range.Item2; s++) {
|
---|
2317 | ap = (Int32*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
2318 | bp = (Int32*)range.Item4;
|
---|
2319 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2320 | for (int l = 0; l < dimLen; l++) {
|
---|
2321 |
|
---|
2322 | *cp = applyFunc(*ap, *bp);
|
---|
2323 | ap += arrInc;
|
---|
2324 | bp++;
|
---|
2325 | cp += arrInc;
|
---|
2326 | }
|
---|
2327 | }
|
---|
2328 | break;
|
---|
2329 | case BinOptItExMode.AVI:
|
---|
2330 | for (int s = 0; s < range.Item2; s++) {
|
---|
2331 | bp = (Int32*)range.Item4;
|
---|
2332 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2333 | for (int l = 0; l < dimLen; l++) {
|
---|
2334 |
|
---|
2335 | *cp = applyFunc(*cp, *bp);
|
---|
2336 | bp++;
|
---|
2337 | cp += arrInc;
|
---|
2338 | }
|
---|
2339 | }
|
---|
2340 | break;
|
---|
2341 | }
|
---|
2342 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
2343 | };
|
---|
2344 | #endregion
|
---|
2345 |
|
---|
2346 | #region work distribution
|
---|
2347 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
2348 | int outLen = outDims.NumberOfElements;
|
---|
2349 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
2350 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
2351 | workItemLength = outLen / dimLen / workItemCount;
|
---|
2352 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
2353 | } else {
|
---|
2354 | workItemLength = outLen / dimLen / 2;
|
---|
2355 | workItemCount = 2;
|
---|
2356 | }
|
---|
2357 | } else {
|
---|
2358 | workItemLength = outLen / dimLen;
|
---|
2359 | workItemCount = 1;
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | fixed (Int32* arrAP = arrA)
|
---|
2363 | fixed (Int32* arrBP = arrB)
|
---|
2364 | fixed (Int32* retArrP = retArr) {
|
---|
2365 |
|
---|
2366 | for (; i < workItemCount - 1; i++) {
|
---|
2367 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
2368 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
2369 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
2370 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
2371 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
2372 | }
|
---|
2373 | // the last (or may the only) chunk is done right here
|
---|
2374 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
2375 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
2376 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
2377 |
|
---|
2378 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
2379 | }
|
---|
2380 | #endregion
|
---|
2381 |
|
---|
2382 | return new ILRetArray<Int32>(retStorage);
|
---|
2383 | }
|
---|
2384 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
2385 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
2386 | /// <param name="A">Input array A</param>
|
---|
2387 | /// <param name="B">Input array B</param>
|
---|
2388 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
2389 | /// <item>
|
---|
2390 | /// <term>size(A) == size(B)</term>
|
---|
2391 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
2392 | /// </item>
|
---|
2393 | /// <item>
|
---|
2394 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
2395 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
2396 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
2397 | /// </item>
|
---|
2398 | /// <item>
|
---|
2399 | /// <term>All other cases</term>
|
---|
2400 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
2401 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
2402 | /// </item>
|
---|
2403 | /// </list></returns>
|
---|
2404 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
2405 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
2406 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
2407 | public unsafe static ILRetArray<byte> apply(Func<byte, byte, byte> func, ILInArray<byte> A, ILInArray<byte> B) {
|
---|
2408 | using (ILScope.Enter(A, B)) {
|
---|
2409 | int outLen;
|
---|
2410 | BinOpItMode mode;
|
---|
2411 |
|
---|
2412 | byte[] retArr;
|
---|
2413 |
|
---|
2414 | byte[] arrA = A.GetArrayForRead();
|
---|
2415 |
|
---|
2416 | byte[] arrB = B.GetArrayForRead();
|
---|
2417 | ILSize outDims;
|
---|
2418 | #region determine operation mode
|
---|
2419 | if (A.IsScalar) {
|
---|
2420 | outDims = B.Size;
|
---|
2421 | if (B.IsScalar) {
|
---|
2422 |
|
---|
2423 | return new ILRetArray<byte>(new byte[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
2424 | } else if (B.IsEmpty) {
|
---|
2425 | return ILRetArray<byte>.empty(outDims);
|
---|
2426 | } else {
|
---|
2427 | outLen = outDims.NumberOfElements;
|
---|
2428 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2429 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
2430 | mode = BinOpItMode.SAN;
|
---|
2431 | } else {
|
---|
2432 | mode = BinOpItMode.SAI;
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 | } else {
|
---|
2436 | outDims = A.Size;
|
---|
2437 | if (B.IsScalar) {
|
---|
2438 | if (A.IsEmpty) {
|
---|
2439 | return ILRetArray<byte>.empty(A.Size);
|
---|
2440 | }
|
---|
2441 | outLen = A.S.NumberOfElements;
|
---|
2442 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2443 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
2444 | mode = BinOpItMode.ASN;
|
---|
2445 | } else {
|
---|
2446 | mode = BinOpItMode.ASI;
|
---|
2447 | }
|
---|
2448 | } else {
|
---|
2449 | // array + array
|
---|
2450 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
2451 | return applyEx(func,A,B);
|
---|
2452 | }
|
---|
2453 | outLen = A.S.NumberOfElements;
|
---|
2454 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
2455 | mode = BinOpItMode.AAIA;
|
---|
2456 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2457 | mode = BinOpItMode.AAIB;
|
---|
2458 | } else {
|
---|
2459 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
2460 | mode = BinOpItMode.AAN;
|
---|
2461 | }
|
---|
2462 | }
|
---|
2463 | }
|
---|
2464 | #endregion
|
---|
2465 | ILDenseStorage<byte> retStorage = new ILDenseStorage<byte>(retArr, outDims);
|
---|
2466 | int i = 0, workerCount = 1;
|
---|
2467 | Action<object> worker = data => {
|
---|
2468 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
2469 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
2470 |
|
---|
2471 | byte* cLast, cp = (byte*)range.Item5 + range.Item1;
|
---|
2472 |
|
---|
2473 | byte scalar;
|
---|
2474 | cLast = cp + range.Item2;
|
---|
2475 | #region loops
|
---|
2476 | switch (mode) {
|
---|
2477 | case BinOpItMode.AAIA:
|
---|
2478 |
|
---|
2479 | byte* bp = ((byte*)range.Item4 + range.Item1);
|
---|
2480 | while (cp < cLast) {
|
---|
2481 |
|
---|
2482 | *cp = func(*cp, *bp++);
|
---|
2483 | cp++;
|
---|
2484 | }
|
---|
2485 | break;
|
---|
2486 | case BinOpItMode.AAIB:
|
---|
2487 |
|
---|
2488 | byte* ap = ((byte*)range.Item3 + range.Item1);
|
---|
2489 | while (cp < cLast) {
|
---|
2490 |
|
---|
2491 | *cp = func(*ap++, *cp);
|
---|
2492 | cp++;
|
---|
2493 |
|
---|
2494 | }
|
---|
2495 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
2496 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
2497 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
2498 | //}
|
---|
2499 | //int ie = range.Item1 + range.Item2-1;
|
---|
2500 | //double[] locRetArr = retArr;
|
---|
2501 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
2502 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
2503 | // if (i2 >= ie) break;
|
---|
2504 | //}
|
---|
2505 |
|
---|
2506 | break;
|
---|
2507 | case BinOpItMode.AAN:
|
---|
2508 | ap = ((byte*)range.Item3 + range.Item1);
|
---|
2509 | bp = ((byte*)range.Item4 + range.Item1);
|
---|
2510 | while (cp < cLast) {
|
---|
2511 |
|
---|
2512 | *cp++ = func(*ap++, *bp++);
|
---|
2513 | }
|
---|
2514 | break;
|
---|
2515 | case BinOpItMode.ASI:
|
---|
2516 | scalar = *((byte*)range.Item4);
|
---|
2517 | while (cp < cLast) {
|
---|
2518 |
|
---|
2519 | *cp = func(*cp, scalar);
|
---|
2520 | cp++;
|
---|
2521 | }
|
---|
2522 | break;
|
---|
2523 | case BinOpItMode.ASN:
|
---|
2524 | ap = ((byte*)range.Item3 + range.Item1);
|
---|
2525 | scalar = *((byte*)range.Item4);
|
---|
2526 | while (cp < cLast) {
|
---|
2527 |
|
---|
2528 | *cp++ = func(*ap++, scalar);
|
---|
2529 | }
|
---|
2530 | break;
|
---|
2531 | case BinOpItMode.SAI:
|
---|
2532 | scalar = *((byte*)range.Item3);
|
---|
2533 | while (cp < cLast) {
|
---|
2534 |
|
---|
2535 | *cp = func(scalar, *cp);
|
---|
2536 | cp++;
|
---|
2537 | }
|
---|
2538 | break;
|
---|
2539 | case BinOpItMode.SAN:
|
---|
2540 | scalar = *((byte*)range.Item3);
|
---|
2541 | bp = ((byte*)range.Item4 + range.Item1);
|
---|
2542 | while (cp < cLast) {
|
---|
2543 |
|
---|
2544 | *cp++ = func(scalar, *bp++);
|
---|
2545 | }
|
---|
2546 | break;
|
---|
2547 | default:
|
---|
2548 | break;
|
---|
2549 | }
|
---|
2550 | #endregion
|
---|
2551 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
2552 | //retStorage.PendingEvents.Signal();
|
---|
2553 | };
|
---|
2554 |
|
---|
2555 | #region do the work
|
---|
2556 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
2557 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
2558 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
2559 | workItemLength = outLen / workItemCount;
|
---|
2560 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
2561 | } else {
|
---|
2562 | workItemLength = outLen / 2;
|
---|
2563 | workItemCount = 2;
|
---|
2564 | }
|
---|
2565 | } else {
|
---|
2566 | workItemLength = outLen;
|
---|
2567 | workItemCount = 1;
|
---|
2568 | }
|
---|
2569 |
|
---|
2570 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
2571 |
|
---|
2572 | fixed ( byte* arrAP = arrA)
|
---|
2573 | fixed ( byte* arrBP = arrB)
|
---|
2574 | fixed ( byte* retArrP = retArr) {
|
---|
2575 |
|
---|
2576 | for (; i < workItemCount - 1; i++) {
|
---|
2577 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
2578 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
2579 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
2580 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
2581 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
2582 | }
|
---|
2583 | // the last (or may the only) chunk is done right here
|
---|
2584 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
2585 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
2586 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
2587 |
|
---|
2588 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
2589 | return workerCount <= 0;
|
---|
2590 | });
|
---|
2591 | //while (workerCount > 0) ;
|
---|
2592 | }
|
---|
2593 |
|
---|
2594 | #endregion
|
---|
2595 | return new ILRetArray<byte>(retStorage);
|
---|
2596 | }
|
---|
2597 | }
|
---|
2598 |
|
---|
2599 | private static unsafe ILRetArray<byte> applyEx(Func<byte, byte, byte> applyFunc, ILInArray<byte> A, ILInArray<byte> B) {
|
---|
2600 | #region parameter checking
|
---|
2601 | if (isnull(A) || isnull(B))
|
---|
2602 | return empty<byte>(ILSize.Empty00);
|
---|
2603 | if (A.IsEmpty) {
|
---|
2604 | return empty<byte>(B.S);
|
---|
2605 | } else if (B.IsEmpty) {
|
---|
2606 | return empty<byte>(A.S);
|
---|
2607 | }
|
---|
2608 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
2609 | // return add(A,B);
|
---|
2610 | int dim = -1;
|
---|
2611 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
2612 | if (A.S[_L] != B.S[_L]) {
|
---|
2613 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
2614 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
2615 | }
|
---|
2616 | dim = _L;
|
---|
2617 | }
|
---|
2618 | }
|
---|
2619 | if (dim > 1)
|
---|
2620 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
2621 | #endregion
|
---|
2622 |
|
---|
2623 | #region parameter preparation
|
---|
2624 |
|
---|
2625 |
|
---|
2626 | byte[] retArr;
|
---|
2627 |
|
---|
2628 |
|
---|
2629 | byte[] arrA = A.GetArrayForRead();
|
---|
2630 |
|
---|
2631 |
|
---|
2632 | byte[] arrB = B.GetArrayForRead();
|
---|
2633 | ILSize outDims;
|
---|
2634 | BinOptItExMode mode;
|
---|
2635 | int arrInc = 0;
|
---|
2636 | int arrStepInc = 0;
|
---|
2637 | int dimLen = 0;
|
---|
2638 | if (A.IsVector) {
|
---|
2639 | outDims = B.S;
|
---|
2640 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2641 | retArr = ILMemoryPool.Pool.New<byte>(outDims.NumberOfElements);
|
---|
2642 | mode = BinOptItExMode.VAN;
|
---|
2643 | } else {
|
---|
2644 | mode = BinOptItExMode.VAI;
|
---|
2645 | }
|
---|
2646 | dimLen = A.Length;
|
---|
2647 | } else if (B.IsVector) {
|
---|
2648 | outDims = A.S;
|
---|
2649 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
2650 | retArr = ILMemoryPool.Pool.New<byte>(outDims.NumberOfElements);
|
---|
2651 | mode = BinOptItExMode.AVN;
|
---|
2652 | } else {
|
---|
2653 | mode = BinOptItExMode.AVI;
|
---|
2654 | }
|
---|
2655 | dimLen = B.Length;
|
---|
2656 | } else {
|
---|
2657 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
2658 | }
|
---|
2659 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
2660 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
2661 | #endregion
|
---|
2662 |
|
---|
2663 | #region worker loops definition
|
---|
2664 | ILDenseStorage<byte> retStorage = new ILDenseStorage<byte>(retArr, outDims);
|
---|
2665 | int workerCount = 1;
|
---|
2666 | Action<object> worker = data => {
|
---|
2667 | // expects: iStart, iLen, ap, bp, cp
|
---|
2668 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
2669 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
2670 |
|
---|
2671 | byte* ap;
|
---|
2672 |
|
---|
2673 | byte* bp;
|
---|
2674 |
|
---|
2675 | byte* cp;
|
---|
2676 | switch (mode) {
|
---|
2677 | case BinOptItExMode.VAN:
|
---|
2678 | for (int s = 0; s < range.Item2; s++) {
|
---|
2679 | ap = (byte*)range.Item3;
|
---|
2680 | bp = (byte*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
2681 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2682 | for (int l = 0; l < dimLen; l++) {
|
---|
2683 |
|
---|
2684 | *cp = applyFunc(*ap, *bp);
|
---|
2685 | ap++;
|
---|
2686 | bp += arrInc;
|
---|
2687 | cp += arrInc;
|
---|
2688 | }
|
---|
2689 | }
|
---|
2690 | break;
|
---|
2691 | case BinOptItExMode.VAI:
|
---|
2692 | for (int s = 0; s < range.Item2; s++) {
|
---|
2693 | ap = (byte*)range.Item3;
|
---|
2694 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2695 | for (int l = 0; l < dimLen; l++) {
|
---|
2696 |
|
---|
2697 | *cp = applyFunc(*ap, *cp);
|
---|
2698 | ap++;
|
---|
2699 | cp += arrInc;
|
---|
2700 | }
|
---|
2701 | }
|
---|
2702 | break;
|
---|
2703 | case BinOptItExMode.AVN:
|
---|
2704 | for (int s = 0; s < range.Item2; s++) {
|
---|
2705 | ap = (byte*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
2706 | bp = (byte*)range.Item4;
|
---|
2707 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2708 | for (int l = 0; l < dimLen; l++) {
|
---|
2709 |
|
---|
2710 | *cp = applyFunc(*ap, *bp);
|
---|
2711 | ap += arrInc;
|
---|
2712 | bp++;
|
---|
2713 | cp += arrInc;
|
---|
2714 | }
|
---|
2715 | }
|
---|
2716 | break;
|
---|
2717 | case BinOptItExMode.AVI:
|
---|
2718 | for (int s = 0; s < range.Item2; s++) {
|
---|
2719 | bp = (byte*)range.Item4;
|
---|
2720 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
2721 | for (int l = 0; l < dimLen; l++) {
|
---|
2722 |
|
---|
2723 | *cp = applyFunc(*cp, *bp);
|
---|
2724 | bp++;
|
---|
2725 | cp += arrInc;
|
---|
2726 | }
|
---|
2727 | }
|
---|
2728 | break;
|
---|
2729 | }
|
---|
2730 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
2731 | };
|
---|
2732 | #endregion
|
---|
2733 |
|
---|
2734 | #region work distribution
|
---|
2735 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
2736 | int outLen = outDims.NumberOfElements;
|
---|
2737 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
2738 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
2739 | workItemLength = outLen / dimLen / workItemCount;
|
---|
2740 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
2741 | } else {
|
---|
2742 | workItemLength = outLen / dimLen / 2;
|
---|
2743 | workItemCount = 2;
|
---|
2744 | }
|
---|
2745 | } else {
|
---|
2746 | workItemLength = outLen / dimLen;
|
---|
2747 | workItemCount = 1;
|
---|
2748 | }
|
---|
2749 |
|
---|
2750 | fixed (byte* arrAP = arrA)
|
---|
2751 | fixed (byte* arrBP = arrB)
|
---|
2752 | fixed (byte* retArrP = retArr) {
|
---|
2753 |
|
---|
2754 | for (; i < workItemCount - 1; i++) {
|
---|
2755 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
2756 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
2757 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
2758 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
2759 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
2760 | }
|
---|
2761 | // the last (or may the only) chunk is done right here
|
---|
2762 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
2763 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
2764 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
2765 |
|
---|
2766 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
2767 | }
|
---|
2768 | #endregion
|
---|
2769 |
|
---|
2770 | return new ILRetArray<byte>(retStorage);
|
---|
2771 | }
|
---|
2772 |
|
---|
2773 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
2774 |
|
---|
2775 | }
|
---|
2776 | } |
---|