[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics;
|
---|
| 44 | using ILNumerics.Exceptions;
|
---|
| 45 | using ILNumerics.Storage;
|
---|
| 46 | using ILNumerics.Misc;
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | namespace ILNumerics {
|
---|
| 50 | public partial class ILMath {
|
---|
| 51 |
|
---|
| 52 | |
---|
| 53 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 54 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 55 | /// <param name="A">Input array A</param>
|
---|
| 56 | /// <param name="B">Input array B</param>
|
---|
| 57 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 58 | /// <item>
|
---|
| 59 | /// <term>size(A) == size(B)</term>
|
---|
| 60 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 61 | /// </item>
|
---|
| 62 | /// <item>
|
---|
| 63 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 64 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 65 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 66 | /// </item>
|
---|
| 67 | /// <item>
|
---|
| 68 | /// <term>All other cases</term>
|
---|
| 69 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 70 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 71 | /// </item>
|
---|
| 72 | /// </list></returns>
|
---|
| 73 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 74 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 75 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 76 | public unsafe static ILRetArray<double> apply(Func<double, double, double> func, ILInArray<double> A, ILInArray<double> B) {
|
---|
| 77 | using (ILScope.Enter(A, B)) {
|
---|
| 78 | int outLen;
|
---|
| 79 | BinOpItMode mode;
|
---|
| 80 |
|
---|
| 81 | double[] retArr;
|
---|
| 82 |
|
---|
| 83 | double[] arrA = A.GetArrayForRead();
|
---|
| 84 |
|
---|
| 85 | double[] arrB = B.GetArrayForRead();
|
---|
| 86 | ILSize outDims;
|
---|
| 87 | #region determine operation mode
|
---|
| 88 | if (A.IsScalar) {
|
---|
| 89 | outDims = B.Size;
|
---|
| 90 | if (B.IsScalar) {
|
---|
| 91 |
|
---|
| 92 | return new ILRetArray<double>(new double[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 93 | } else if (B.IsEmpty) {
|
---|
| 94 | return ILRetArray<double>.empty(outDims);
|
---|
| 95 | } else {
|
---|
| 96 | outLen = outDims.NumberOfElements;
|
---|
| 97 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 98 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
| 99 | mode = BinOpItMode.SAN;
|
---|
| 100 | } else {
|
---|
| 101 | mode = BinOpItMode.SAI;
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 | } else {
|
---|
| 105 | outDims = A.Size;
|
---|
| 106 | if (B.IsScalar) {
|
---|
| 107 | if (A.IsEmpty) {
|
---|
| 108 | return ILRetArray<double>.empty(A.Size);
|
---|
| 109 | }
|
---|
| 110 | outLen = A.S.NumberOfElements;
|
---|
| 111 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 112 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
| 113 | mode = BinOpItMode.ASN;
|
---|
| 114 | } else {
|
---|
| 115 | mode = BinOpItMode.ASI;
|
---|
| 116 | }
|
---|
| 117 | } else {
|
---|
| 118 | // array + array
|
---|
| 119 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 120 | return applyEx(func,A,B);
|
---|
| 121 | }
|
---|
| 122 | outLen = A.S.NumberOfElements;
|
---|
| 123 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 124 | mode = BinOpItMode.AAIA;
|
---|
| 125 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 126 | mode = BinOpItMode.AAIB;
|
---|
| 127 | } else {
|
---|
| 128 | retArr = ILMemoryPool.Pool.New<double>(outLen);
|
---|
| 129 | mode = BinOpItMode.AAN;
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | #endregion
|
---|
| 134 | ILDenseStorage<double> retStorage = new ILDenseStorage<double>(retArr, outDims);
|
---|
| 135 | int i = 0, workerCount = 1;
|
---|
| 136 | Action<object> worker = data => {
|
---|
| 137 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 138 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 139 |
|
---|
| 140 | double* cLast, cp = (double*)range.Item5 + range.Item1;
|
---|
| 141 |
|
---|
| 142 | double scalar;
|
---|
| 143 | cLast = cp + range.Item2;
|
---|
| 144 | #region loops
|
---|
| 145 | switch (mode) {
|
---|
| 146 | case BinOpItMode.AAIA:
|
---|
| 147 |
|
---|
| 148 | double* bp = ((double*)range.Item4 + range.Item1);
|
---|
| 149 | while (cp < cLast) {
|
---|
| 150 |
|
---|
| 151 | *cp = func(*cp, *bp++);
|
---|
| 152 | cp++;
|
---|
| 153 | }
|
---|
| 154 | break;
|
---|
| 155 | case BinOpItMode.AAIB:
|
---|
| 156 |
|
---|
| 157 | double* ap = ((double*)range.Item3 + range.Item1);
|
---|
| 158 | while (cp < cLast) {
|
---|
| 159 |
|
---|
| 160 | *cp = func(*ap++, *cp);
|
---|
| 161 | cp++;
|
---|
| 162 |
|
---|
| 163 | }
|
---|
| 164 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 165 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 166 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 167 | //}
|
---|
| 168 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 169 | //double[] locRetArr = retArr;
|
---|
| 170 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 171 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 172 | // if (i2 >= ie) break;
|
---|
| 173 | //}
|
---|
| 174 |
|
---|
| 175 | break;
|
---|
| 176 | case BinOpItMode.AAN:
|
---|
| 177 | ap = ((double*)range.Item3 + range.Item1);
|
---|
| 178 | bp = ((double*)range.Item4 + range.Item1);
|
---|
| 179 | while (cp < cLast) {
|
---|
| 180 |
|
---|
| 181 | *cp++ = func(*ap++, *bp++);
|
---|
| 182 | }
|
---|
| 183 | break;
|
---|
| 184 | case BinOpItMode.ASI:
|
---|
| 185 | scalar = *((double*)range.Item4);
|
---|
| 186 | while (cp < cLast) {
|
---|
| 187 |
|
---|
| 188 | *cp = func(*cp, scalar);
|
---|
| 189 | cp++;
|
---|
| 190 | }
|
---|
| 191 | break;
|
---|
| 192 | case BinOpItMode.ASN:
|
---|
| 193 | ap = ((double*)range.Item3 + range.Item1);
|
---|
| 194 | scalar = *((double*)range.Item4);
|
---|
| 195 | while (cp < cLast) {
|
---|
| 196 |
|
---|
| 197 | *cp++ = func(*ap++, scalar);
|
---|
| 198 | }
|
---|
| 199 | break;
|
---|
| 200 | case BinOpItMode.SAI:
|
---|
| 201 | scalar = *((double*)range.Item3);
|
---|
| 202 | while (cp < cLast) {
|
---|
| 203 |
|
---|
| 204 | *cp = func(scalar, *cp);
|
---|
| 205 | cp++;
|
---|
| 206 | }
|
---|
| 207 | break;
|
---|
| 208 | case BinOpItMode.SAN:
|
---|
| 209 | scalar = *((double*)range.Item3);
|
---|
| 210 | bp = ((double*)range.Item4 + range.Item1);
|
---|
| 211 | while (cp < cLast) {
|
---|
| 212 |
|
---|
| 213 | *cp++ = func(scalar, *bp++);
|
---|
| 214 | }
|
---|
| 215 | break;
|
---|
| 216 | default:
|
---|
| 217 | break;
|
---|
| 218 | }
|
---|
| 219 | #endregion
|
---|
| 220 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 221 | //retStorage.PendingEvents.Signal();
|
---|
| 222 | };
|
---|
| 223 |
|
---|
| 224 | #region do the work
|
---|
| 225 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 226 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 227 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 228 | workItemLength = outLen / workItemCount;
|
---|
| 229 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 230 | } else {
|
---|
| 231 | workItemLength = outLen / 2;
|
---|
| 232 | workItemCount = 2;
|
---|
| 233 | }
|
---|
| 234 | } else {
|
---|
| 235 | workItemLength = outLen;
|
---|
| 236 | workItemCount = 1;
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 240 |
|
---|
| 241 | fixed ( double* arrAP = arrA)
|
---|
| 242 | fixed ( double* arrBP = arrB)
|
---|
| 243 | fixed ( double* retArrP = retArr) {
|
---|
| 244 |
|
---|
| 245 | for (; i < workItemCount - 1; i++) {
|
---|
| 246 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 247 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 248 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 249 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 250 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 251 | }
|
---|
| 252 | // the last (or may the only) chunk is done right here
|
---|
| 253 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 254 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 255 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 256 |
|
---|
| 257 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 258 | return workerCount <= 0;
|
---|
| 259 | });
|
---|
| 260 | //while (workerCount > 0) ;
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | #endregion
|
---|
| 264 | return new ILRetArray<double>(retStorage);
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | private static unsafe ILRetArray<double> applyEx(Func<double, double, double> applyFunc, ILInArray<double> A, ILInArray<double> B) {
|
---|
| 269 | #region parameter checking
|
---|
| 270 | if (isnull(A) || isnull(B))
|
---|
| 271 | return empty<double>(ILSize.Empty00);
|
---|
| 272 | if (A.IsEmpty) {
|
---|
| 273 | return empty<double>(B.S);
|
---|
| 274 | } else if (B.IsEmpty) {
|
---|
| 275 | return empty<double>(A.S);
|
---|
| 276 | }
|
---|
| 277 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 278 | // return add(A,B);
|
---|
| 279 | int dim = -1;
|
---|
| 280 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 281 | if (A.S[_L] != B.S[_L]) {
|
---|
| 282 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 283 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 284 | }
|
---|
| 285 | dim = _L;
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 | if (dim > 1)
|
---|
| 289 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 290 | #endregion
|
---|
| 291 |
|
---|
| 292 | #region parameter preparation
|
---|
| 293 |
|
---|
| 294 |
|
---|
| 295 | double[] retArr;
|
---|
| 296 |
|
---|
| 297 |
|
---|
| 298 | double[] arrA = A.GetArrayForRead();
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | double[] arrB = B.GetArrayForRead();
|
---|
| 302 | ILSize outDims;
|
---|
| 303 | BinOptItExMode mode;
|
---|
| 304 | int arrInc = 0;
|
---|
| 305 | int arrStepInc = 0;
|
---|
| 306 | int dimLen = 0;
|
---|
| 307 | if (A.IsVector) {
|
---|
| 308 | outDims = B.S;
|
---|
| 309 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 310 | retArr = ILMemoryPool.Pool.New<double>(outDims.NumberOfElements);
|
---|
| 311 | mode = BinOptItExMode.VAN;
|
---|
| 312 | } else {
|
---|
| 313 | mode = BinOptItExMode.VAI;
|
---|
| 314 | }
|
---|
| 315 | dimLen = A.Length;
|
---|
| 316 | } else if (B.IsVector) {
|
---|
| 317 | outDims = A.S;
|
---|
| 318 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 319 | retArr = ILMemoryPool.Pool.New<double>(outDims.NumberOfElements);
|
---|
| 320 | mode = BinOptItExMode.AVN;
|
---|
| 321 | } else {
|
---|
| 322 | mode = BinOptItExMode.AVI;
|
---|
| 323 | }
|
---|
| 324 | dimLen = B.Length;
|
---|
| 325 | } else {
|
---|
| 326 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 327 | }
|
---|
| 328 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 329 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 330 | #endregion
|
---|
| 331 |
|
---|
| 332 | #region worker loops definition
|
---|
| 333 | ILDenseStorage<double> retStorage = new ILDenseStorage<double>(retArr, outDims);
|
---|
| 334 | int workerCount = 1;
|
---|
| 335 | Action<object> worker = data => {
|
---|
| 336 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 337 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 338 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 339 |
|
---|
| 340 | double* ap;
|
---|
| 341 |
|
---|
| 342 | double* bp;
|
---|
| 343 |
|
---|
| 344 | double* cp;
|
---|
| 345 | switch (mode) {
|
---|
| 346 | case BinOptItExMode.VAN:
|
---|
| 347 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 348 | ap = (double*)range.Item3;
|
---|
| 349 | bp = (double*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 350 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 351 | for (int l = 0; l < dimLen; l++) {
|
---|
| 352 |
|
---|
| 353 | *cp = applyFunc(*ap, *bp);
|
---|
| 354 | ap++;
|
---|
| 355 | bp += arrInc;
|
---|
| 356 | cp += arrInc;
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 | break;
|
---|
| 360 | case BinOptItExMode.VAI:
|
---|
| 361 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 362 | ap = (double*)range.Item3;
|
---|
| 363 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 364 | for (int l = 0; l < dimLen; l++) {
|
---|
| 365 |
|
---|
| 366 | *cp = applyFunc(*ap, *cp);
|
---|
| 367 | ap++;
|
---|
| 368 | cp += arrInc;
|
---|
| 369 | }
|
---|
| 370 | }
|
---|
| 371 | break;
|
---|
| 372 | case BinOptItExMode.AVN:
|
---|
| 373 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 374 | ap = (double*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 375 | bp = (double*)range.Item4;
|
---|
| 376 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 377 | for (int l = 0; l < dimLen; l++) {
|
---|
| 378 |
|
---|
| 379 | *cp = applyFunc(*ap, *bp);
|
---|
| 380 | ap += arrInc;
|
---|
| 381 | bp++;
|
---|
| 382 | cp += arrInc;
|
---|
| 383 | }
|
---|
| 384 | }
|
---|
| 385 | break;
|
---|
| 386 | case BinOptItExMode.AVI:
|
---|
| 387 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 388 | bp = (double*)range.Item4;
|
---|
| 389 | cp = (double*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 390 | for (int l = 0; l < dimLen; l++) {
|
---|
| 391 |
|
---|
| 392 | *cp = applyFunc(*cp, *bp);
|
---|
| 393 | bp++;
|
---|
| 394 | cp += arrInc;
|
---|
| 395 | }
|
---|
| 396 | }
|
---|
| 397 | break;
|
---|
| 398 | }
|
---|
| 399 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 400 | };
|
---|
| 401 | #endregion
|
---|
| 402 |
|
---|
| 403 | #region work distribution
|
---|
| 404 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 405 | int outLen = outDims.NumberOfElements;
|
---|
| 406 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 407 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 408 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 409 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 410 | } else {
|
---|
| 411 | workItemLength = outLen / dimLen / 2;
|
---|
| 412 | workItemCount = 2;
|
---|
| 413 | }
|
---|
| 414 | } else {
|
---|
| 415 | workItemLength = outLen / dimLen;
|
---|
| 416 | workItemCount = 1;
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 | fixed (double* arrAP = arrA)
|
---|
| 420 | fixed (double* arrBP = arrB)
|
---|
| 421 | fixed (double* retArrP = retArr) {
|
---|
| 422 |
|
---|
| 423 | for (; i < workItemCount - 1; i++) {
|
---|
| 424 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 425 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 426 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 427 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 428 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 429 | }
|
---|
| 430 | // the last (or may the only) chunk is done right here
|
---|
| 431 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 432 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 433 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 434 |
|
---|
| 435 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 436 | }
|
---|
| 437 | #endregion
|
---|
| 438 |
|
---|
| 439 | return new ILRetArray<double>(retStorage);
|
---|
| 440 | }
|
---|
| 441 | |
---|
| 442 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 443 | |
---|
| 444 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 445 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 446 | /// <param name="A">Input array A</param>
|
---|
| 447 | /// <param name="B">Input array B</param>
|
---|
| 448 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 449 | /// <item>
|
---|
| 450 | /// <term>size(A) == size(B)</term>
|
---|
| 451 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 452 | /// </item>
|
---|
| 453 | /// <item>
|
---|
| 454 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 455 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 456 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 457 | /// </item>
|
---|
| 458 | /// <item>
|
---|
| 459 | /// <term>All other cases</term>
|
---|
| 460 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 461 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 462 | /// </item>
|
---|
| 463 | /// </list></returns>
|
---|
| 464 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 465 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 466 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 467 | public unsafe static ILRetArray<float> apply(Func<float, float, float> func, ILInArray<float> A, ILInArray<float> B) {
|
---|
| 468 | using (ILScope.Enter(A, B)) {
|
---|
| 469 | int outLen;
|
---|
| 470 | BinOpItMode mode;
|
---|
| 471 |
|
---|
| 472 | float[] retArr;
|
---|
| 473 |
|
---|
| 474 | float[] arrA = A.GetArrayForRead();
|
---|
| 475 |
|
---|
| 476 | float[] arrB = B.GetArrayForRead();
|
---|
| 477 | ILSize outDims;
|
---|
| 478 | #region determine operation mode
|
---|
| 479 | if (A.IsScalar) {
|
---|
| 480 | outDims = B.Size;
|
---|
| 481 | if (B.IsScalar) {
|
---|
| 482 |
|
---|
| 483 | return new ILRetArray<float>(new float[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 484 | } else if (B.IsEmpty) {
|
---|
| 485 | return ILRetArray<float>.empty(outDims);
|
---|
| 486 | } else {
|
---|
| 487 | outLen = outDims.NumberOfElements;
|
---|
| 488 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 489 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
| 490 | mode = BinOpItMode.SAN;
|
---|
| 491 | } else {
|
---|
| 492 | mode = BinOpItMode.SAI;
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | } else {
|
---|
| 496 | outDims = A.Size;
|
---|
| 497 | if (B.IsScalar) {
|
---|
| 498 | if (A.IsEmpty) {
|
---|
| 499 | return ILRetArray<float>.empty(A.Size);
|
---|
| 500 | }
|
---|
| 501 | outLen = A.S.NumberOfElements;
|
---|
| 502 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 503 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
| 504 | mode = BinOpItMode.ASN;
|
---|
| 505 | } else {
|
---|
| 506 | mode = BinOpItMode.ASI;
|
---|
| 507 | }
|
---|
| 508 | } else {
|
---|
| 509 | // array + array
|
---|
| 510 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 511 | return applyEx(func,A,B);
|
---|
| 512 | }
|
---|
| 513 | outLen = A.S.NumberOfElements;
|
---|
| 514 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 515 | mode = BinOpItMode.AAIA;
|
---|
| 516 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 517 | mode = BinOpItMode.AAIB;
|
---|
| 518 | } else {
|
---|
| 519 | retArr = ILMemoryPool.Pool.New<float>(outLen);
|
---|
| 520 | mode = BinOpItMode.AAN;
|
---|
| 521 | }
|
---|
| 522 | }
|
---|
| 523 | }
|
---|
| 524 | #endregion
|
---|
| 525 | ILDenseStorage<float> retStorage = new ILDenseStorage<float>(retArr, outDims);
|
---|
| 526 | int i = 0, workerCount = 1;
|
---|
| 527 | Action<object> worker = data => {
|
---|
| 528 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 529 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 530 |
|
---|
| 531 | float* cLast, cp = (float*)range.Item5 + range.Item1;
|
---|
| 532 |
|
---|
| 533 | float scalar;
|
---|
| 534 | cLast = cp + range.Item2;
|
---|
| 535 | #region loops
|
---|
| 536 | switch (mode) {
|
---|
| 537 | case BinOpItMode.AAIA:
|
---|
| 538 |
|
---|
| 539 | float* bp = ((float*)range.Item4 + range.Item1);
|
---|
| 540 | while (cp < cLast) {
|
---|
| 541 |
|
---|
| 542 | *cp = func(*cp, *bp++);
|
---|
| 543 | cp++;
|
---|
| 544 | }
|
---|
| 545 | break;
|
---|
| 546 | case BinOpItMode.AAIB:
|
---|
| 547 |
|
---|
| 548 | float* ap = ((float*)range.Item3 + range.Item1);
|
---|
| 549 | while (cp < cLast) {
|
---|
| 550 |
|
---|
| 551 | *cp = func(*ap++, *cp);
|
---|
| 552 | cp++;
|
---|
| 553 |
|
---|
| 554 | }
|
---|
| 555 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 556 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 557 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 558 | //}
|
---|
| 559 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 560 | //double[] locRetArr = retArr;
|
---|
| 561 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 562 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 563 | // if (i2 >= ie) break;
|
---|
| 564 | //}
|
---|
| 565 |
|
---|
| 566 | break;
|
---|
| 567 | case BinOpItMode.AAN:
|
---|
| 568 | ap = ((float*)range.Item3 + range.Item1);
|
---|
| 569 | bp = ((float*)range.Item4 + range.Item1);
|
---|
| 570 | while (cp < cLast) {
|
---|
| 571 |
|
---|
| 572 | *cp++ = func(*ap++, *bp++);
|
---|
| 573 | }
|
---|
| 574 | break;
|
---|
| 575 | case BinOpItMode.ASI:
|
---|
| 576 | scalar = *((float*)range.Item4);
|
---|
| 577 | while (cp < cLast) {
|
---|
| 578 |
|
---|
| 579 | *cp = func(*cp, scalar);
|
---|
| 580 | cp++;
|
---|
| 581 | }
|
---|
| 582 | break;
|
---|
| 583 | case BinOpItMode.ASN:
|
---|
| 584 | ap = ((float*)range.Item3 + range.Item1);
|
---|
| 585 | scalar = *((float*)range.Item4);
|
---|
| 586 | while (cp < cLast) {
|
---|
| 587 |
|
---|
| 588 | *cp++ = func(*ap++, scalar);
|
---|
| 589 | }
|
---|
| 590 | break;
|
---|
| 591 | case BinOpItMode.SAI:
|
---|
| 592 | scalar = *((float*)range.Item3);
|
---|
| 593 | while (cp < cLast) {
|
---|
| 594 |
|
---|
| 595 | *cp = func(scalar, *cp);
|
---|
| 596 | cp++;
|
---|
| 597 | }
|
---|
| 598 | break;
|
---|
| 599 | case BinOpItMode.SAN:
|
---|
| 600 | scalar = *((float*)range.Item3);
|
---|
| 601 | bp = ((float*)range.Item4 + range.Item1);
|
---|
| 602 | while (cp < cLast) {
|
---|
| 603 |
|
---|
| 604 | *cp++ = func(scalar, *bp++);
|
---|
| 605 | }
|
---|
| 606 | break;
|
---|
| 607 | default:
|
---|
| 608 | break;
|
---|
| 609 | }
|
---|
| 610 | #endregion
|
---|
| 611 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 612 | //retStorage.PendingEvents.Signal();
|
---|
| 613 | };
|
---|
| 614 |
|
---|
| 615 | #region do the work
|
---|
| 616 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 617 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 618 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 619 | workItemLength = outLen / workItemCount;
|
---|
| 620 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 621 | } else {
|
---|
| 622 | workItemLength = outLen / 2;
|
---|
| 623 | workItemCount = 2;
|
---|
| 624 | }
|
---|
| 625 | } else {
|
---|
| 626 | workItemLength = outLen;
|
---|
| 627 | workItemCount = 1;
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 631 |
|
---|
| 632 | fixed ( float* arrAP = arrA)
|
---|
| 633 | fixed ( float* arrBP = arrB)
|
---|
| 634 | fixed ( float* retArrP = retArr) {
|
---|
| 635 |
|
---|
| 636 | for (; i < workItemCount - 1; i++) {
|
---|
| 637 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 638 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 639 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 640 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 641 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 642 | }
|
---|
| 643 | // the last (or may the only) chunk is done right here
|
---|
| 644 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 645 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 646 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 647 |
|
---|
| 648 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 649 | return workerCount <= 0;
|
---|
| 650 | });
|
---|
| 651 | //while (workerCount > 0) ;
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | #endregion
|
---|
| 655 | return new ILRetArray<float>(retStorage);
|
---|
| 656 | }
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | private static unsafe ILRetArray<float> applyEx(Func<float, float, float> applyFunc, ILInArray<float> A, ILInArray<float> B) {
|
---|
| 660 | #region parameter checking
|
---|
| 661 | if (isnull(A) || isnull(B))
|
---|
| 662 | return empty<float>(ILSize.Empty00);
|
---|
| 663 | if (A.IsEmpty) {
|
---|
| 664 | return empty<float>(B.S);
|
---|
| 665 | } else if (B.IsEmpty) {
|
---|
| 666 | return empty<float>(A.S);
|
---|
| 667 | }
|
---|
| 668 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 669 | // return add(A,B);
|
---|
| 670 | int dim = -1;
|
---|
| 671 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 672 | if (A.S[_L] != B.S[_L]) {
|
---|
| 673 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 674 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 675 | }
|
---|
| 676 | dim = _L;
|
---|
| 677 | }
|
---|
| 678 | }
|
---|
| 679 | if (dim > 1)
|
---|
| 680 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 681 | #endregion
|
---|
| 682 |
|
---|
| 683 | #region parameter preparation
|
---|
| 684 |
|
---|
| 685 |
|
---|
| 686 | float[] retArr;
|
---|
| 687 |
|
---|
| 688 |
|
---|
| 689 | float[] arrA = A.GetArrayForRead();
|
---|
| 690 |
|
---|
| 691 |
|
---|
| 692 | float[] arrB = B.GetArrayForRead();
|
---|
| 693 | ILSize outDims;
|
---|
| 694 | BinOptItExMode mode;
|
---|
| 695 | int arrInc = 0;
|
---|
| 696 | int arrStepInc = 0;
|
---|
| 697 | int dimLen = 0;
|
---|
| 698 | if (A.IsVector) {
|
---|
| 699 | outDims = B.S;
|
---|
| 700 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 701 | retArr = ILMemoryPool.Pool.New<float>(outDims.NumberOfElements);
|
---|
| 702 | mode = BinOptItExMode.VAN;
|
---|
| 703 | } else {
|
---|
| 704 | mode = BinOptItExMode.VAI;
|
---|
| 705 | }
|
---|
| 706 | dimLen = A.Length;
|
---|
| 707 | } else if (B.IsVector) {
|
---|
| 708 | outDims = A.S;
|
---|
| 709 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 710 | retArr = ILMemoryPool.Pool.New<float>(outDims.NumberOfElements);
|
---|
| 711 | mode = BinOptItExMode.AVN;
|
---|
| 712 | } else {
|
---|
| 713 | mode = BinOptItExMode.AVI;
|
---|
| 714 | }
|
---|
| 715 | dimLen = B.Length;
|
---|
| 716 | } else {
|
---|
| 717 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 718 | }
|
---|
| 719 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 720 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 721 | #endregion
|
---|
| 722 |
|
---|
| 723 | #region worker loops definition
|
---|
| 724 | ILDenseStorage<float> retStorage = new ILDenseStorage<float>(retArr, outDims);
|
---|
| 725 | int workerCount = 1;
|
---|
| 726 | Action<object> worker = data => {
|
---|
| 727 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 728 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 729 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 730 |
|
---|
| 731 | float* ap;
|
---|
| 732 |
|
---|
| 733 | float* bp;
|
---|
| 734 |
|
---|
| 735 | float* cp;
|
---|
| 736 | switch (mode) {
|
---|
| 737 | case BinOptItExMode.VAN:
|
---|
| 738 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 739 | ap = (float*)range.Item3;
|
---|
| 740 | bp = (float*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 741 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 742 | for (int l = 0; l < dimLen; l++) {
|
---|
| 743 |
|
---|
| 744 | *cp = applyFunc(*ap, *bp);
|
---|
| 745 | ap++;
|
---|
| 746 | bp += arrInc;
|
---|
| 747 | cp += arrInc;
|
---|
| 748 | }
|
---|
| 749 | }
|
---|
| 750 | break;
|
---|
| 751 | case BinOptItExMode.VAI:
|
---|
| 752 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 753 | ap = (float*)range.Item3;
|
---|
| 754 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 755 | for (int l = 0; l < dimLen; l++) {
|
---|
| 756 |
|
---|
| 757 | *cp = applyFunc(*ap, *cp);
|
---|
| 758 | ap++;
|
---|
| 759 | cp += arrInc;
|
---|
| 760 | }
|
---|
| 761 | }
|
---|
| 762 | break;
|
---|
| 763 | case BinOptItExMode.AVN:
|
---|
| 764 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 765 | ap = (float*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 766 | bp = (float*)range.Item4;
|
---|
| 767 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 768 | for (int l = 0; l < dimLen; l++) {
|
---|
| 769 |
|
---|
| 770 | *cp = applyFunc(*ap, *bp);
|
---|
| 771 | ap += arrInc;
|
---|
| 772 | bp++;
|
---|
| 773 | cp += arrInc;
|
---|
| 774 | }
|
---|
| 775 | }
|
---|
| 776 | break;
|
---|
| 777 | case BinOptItExMode.AVI:
|
---|
| 778 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 779 | bp = (float*)range.Item4;
|
---|
| 780 | cp = (float*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 781 | for (int l = 0; l < dimLen; l++) {
|
---|
| 782 |
|
---|
| 783 | *cp = applyFunc(*cp, *bp);
|
---|
| 784 | bp++;
|
---|
| 785 | cp += arrInc;
|
---|
| 786 | }
|
---|
| 787 | }
|
---|
| 788 | break;
|
---|
| 789 | }
|
---|
| 790 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 791 | };
|
---|
| 792 | #endregion
|
---|
| 793 |
|
---|
| 794 | #region work distribution
|
---|
| 795 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 796 | int outLen = outDims.NumberOfElements;
|
---|
| 797 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 798 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 799 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 800 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 801 | } else {
|
---|
| 802 | workItemLength = outLen / dimLen / 2;
|
---|
| 803 | workItemCount = 2;
|
---|
| 804 | }
|
---|
| 805 | } else {
|
---|
| 806 | workItemLength = outLen / dimLen;
|
---|
| 807 | workItemCount = 1;
|
---|
| 808 | }
|
---|
| 809 |
|
---|
| 810 | fixed (float* arrAP = arrA)
|
---|
| 811 | fixed (float* arrBP = arrB)
|
---|
| 812 | fixed (float* retArrP = retArr) {
|
---|
| 813 |
|
---|
| 814 | for (; i < workItemCount - 1; i++) {
|
---|
| 815 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 816 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 817 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 818 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 819 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 820 | }
|
---|
| 821 | // the last (or may the only) chunk is done right here
|
---|
| 822 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 823 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 824 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 825 |
|
---|
| 826 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 827 | }
|
---|
| 828 | #endregion
|
---|
| 829 |
|
---|
| 830 | return new ILRetArray<float>(retStorage);
|
---|
| 831 | }
|
---|
| 832 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 833 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 834 | /// <param name="A">Input array A</param>
|
---|
| 835 | /// <param name="B">Input array B</param>
|
---|
| 836 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 837 | /// <item>
|
---|
| 838 | /// <term>size(A) == size(B)</term>
|
---|
| 839 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 840 | /// </item>
|
---|
| 841 | /// <item>
|
---|
| 842 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 843 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 844 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 845 | /// </item>
|
---|
| 846 | /// <item>
|
---|
| 847 | /// <term>All other cases</term>
|
---|
| 848 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 849 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 850 | /// </item>
|
---|
| 851 | /// </list></returns>
|
---|
| 852 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 853 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 854 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 855 | public unsafe static ILRetArray<fcomplex> apply(Func<fcomplex, fcomplex, fcomplex> func, ILInArray<fcomplex> A, ILInArray<fcomplex> B) {
|
---|
| 856 | using (ILScope.Enter(A, B)) {
|
---|
| 857 | int outLen;
|
---|
| 858 | BinOpItMode mode;
|
---|
| 859 |
|
---|
| 860 | fcomplex[] retArr;
|
---|
| 861 |
|
---|
| 862 | fcomplex[] arrA = A.GetArrayForRead();
|
---|
| 863 |
|
---|
| 864 | fcomplex[] arrB = B.GetArrayForRead();
|
---|
| 865 | ILSize outDims;
|
---|
| 866 | #region determine operation mode
|
---|
| 867 | if (A.IsScalar) {
|
---|
| 868 | outDims = B.Size;
|
---|
| 869 | if (B.IsScalar) {
|
---|
| 870 |
|
---|
| 871 | return new ILRetArray<fcomplex>(new fcomplex[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 872 | } else if (B.IsEmpty) {
|
---|
| 873 | return ILRetArray<fcomplex>.empty(outDims);
|
---|
| 874 | } else {
|
---|
| 875 | outLen = outDims.NumberOfElements;
|
---|
| 876 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 877 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
| 878 | mode = BinOpItMode.SAN;
|
---|
| 879 | } else {
|
---|
| 880 | mode = BinOpItMode.SAI;
|
---|
| 881 | }
|
---|
| 882 | }
|
---|
| 883 | } else {
|
---|
| 884 | outDims = A.Size;
|
---|
| 885 | if (B.IsScalar) {
|
---|
| 886 | if (A.IsEmpty) {
|
---|
| 887 | return ILRetArray<fcomplex>.empty(A.Size);
|
---|
| 888 | }
|
---|
| 889 | outLen = A.S.NumberOfElements;
|
---|
| 890 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 891 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
| 892 | mode = BinOpItMode.ASN;
|
---|
| 893 | } else {
|
---|
| 894 | mode = BinOpItMode.ASI;
|
---|
| 895 | }
|
---|
| 896 | } else {
|
---|
| 897 | // array + array
|
---|
| 898 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 899 | return applyEx(func,A,B);
|
---|
| 900 | }
|
---|
| 901 | outLen = A.S.NumberOfElements;
|
---|
| 902 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 903 | mode = BinOpItMode.AAIA;
|
---|
| 904 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 905 | mode = BinOpItMode.AAIB;
|
---|
| 906 | } else {
|
---|
| 907 | retArr = ILMemoryPool.Pool.New<fcomplex>(outLen);
|
---|
| 908 | mode = BinOpItMode.AAN;
|
---|
| 909 | }
|
---|
| 910 | }
|
---|
| 911 | }
|
---|
| 912 | #endregion
|
---|
| 913 | ILDenseStorage<fcomplex> retStorage = new ILDenseStorage<fcomplex>(retArr, outDims);
|
---|
| 914 | int i = 0, workerCount = 1;
|
---|
| 915 | Action<object> worker = data => {
|
---|
| 916 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 917 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 918 |
|
---|
| 919 | fcomplex* cLast, cp = (fcomplex*)range.Item5 + range.Item1;
|
---|
| 920 |
|
---|
| 921 | fcomplex scalar;
|
---|
| 922 | cLast = cp + range.Item2;
|
---|
| 923 | #region loops
|
---|
| 924 | switch (mode) {
|
---|
| 925 | case BinOpItMode.AAIA:
|
---|
| 926 |
|
---|
| 927 | fcomplex* bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
| 928 | while (cp < cLast) {
|
---|
| 929 |
|
---|
| 930 | *cp = func(*cp, *bp++);
|
---|
| 931 | cp++;
|
---|
| 932 | }
|
---|
| 933 | break;
|
---|
| 934 | case BinOpItMode.AAIB:
|
---|
| 935 |
|
---|
| 936 | fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
| 937 | while (cp < cLast) {
|
---|
| 938 |
|
---|
| 939 | *cp = func(*ap++, *cp);
|
---|
| 940 | cp++;
|
---|
| 941 |
|
---|
| 942 | }
|
---|
| 943 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 944 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 945 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 946 | //}
|
---|
| 947 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 948 | //double[] locRetArr = retArr;
|
---|
| 949 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 950 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 951 | // if (i2 >= ie) break;
|
---|
| 952 | //}
|
---|
| 953 |
|
---|
| 954 | break;
|
---|
| 955 | case BinOpItMode.AAN:
|
---|
| 956 | ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
| 957 | bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
| 958 | while (cp < cLast) {
|
---|
| 959 |
|
---|
| 960 | *cp++ = func(*ap++, *bp++);
|
---|
| 961 | }
|
---|
| 962 | break;
|
---|
| 963 | case BinOpItMode.ASI:
|
---|
| 964 | scalar = *((fcomplex*)range.Item4);
|
---|
| 965 | while (cp < cLast) {
|
---|
| 966 |
|
---|
| 967 | *cp = func(*cp, scalar);
|
---|
| 968 | cp++;
|
---|
| 969 | }
|
---|
| 970 | break;
|
---|
| 971 | case BinOpItMode.ASN:
|
---|
| 972 | ap = ((fcomplex*)range.Item3 + range.Item1);
|
---|
| 973 | scalar = *((fcomplex*)range.Item4);
|
---|
| 974 | while (cp < cLast) {
|
---|
| 975 |
|
---|
| 976 | *cp++ = func(*ap++, scalar);
|
---|
| 977 | }
|
---|
| 978 | break;
|
---|
| 979 | case BinOpItMode.SAI:
|
---|
| 980 | scalar = *((fcomplex*)range.Item3);
|
---|
| 981 | while (cp < cLast) {
|
---|
| 982 |
|
---|
| 983 | *cp = func(scalar, *cp);
|
---|
| 984 | cp++;
|
---|
| 985 | }
|
---|
| 986 | break;
|
---|
| 987 | case BinOpItMode.SAN:
|
---|
| 988 | scalar = *((fcomplex*)range.Item3);
|
---|
| 989 | bp = ((fcomplex*)range.Item4 + range.Item1);
|
---|
| 990 | while (cp < cLast) {
|
---|
| 991 |
|
---|
| 992 | *cp++ = func(scalar, *bp++);
|
---|
| 993 | }
|
---|
| 994 | break;
|
---|
| 995 | default:
|
---|
| 996 | break;
|
---|
| 997 | }
|
---|
| 998 | #endregion
|
---|
| 999 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1000 | //retStorage.PendingEvents.Signal();
|
---|
| 1001 | };
|
---|
| 1002 |
|
---|
| 1003 | #region do the work
|
---|
| 1004 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1005 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 1006 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1007 | workItemLength = outLen / workItemCount;
|
---|
| 1008 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1009 | } else {
|
---|
| 1010 | workItemLength = outLen / 2;
|
---|
| 1011 | workItemCount = 2;
|
---|
| 1012 | }
|
---|
| 1013 | } else {
|
---|
| 1014 | workItemLength = outLen;
|
---|
| 1015 | workItemCount = 1;
|
---|
| 1016 | }
|
---|
| 1017 |
|
---|
| 1018 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 1019 |
|
---|
| 1020 | fixed ( fcomplex* arrAP = arrA)
|
---|
| 1021 | fixed ( fcomplex* arrBP = arrB)
|
---|
| 1022 | fixed ( fcomplex* retArrP = retArr) {
|
---|
| 1023 |
|
---|
| 1024 | for (; i < workItemCount - 1; i++) {
|
---|
| 1025 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 1026 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1027 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 1028 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1029 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1030 | }
|
---|
| 1031 | // the last (or may the only) chunk is done right here
|
---|
| 1032 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1033 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1034 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 1035 |
|
---|
| 1036 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 1037 | return workerCount <= 0;
|
---|
| 1038 | });
|
---|
| 1039 | //while (workerCount > 0) ;
|
---|
| 1040 | }
|
---|
| 1041 |
|
---|
| 1042 | #endregion
|
---|
| 1043 | return new ILRetArray<fcomplex>(retStorage);
|
---|
| 1044 | }
|
---|
| 1045 | }
|
---|
| 1046 |
|
---|
| 1047 | private static unsafe ILRetArray<fcomplex> applyEx(Func<fcomplex, fcomplex, fcomplex> applyFunc, ILInArray<fcomplex> A, ILInArray<fcomplex> B) {
|
---|
| 1048 | #region parameter checking
|
---|
| 1049 | if (isnull(A) || isnull(B))
|
---|
| 1050 | return empty<fcomplex>(ILSize.Empty00);
|
---|
| 1051 | if (A.IsEmpty) {
|
---|
| 1052 | return empty<fcomplex>(B.S);
|
---|
| 1053 | } else if (B.IsEmpty) {
|
---|
| 1054 | return empty<fcomplex>(A.S);
|
---|
| 1055 | }
|
---|
| 1056 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 1057 | // return add(A,B);
|
---|
| 1058 | int dim = -1;
|
---|
| 1059 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 1060 | if (A.S[_L] != B.S[_L]) {
|
---|
| 1061 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 1062 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 1063 | }
|
---|
| 1064 | dim = _L;
|
---|
| 1065 | }
|
---|
| 1066 | }
|
---|
| 1067 | if (dim > 1)
|
---|
| 1068 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 1069 | #endregion
|
---|
| 1070 |
|
---|
| 1071 | #region parameter preparation
|
---|
| 1072 |
|
---|
| 1073 |
|
---|
| 1074 | fcomplex[] retArr;
|
---|
| 1075 |
|
---|
| 1076 |
|
---|
| 1077 | fcomplex[] arrA = A.GetArrayForRead();
|
---|
| 1078 |
|
---|
| 1079 |
|
---|
| 1080 | fcomplex[] arrB = B.GetArrayForRead();
|
---|
| 1081 | ILSize outDims;
|
---|
| 1082 | BinOptItExMode mode;
|
---|
| 1083 | int arrInc = 0;
|
---|
| 1084 | int arrStepInc = 0;
|
---|
| 1085 | int dimLen = 0;
|
---|
| 1086 | if (A.IsVector) {
|
---|
| 1087 | outDims = B.S;
|
---|
| 1088 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1089 | retArr = ILMemoryPool.Pool.New<fcomplex>(outDims.NumberOfElements);
|
---|
| 1090 | mode = BinOptItExMode.VAN;
|
---|
| 1091 | } else {
|
---|
| 1092 | mode = BinOptItExMode.VAI;
|
---|
| 1093 | }
|
---|
| 1094 | dimLen = A.Length;
|
---|
| 1095 | } else if (B.IsVector) {
|
---|
| 1096 | outDims = A.S;
|
---|
| 1097 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1098 | retArr = ILMemoryPool.Pool.New<fcomplex>(outDims.NumberOfElements);
|
---|
| 1099 | mode = BinOptItExMode.AVN;
|
---|
| 1100 | } else {
|
---|
| 1101 | mode = BinOptItExMode.AVI;
|
---|
| 1102 | }
|
---|
| 1103 | dimLen = B.Length;
|
---|
| 1104 | } else {
|
---|
| 1105 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 1106 | }
|
---|
| 1107 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 1108 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 1109 | #endregion
|
---|
| 1110 |
|
---|
| 1111 | #region worker loops definition
|
---|
| 1112 | ILDenseStorage<fcomplex> retStorage = new ILDenseStorage<fcomplex>(retArr, outDims);
|
---|
| 1113 | int workerCount = 1;
|
---|
| 1114 | Action<object> worker = data => {
|
---|
| 1115 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 1116 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 1117 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 1118 |
|
---|
| 1119 | fcomplex* ap;
|
---|
| 1120 |
|
---|
| 1121 | fcomplex* bp;
|
---|
| 1122 |
|
---|
| 1123 | fcomplex* cp;
|
---|
| 1124 | switch (mode) {
|
---|
| 1125 | case BinOptItExMode.VAN:
|
---|
| 1126 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1127 | ap = (fcomplex*)range.Item3;
|
---|
| 1128 | bp = (fcomplex*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 1129 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1130 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1131 |
|
---|
| 1132 | *cp = applyFunc(*ap, *bp);
|
---|
| 1133 | ap++;
|
---|
| 1134 | bp += arrInc;
|
---|
| 1135 | cp += arrInc;
|
---|
| 1136 | }
|
---|
| 1137 | }
|
---|
| 1138 | break;
|
---|
| 1139 | case BinOptItExMode.VAI:
|
---|
| 1140 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1141 | ap = (fcomplex*)range.Item3;
|
---|
| 1142 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1143 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1144 |
|
---|
| 1145 | *cp = applyFunc(*ap, *cp);
|
---|
| 1146 | ap++;
|
---|
| 1147 | cp += arrInc;
|
---|
| 1148 | }
|
---|
| 1149 | }
|
---|
| 1150 | break;
|
---|
| 1151 | case BinOptItExMode.AVN:
|
---|
| 1152 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1153 | ap = (fcomplex*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 1154 | bp = (fcomplex*)range.Item4;
|
---|
| 1155 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1156 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1157 |
|
---|
| 1158 | *cp = applyFunc(*ap, *bp);
|
---|
| 1159 | ap += arrInc;
|
---|
| 1160 | bp++;
|
---|
| 1161 | cp += arrInc;
|
---|
| 1162 | }
|
---|
| 1163 | }
|
---|
| 1164 | break;
|
---|
| 1165 | case BinOptItExMode.AVI:
|
---|
| 1166 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1167 | bp = (fcomplex*)range.Item4;
|
---|
| 1168 | cp = (fcomplex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1169 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1170 |
|
---|
| 1171 | *cp = applyFunc(*cp, *bp);
|
---|
| 1172 | bp++;
|
---|
| 1173 | cp += arrInc;
|
---|
| 1174 | }
|
---|
| 1175 | }
|
---|
| 1176 | break;
|
---|
| 1177 | }
|
---|
| 1178 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1179 | };
|
---|
| 1180 | #endregion
|
---|
| 1181 |
|
---|
| 1182 | #region work distribution
|
---|
| 1183 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1184 | int outLen = outDims.NumberOfElements;
|
---|
| 1185 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 1186 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1187 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 1188 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1189 | } else {
|
---|
| 1190 | workItemLength = outLen / dimLen / 2;
|
---|
| 1191 | workItemCount = 2;
|
---|
| 1192 | }
|
---|
| 1193 | } else {
|
---|
| 1194 | workItemLength = outLen / dimLen;
|
---|
| 1195 | workItemCount = 1;
|
---|
| 1196 | }
|
---|
| 1197 |
|
---|
| 1198 | fixed (fcomplex* arrAP = arrA)
|
---|
| 1199 | fixed (fcomplex* arrBP = arrB)
|
---|
| 1200 | fixed (fcomplex* retArrP = retArr) {
|
---|
| 1201 |
|
---|
| 1202 | for (; i < workItemCount - 1; i++) {
|
---|
| 1203 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 1204 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1205 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 1206 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1207 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1208 | }
|
---|
| 1209 | // the last (or may the only) chunk is done right here
|
---|
| 1210 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1211 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1212 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 1213 |
|
---|
| 1214 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 1215 | }
|
---|
| 1216 | #endregion
|
---|
| 1217 |
|
---|
| 1218 | return new ILRetArray<fcomplex>(retStorage);
|
---|
| 1219 | }
|
---|
| 1220 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 1221 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 1222 | /// <param name="A">Input array A</param>
|
---|
| 1223 | /// <param name="B">Input array B</param>
|
---|
| 1224 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 1225 | /// <item>
|
---|
| 1226 | /// <term>size(A) == size(B)</term>
|
---|
| 1227 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 1228 | /// </item>
|
---|
| 1229 | /// <item>
|
---|
| 1230 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 1231 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 1232 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 1233 | /// </item>
|
---|
| 1234 | /// <item>
|
---|
| 1235 | /// <term>All other cases</term>
|
---|
| 1236 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 1237 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 1238 | /// </item>
|
---|
| 1239 | /// </list></returns>
|
---|
| 1240 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 1241 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 1242 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 1243 | public unsafe static ILRetArray<complex> apply(Func<complex, complex, complex> func, ILInArray<complex> A, ILInArray<complex> B) {
|
---|
| 1244 | using (ILScope.Enter(A, B)) {
|
---|
| 1245 | int outLen;
|
---|
| 1246 | BinOpItMode mode;
|
---|
| 1247 |
|
---|
| 1248 | complex[] retArr;
|
---|
| 1249 |
|
---|
| 1250 | complex[] arrA = A.GetArrayForRead();
|
---|
| 1251 |
|
---|
| 1252 | complex[] arrB = B.GetArrayForRead();
|
---|
| 1253 | ILSize outDims;
|
---|
| 1254 | #region determine operation mode
|
---|
| 1255 | if (A.IsScalar) {
|
---|
| 1256 | outDims = B.Size;
|
---|
| 1257 | if (B.IsScalar) {
|
---|
| 1258 |
|
---|
| 1259 | return new ILRetArray<complex>(new complex[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 1260 | } else if (B.IsEmpty) {
|
---|
| 1261 | return ILRetArray<complex>.empty(outDims);
|
---|
| 1262 | } else {
|
---|
| 1263 | outLen = outDims.NumberOfElements;
|
---|
| 1264 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1265 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
| 1266 | mode = BinOpItMode.SAN;
|
---|
| 1267 | } else {
|
---|
| 1268 | mode = BinOpItMode.SAI;
|
---|
| 1269 | }
|
---|
| 1270 | }
|
---|
| 1271 | } else {
|
---|
| 1272 | outDims = A.Size;
|
---|
| 1273 | if (B.IsScalar) {
|
---|
| 1274 | if (A.IsEmpty) {
|
---|
| 1275 | return ILRetArray<complex>.empty(A.Size);
|
---|
| 1276 | }
|
---|
| 1277 | outLen = A.S.NumberOfElements;
|
---|
| 1278 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1279 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
| 1280 | mode = BinOpItMode.ASN;
|
---|
| 1281 | } else {
|
---|
| 1282 | mode = BinOpItMode.ASI;
|
---|
| 1283 | }
|
---|
| 1284 | } else {
|
---|
| 1285 | // array + array
|
---|
| 1286 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 1287 | return applyEx(func,A,B);
|
---|
| 1288 | }
|
---|
| 1289 | outLen = A.S.NumberOfElements;
|
---|
| 1290 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 1291 | mode = BinOpItMode.AAIA;
|
---|
| 1292 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1293 | mode = BinOpItMode.AAIB;
|
---|
| 1294 | } else {
|
---|
| 1295 | retArr = ILMemoryPool.Pool.New<complex>(outLen);
|
---|
| 1296 | mode = BinOpItMode.AAN;
|
---|
| 1297 | }
|
---|
| 1298 | }
|
---|
| 1299 | }
|
---|
| 1300 | #endregion
|
---|
| 1301 | ILDenseStorage<complex> retStorage = new ILDenseStorage<complex>(retArr, outDims);
|
---|
| 1302 | int i = 0, workerCount = 1;
|
---|
| 1303 | Action<object> worker = data => {
|
---|
| 1304 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 1305 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 1306 |
|
---|
| 1307 | complex* cLast, cp = (complex*)range.Item5 + range.Item1;
|
---|
| 1308 |
|
---|
| 1309 | complex scalar;
|
---|
| 1310 | cLast = cp + range.Item2;
|
---|
| 1311 | #region loops
|
---|
| 1312 | switch (mode) {
|
---|
| 1313 | case BinOpItMode.AAIA:
|
---|
| 1314 |
|
---|
| 1315 | complex* bp = ((complex*)range.Item4 + range.Item1);
|
---|
| 1316 | while (cp < cLast) {
|
---|
| 1317 |
|
---|
| 1318 | *cp = func(*cp, *bp++);
|
---|
| 1319 | cp++;
|
---|
| 1320 | }
|
---|
| 1321 | break;
|
---|
| 1322 | case BinOpItMode.AAIB:
|
---|
| 1323 |
|
---|
| 1324 | complex* ap = ((complex*)range.Item3 + range.Item1);
|
---|
| 1325 | while (cp < cLast) {
|
---|
| 1326 |
|
---|
| 1327 | *cp = func(*ap++, *cp);
|
---|
| 1328 | cp++;
|
---|
| 1329 |
|
---|
| 1330 | }
|
---|
| 1331 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 1332 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 1333 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 1334 | //}
|
---|
| 1335 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 1336 | //double[] locRetArr = retArr;
|
---|
| 1337 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 1338 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 1339 | // if (i2 >= ie) break;
|
---|
| 1340 | //}
|
---|
| 1341 |
|
---|
| 1342 | break;
|
---|
| 1343 | case BinOpItMode.AAN:
|
---|
| 1344 | ap = ((complex*)range.Item3 + range.Item1);
|
---|
| 1345 | bp = ((complex*)range.Item4 + range.Item1);
|
---|
| 1346 | while (cp < cLast) {
|
---|
| 1347 |
|
---|
| 1348 | *cp++ = func(*ap++, *bp++);
|
---|
| 1349 | }
|
---|
| 1350 | break;
|
---|
| 1351 | case BinOpItMode.ASI:
|
---|
| 1352 | scalar = *((complex*)range.Item4);
|
---|
| 1353 | while (cp < cLast) {
|
---|
| 1354 |
|
---|
| 1355 | *cp = func(*cp, scalar);
|
---|
| 1356 | cp++;
|
---|
| 1357 | }
|
---|
| 1358 | break;
|
---|
| 1359 | case BinOpItMode.ASN:
|
---|
| 1360 | ap = ((complex*)range.Item3 + range.Item1);
|
---|
| 1361 | scalar = *((complex*)range.Item4);
|
---|
| 1362 | while (cp < cLast) {
|
---|
| 1363 |
|
---|
| 1364 | *cp++ = func(*ap++, scalar);
|
---|
| 1365 | }
|
---|
| 1366 | break;
|
---|
| 1367 | case BinOpItMode.SAI:
|
---|
| 1368 | scalar = *((complex*)range.Item3);
|
---|
| 1369 | while (cp < cLast) {
|
---|
| 1370 |
|
---|
| 1371 | *cp = func(scalar, *cp);
|
---|
| 1372 | cp++;
|
---|
| 1373 | }
|
---|
| 1374 | break;
|
---|
| 1375 | case BinOpItMode.SAN:
|
---|
| 1376 | scalar = *((complex*)range.Item3);
|
---|
| 1377 | bp = ((complex*)range.Item4 + range.Item1);
|
---|
| 1378 | while (cp < cLast) {
|
---|
| 1379 |
|
---|
| 1380 | *cp++ = func(scalar, *bp++);
|
---|
| 1381 | }
|
---|
| 1382 | break;
|
---|
| 1383 | default:
|
---|
| 1384 | break;
|
---|
| 1385 | }
|
---|
| 1386 | #endregion
|
---|
| 1387 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1388 | //retStorage.PendingEvents.Signal();
|
---|
| 1389 | };
|
---|
| 1390 |
|
---|
| 1391 | #region do the work
|
---|
| 1392 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1393 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 1394 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1395 | workItemLength = outLen / workItemCount;
|
---|
| 1396 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1397 | } else {
|
---|
| 1398 | workItemLength = outLen / 2;
|
---|
| 1399 | workItemCount = 2;
|
---|
| 1400 | }
|
---|
| 1401 | } else {
|
---|
| 1402 | workItemLength = outLen;
|
---|
| 1403 | workItemCount = 1;
|
---|
| 1404 | }
|
---|
| 1405 |
|
---|
| 1406 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 1407 |
|
---|
| 1408 | fixed ( complex* arrAP = arrA)
|
---|
| 1409 | fixed ( complex* arrBP = arrB)
|
---|
| 1410 | fixed ( complex* retArrP = retArr) {
|
---|
| 1411 |
|
---|
| 1412 | for (; i < workItemCount - 1; i++) {
|
---|
| 1413 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 1414 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1415 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 1416 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1417 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1418 | }
|
---|
| 1419 | // the last (or may the only) chunk is done right here
|
---|
| 1420 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1421 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1422 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 1423 |
|
---|
| 1424 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 1425 | return workerCount <= 0;
|
---|
| 1426 | });
|
---|
| 1427 | //while (workerCount > 0) ;
|
---|
| 1428 | }
|
---|
| 1429 |
|
---|
| 1430 | #endregion
|
---|
| 1431 | return new ILRetArray<complex>(retStorage);
|
---|
| 1432 | }
|
---|
| 1433 | }
|
---|
| 1434 |
|
---|
| 1435 | private static unsafe ILRetArray<complex> applyEx(Func<complex, complex, complex> applyFunc, ILInArray<complex> A, ILInArray<complex> B) {
|
---|
| 1436 | #region parameter checking
|
---|
| 1437 | if (isnull(A) || isnull(B))
|
---|
| 1438 | return empty<complex>(ILSize.Empty00);
|
---|
| 1439 | if (A.IsEmpty) {
|
---|
| 1440 | return empty<complex>(B.S);
|
---|
| 1441 | } else if (B.IsEmpty) {
|
---|
| 1442 | return empty<complex>(A.S);
|
---|
| 1443 | }
|
---|
| 1444 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 1445 | // return add(A,B);
|
---|
| 1446 | int dim = -1;
|
---|
| 1447 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 1448 | if (A.S[_L] != B.S[_L]) {
|
---|
| 1449 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 1450 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 1451 | }
|
---|
| 1452 | dim = _L;
|
---|
| 1453 | }
|
---|
| 1454 | }
|
---|
| 1455 | if (dim > 1)
|
---|
| 1456 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 1457 | #endregion
|
---|
| 1458 |
|
---|
| 1459 | #region parameter preparation
|
---|
| 1460 |
|
---|
| 1461 |
|
---|
| 1462 | complex[] retArr;
|
---|
| 1463 |
|
---|
| 1464 |
|
---|
| 1465 | complex[] arrA = A.GetArrayForRead();
|
---|
| 1466 |
|
---|
| 1467 |
|
---|
| 1468 | complex[] arrB = B.GetArrayForRead();
|
---|
| 1469 | ILSize outDims;
|
---|
| 1470 | BinOptItExMode mode;
|
---|
| 1471 | int arrInc = 0;
|
---|
| 1472 | int arrStepInc = 0;
|
---|
| 1473 | int dimLen = 0;
|
---|
| 1474 | if (A.IsVector) {
|
---|
| 1475 | outDims = B.S;
|
---|
| 1476 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1477 | retArr = ILMemoryPool.Pool.New<complex>(outDims.NumberOfElements);
|
---|
| 1478 | mode = BinOptItExMode.VAN;
|
---|
| 1479 | } else {
|
---|
| 1480 | mode = BinOptItExMode.VAI;
|
---|
| 1481 | }
|
---|
| 1482 | dimLen = A.Length;
|
---|
| 1483 | } else if (B.IsVector) {
|
---|
| 1484 | outDims = A.S;
|
---|
| 1485 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1486 | retArr = ILMemoryPool.Pool.New<complex>(outDims.NumberOfElements);
|
---|
| 1487 | mode = BinOptItExMode.AVN;
|
---|
| 1488 | } else {
|
---|
| 1489 | mode = BinOptItExMode.AVI;
|
---|
| 1490 | }
|
---|
| 1491 | dimLen = B.Length;
|
---|
| 1492 | } else {
|
---|
| 1493 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 1494 | }
|
---|
| 1495 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 1496 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 1497 | #endregion
|
---|
| 1498 |
|
---|
| 1499 | #region worker loops definition
|
---|
| 1500 | ILDenseStorage<complex> retStorage = new ILDenseStorage<complex>(retArr, outDims);
|
---|
| 1501 | int workerCount = 1;
|
---|
| 1502 | Action<object> worker = data => {
|
---|
| 1503 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 1504 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 1505 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 1506 |
|
---|
| 1507 | complex* ap;
|
---|
| 1508 |
|
---|
| 1509 | complex* bp;
|
---|
| 1510 |
|
---|
| 1511 | complex* cp;
|
---|
| 1512 | switch (mode) {
|
---|
| 1513 | case BinOptItExMode.VAN:
|
---|
| 1514 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1515 | ap = (complex*)range.Item3;
|
---|
| 1516 | bp = (complex*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 1517 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1518 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1519 |
|
---|
| 1520 | *cp = applyFunc(*ap, *bp);
|
---|
| 1521 | ap++;
|
---|
| 1522 | bp += arrInc;
|
---|
| 1523 | cp += arrInc;
|
---|
| 1524 | }
|
---|
| 1525 | }
|
---|
| 1526 | break;
|
---|
| 1527 | case BinOptItExMode.VAI:
|
---|
| 1528 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1529 | ap = (complex*)range.Item3;
|
---|
| 1530 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1531 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1532 |
|
---|
| 1533 | *cp = applyFunc(*ap, *cp);
|
---|
| 1534 | ap++;
|
---|
| 1535 | cp += arrInc;
|
---|
| 1536 | }
|
---|
| 1537 | }
|
---|
| 1538 | break;
|
---|
| 1539 | case BinOptItExMode.AVN:
|
---|
| 1540 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1541 | ap = (complex*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 1542 | bp = (complex*)range.Item4;
|
---|
| 1543 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1544 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1545 |
|
---|
| 1546 | *cp = applyFunc(*ap, *bp);
|
---|
| 1547 | ap += arrInc;
|
---|
| 1548 | bp++;
|
---|
| 1549 | cp += arrInc;
|
---|
| 1550 | }
|
---|
| 1551 | }
|
---|
| 1552 | break;
|
---|
| 1553 | case BinOptItExMode.AVI:
|
---|
| 1554 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1555 | bp = (complex*)range.Item4;
|
---|
| 1556 | cp = (complex*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1557 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1558 |
|
---|
| 1559 | *cp = applyFunc(*cp, *bp);
|
---|
| 1560 | bp++;
|
---|
| 1561 | cp += arrInc;
|
---|
| 1562 | }
|
---|
| 1563 | }
|
---|
| 1564 | break;
|
---|
| 1565 | }
|
---|
| 1566 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1567 | };
|
---|
| 1568 | #endregion
|
---|
| 1569 |
|
---|
| 1570 | #region work distribution
|
---|
| 1571 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1572 | int outLen = outDims.NumberOfElements;
|
---|
| 1573 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 1574 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1575 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 1576 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1577 | } else {
|
---|
| 1578 | workItemLength = outLen / dimLen / 2;
|
---|
| 1579 | workItemCount = 2;
|
---|
| 1580 | }
|
---|
| 1581 | } else {
|
---|
| 1582 | workItemLength = outLen / dimLen;
|
---|
| 1583 | workItemCount = 1;
|
---|
| 1584 | }
|
---|
| 1585 |
|
---|
| 1586 | fixed (complex* arrAP = arrA)
|
---|
| 1587 | fixed (complex* arrBP = arrB)
|
---|
| 1588 | fixed (complex* retArrP = retArr) {
|
---|
| 1589 |
|
---|
| 1590 | for (; i < workItemCount - 1; i++) {
|
---|
| 1591 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 1592 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1593 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 1594 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1595 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1596 | }
|
---|
| 1597 | // the last (or may the only) chunk is done right here
|
---|
| 1598 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1599 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1600 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 1601 |
|
---|
| 1602 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 1603 | }
|
---|
| 1604 | #endregion
|
---|
| 1605 |
|
---|
| 1606 | return new ILRetArray<complex>(retStorage);
|
---|
| 1607 | }
|
---|
| 1608 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 1609 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 1610 | /// <param name="A">Input array A</param>
|
---|
| 1611 | /// <param name="B">Input array B</param>
|
---|
| 1612 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 1613 | /// <item>
|
---|
| 1614 | /// <term>size(A) == size(B)</term>
|
---|
| 1615 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 1616 | /// </item>
|
---|
| 1617 | /// <item>
|
---|
| 1618 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 1619 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 1620 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 1621 | /// </item>
|
---|
| 1622 | /// <item>
|
---|
| 1623 | /// <term>All other cases</term>
|
---|
| 1624 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 1625 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 1626 | /// </item>
|
---|
| 1627 | /// </list></returns>
|
---|
| 1628 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 1629 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 1630 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 1631 | public unsafe static ILRetArray<Int64> apply(Func<Int64, Int64, Int64> func, ILInArray<Int64> A, ILInArray<Int64> B) {
|
---|
| 1632 | using (ILScope.Enter(A, B)) {
|
---|
| 1633 | int outLen;
|
---|
| 1634 | BinOpItMode mode;
|
---|
| 1635 |
|
---|
| 1636 | Int64[] retArr;
|
---|
| 1637 |
|
---|
| 1638 | Int64[] arrA = A.GetArrayForRead();
|
---|
| 1639 |
|
---|
| 1640 | Int64[] arrB = B.GetArrayForRead();
|
---|
| 1641 | ILSize outDims;
|
---|
| 1642 | #region determine operation mode
|
---|
| 1643 | if (A.IsScalar) {
|
---|
| 1644 | outDims = B.Size;
|
---|
| 1645 | if (B.IsScalar) {
|
---|
| 1646 |
|
---|
| 1647 | return new ILRetArray<Int64>(new Int64[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 1648 | } else if (B.IsEmpty) {
|
---|
| 1649 | return ILRetArray<Int64>.empty(outDims);
|
---|
| 1650 | } else {
|
---|
| 1651 | outLen = outDims.NumberOfElements;
|
---|
| 1652 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1653 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
| 1654 | mode = BinOpItMode.SAN;
|
---|
| 1655 | } else {
|
---|
| 1656 | mode = BinOpItMode.SAI;
|
---|
| 1657 | }
|
---|
| 1658 | }
|
---|
| 1659 | } else {
|
---|
| 1660 | outDims = A.Size;
|
---|
| 1661 | if (B.IsScalar) {
|
---|
| 1662 | if (A.IsEmpty) {
|
---|
| 1663 | return ILRetArray<Int64>.empty(A.Size);
|
---|
| 1664 | }
|
---|
| 1665 | outLen = A.S.NumberOfElements;
|
---|
| 1666 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1667 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
| 1668 | mode = BinOpItMode.ASN;
|
---|
| 1669 | } else {
|
---|
| 1670 | mode = BinOpItMode.ASI;
|
---|
| 1671 | }
|
---|
| 1672 | } else {
|
---|
| 1673 | // array + array
|
---|
| 1674 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 1675 | return applyEx(func,A,B);
|
---|
| 1676 | }
|
---|
| 1677 | outLen = A.S.NumberOfElements;
|
---|
| 1678 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 1679 | mode = BinOpItMode.AAIA;
|
---|
| 1680 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1681 | mode = BinOpItMode.AAIB;
|
---|
| 1682 | } else {
|
---|
| 1683 | retArr = ILMemoryPool.Pool.New<Int64>(outLen);
|
---|
| 1684 | mode = BinOpItMode.AAN;
|
---|
| 1685 | }
|
---|
| 1686 | }
|
---|
| 1687 | }
|
---|
| 1688 | #endregion
|
---|
| 1689 | ILDenseStorage<Int64> retStorage = new ILDenseStorage<Int64>(retArr, outDims);
|
---|
| 1690 | int i = 0, workerCount = 1;
|
---|
| 1691 | Action<object> worker = data => {
|
---|
| 1692 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 1693 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 1694 |
|
---|
| 1695 | Int64* cLast, cp = (Int64*)range.Item5 + range.Item1;
|
---|
| 1696 |
|
---|
| 1697 | Int64 scalar;
|
---|
| 1698 | cLast = cp + range.Item2;
|
---|
| 1699 | #region loops
|
---|
| 1700 | switch (mode) {
|
---|
| 1701 | case BinOpItMode.AAIA:
|
---|
| 1702 |
|
---|
| 1703 | Int64* bp = ((Int64*)range.Item4 + range.Item1);
|
---|
| 1704 | while (cp < cLast) {
|
---|
| 1705 |
|
---|
| 1706 | *cp = func(*cp, *bp++);
|
---|
| 1707 | cp++;
|
---|
| 1708 | }
|
---|
| 1709 | break;
|
---|
| 1710 | case BinOpItMode.AAIB:
|
---|
| 1711 |
|
---|
| 1712 | Int64* ap = ((Int64*)range.Item3 + range.Item1);
|
---|
| 1713 | while (cp < cLast) {
|
---|
| 1714 |
|
---|
| 1715 | *cp = func(*ap++, *cp);
|
---|
| 1716 | cp++;
|
---|
| 1717 |
|
---|
| 1718 | }
|
---|
| 1719 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 1720 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 1721 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 1722 | //}
|
---|
| 1723 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 1724 | //double[] locRetArr = retArr;
|
---|
| 1725 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 1726 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 1727 | // if (i2 >= ie) break;
|
---|
| 1728 | //}
|
---|
| 1729 |
|
---|
| 1730 | break;
|
---|
| 1731 | case BinOpItMode.AAN:
|
---|
| 1732 | ap = ((Int64*)range.Item3 + range.Item1);
|
---|
| 1733 | bp = ((Int64*)range.Item4 + range.Item1);
|
---|
| 1734 | while (cp < cLast) {
|
---|
| 1735 |
|
---|
| 1736 | *cp++ = func(*ap++, *bp++);
|
---|
| 1737 | }
|
---|
| 1738 | break;
|
---|
| 1739 | case BinOpItMode.ASI:
|
---|
| 1740 | scalar = *((Int64*)range.Item4);
|
---|
| 1741 | while (cp < cLast) {
|
---|
| 1742 |
|
---|
| 1743 | *cp = func(*cp, scalar);
|
---|
| 1744 | cp++;
|
---|
| 1745 | }
|
---|
| 1746 | break;
|
---|
| 1747 | case BinOpItMode.ASN:
|
---|
| 1748 | ap = ((Int64*)range.Item3 + range.Item1);
|
---|
| 1749 | scalar = *((Int64*)range.Item4);
|
---|
| 1750 | while (cp < cLast) {
|
---|
| 1751 |
|
---|
| 1752 | *cp++ = func(*ap++, scalar);
|
---|
| 1753 | }
|
---|
| 1754 | break;
|
---|
| 1755 | case BinOpItMode.SAI:
|
---|
| 1756 | scalar = *((Int64*)range.Item3);
|
---|
| 1757 | while (cp < cLast) {
|
---|
| 1758 |
|
---|
| 1759 | *cp = func(scalar, *cp);
|
---|
| 1760 | cp++;
|
---|
| 1761 | }
|
---|
| 1762 | break;
|
---|
| 1763 | case BinOpItMode.SAN:
|
---|
| 1764 | scalar = *((Int64*)range.Item3);
|
---|
| 1765 | bp = ((Int64*)range.Item4 + range.Item1);
|
---|
| 1766 | while (cp < cLast) {
|
---|
| 1767 |
|
---|
| 1768 | *cp++ = func(scalar, *bp++);
|
---|
| 1769 | }
|
---|
| 1770 | break;
|
---|
| 1771 | default:
|
---|
| 1772 | break;
|
---|
| 1773 | }
|
---|
| 1774 | #endregion
|
---|
| 1775 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1776 | //retStorage.PendingEvents.Signal();
|
---|
| 1777 | };
|
---|
| 1778 |
|
---|
| 1779 | #region do the work
|
---|
| 1780 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1781 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 1782 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1783 | workItemLength = outLen / workItemCount;
|
---|
| 1784 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1785 | } else {
|
---|
| 1786 | workItemLength = outLen / 2;
|
---|
| 1787 | workItemCount = 2;
|
---|
| 1788 | }
|
---|
| 1789 | } else {
|
---|
| 1790 | workItemLength = outLen;
|
---|
| 1791 | workItemCount = 1;
|
---|
| 1792 | }
|
---|
| 1793 |
|
---|
| 1794 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 1795 |
|
---|
| 1796 | fixed ( Int64* arrAP = arrA)
|
---|
| 1797 | fixed ( Int64* arrBP = arrB)
|
---|
| 1798 | fixed ( Int64* retArrP = retArr) {
|
---|
| 1799 |
|
---|
| 1800 | for (; i < workItemCount - 1; i++) {
|
---|
| 1801 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 1802 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1803 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 1804 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1805 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1806 | }
|
---|
| 1807 | // the last (or may the only) chunk is done right here
|
---|
| 1808 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1809 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 1810 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 1811 |
|
---|
| 1812 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 1813 | return workerCount <= 0;
|
---|
| 1814 | });
|
---|
| 1815 | //while (workerCount > 0) ;
|
---|
| 1816 | }
|
---|
| 1817 |
|
---|
| 1818 | #endregion
|
---|
| 1819 | return new ILRetArray<Int64>(retStorage);
|
---|
| 1820 | }
|
---|
| 1821 | }
|
---|
| 1822 |
|
---|
| 1823 | private static unsafe ILRetArray<Int64> applyEx(Func<Int64, Int64, Int64> applyFunc, ILInArray<Int64> A, ILInArray<Int64> B) {
|
---|
| 1824 | #region parameter checking
|
---|
| 1825 | if (isnull(A) || isnull(B))
|
---|
| 1826 | return empty<Int64>(ILSize.Empty00);
|
---|
| 1827 | if (A.IsEmpty) {
|
---|
| 1828 | return empty<Int64>(B.S);
|
---|
| 1829 | } else if (B.IsEmpty) {
|
---|
| 1830 | return empty<Int64>(A.S);
|
---|
| 1831 | }
|
---|
| 1832 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 1833 | // return add(A,B);
|
---|
| 1834 | int dim = -1;
|
---|
| 1835 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 1836 | if (A.S[_L] != B.S[_L]) {
|
---|
| 1837 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 1838 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 1839 | }
|
---|
| 1840 | dim = _L;
|
---|
| 1841 | }
|
---|
| 1842 | }
|
---|
| 1843 | if (dim > 1)
|
---|
| 1844 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 1845 | #endregion
|
---|
| 1846 |
|
---|
| 1847 | #region parameter preparation
|
---|
| 1848 |
|
---|
| 1849 |
|
---|
| 1850 | Int64[] retArr;
|
---|
| 1851 |
|
---|
| 1852 |
|
---|
| 1853 | Int64[] arrA = A.GetArrayForRead();
|
---|
| 1854 |
|
---|
| 1855 |
|
---|
| 1856 | Int64[] arrB = B.GetArrayForRead();
|
---|
| 1857 | ILSize outDims;
|
---|
| 1858 | BinOptItExMode mode;
|
---|
| 1859 | int arrInc = 0;
|
---|
| 1860 | int arrStepInc = 0;
|
---|
| 1861 | int dimLen = 0;
|
---|
| 1862 | if (A.IsVector) {
|
---|
| 1863 | outDims = B.S;
|
---|
| 1864 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1865 | retArr = ILMemoryPool.Pool.New<Int64>(outDims.NumberOfElements);
|
---|
| 1866 | mode = BinOptItExMode.VAN;
|
---|
| 1867 | } else {
|
---|
| 1868 | mode = BinOptItExMode.VAI;
|
---|
| 1869 | }
|
---|
| 1870 | dimLen = A.Length;
|
---|
| 1871 | } else if (B.IsVector) {
|
---|
| 1872 | outDims = A.S;
|
---|
| 1873 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 1874 | retArr = ILMemoryPool.Pool.New<Int64>(outDims.NumberOfElements);
|
---|
| 1875 | mode = BinOptItExMode.AVN;
|
---|
| 1876 | } else {
|
---|
| 1877 | mode = BinOptItExMode.AVI;
|
---|
| 1878 | }
|
---|
| 1879 | dimLen = B.Length;
|
---|
| 1880 | } else {
|
---|
| 1881 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 1882 | }
|
---|
| 1883 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 1884 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 1885 | #endregion
|
---|
| 1886 |
|
---|
| 1887 | #region worker loops definition
|
---|
| 1888 | ILDenseStorage<Int64> retStorage = new ILDenseStorage<Int64>(retArr, outDims);
|
---|
| 1889 | int workerCount = 1;
|
---|
| 1890 | Action<object> worker = data => {
|
---|
| 1891 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 1892 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 1893 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 1894 |
|
---|
| 1895 | Int64* ap;
|
---|
| 1896 |
|
---|
| 1897 | Int64* bp;
|
---|
| 1898 |
|
---|
| 1899 | Int64* cp;
|
---|
| 1900 | switch (mode) {
|
---|
| 1901 | case BinOptItExMode.VAN:
|
---|
| 1902 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1903 | ap = (Int64*)range.Item3;
|
---|
| 1904 | bp = (Int64*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 1905 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1906 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1907 |
|
---|
| 1908 | *cp = applyFunc(*ap, *bp);
|
---|
| 1909 | ap++;
|
---|
| 1910 | bp += arrInc;
|
---|
| 1911 | cp += arrInc;
|
---|
| 1912 | }
|
---|
| 1913 | }
|
---|
| 1914 | break;
|
---|
| 1915 | case BinOptItExMode.VAI:
|
---|
| 1916 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1917 | ap = (Int64*)range.Item3;
|
---|
| 1918 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1919 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1920 |
|
---|
| 1921 | *cp = applyFunc(*ap, *cp);
|
---|
| 1922 | ap++;
|
---|
| 1923 | cp += arrInc;
|
---|
| 1924 | }
|
---|
| 1925 | }
|
---|
| 1926 | break;
|
---|
| 1927 | case BinOptItExMode.AVN:
|
---|
| 1928 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1929 | ap = (Int64*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 1930 | bp = (Int64*)range.Item4;
|
---|
| 1931 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1932 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1933 |
|
---|
| 1934 | *cp = applyFunc(*ap, *bp);
|
---|
| 1935 | ap += arrInc;
|
---|
| 1936 | bp++;
|
---|
| 1937 | cp += arrInc;
|
---|
| 1938 | }
|
---|
| 1939 | }
|
---|
| 1940 | break;
|
---|
| 1941 | case BinOptItExMode.AVI:
|
---|
| 1942 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 1943 | bp = (Int64*)range.Item4;
|
---|
| 1944 | cp = (Int64*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 1945 | for (int l = 0; l < dimLen; l++) {
|
---|
| 1946 |
|
---|
| 1947 | *cp = applyFunc(*cp, *bp);
|
---|
| 1948 | bp++;
|
---|
| 1949 | cp += arrInc;
|
---|
| 1950 | }
|
---|
| 1951 | }
|
---|
| 1952 | break;
|
---|
| 1953 | }
|
---|
| 1954 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 1955 | };
|
---|
| 1956 | #endregion
|
---|
| 1957 |
|
---|
| 1958 | #region work distribution
|
---|
| 1959 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 1960 | int outLen = outDims.NumberOfElements;
|
---|
| 1961 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 1962 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 1963 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 1964 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 1965 | } else {
|
---|
| 1966 | workItemLength = outLen / dimLen / 2;
|
---|
| 1967 | workItemCount = 2;
|
---|
| 1968 | }
|
---|
| 1969 | } else {
|
---|
| 1970 | workItemLength = outLen / dimLen;
|
---|
| 1971 | workItemCount = 1;
|
---|
| 1972 | }
|
---|
| 1973 |
|
---|
| 1974 | fixed (Int64* arrAP = arrA)
|
---|
| 1975 | fixed (Int64* arrBP = arrB)
|
---|
| 1976 | fixed (Int64* retArrP = retArr) {
|
---|
| 1977 |
|
---|
| 1978 | for (; i < workItemCount - 1; i++) {
|
---|
| 1979 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 1980 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1981 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 1982 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 1983 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 1984 | }
|
---|
| 1985 | // the last (or may the only) chunk is done right here
|
---|
| 1986 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 1987 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 1988 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 1989 |
|
---|
| 1990 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 1991 | }
|
---|
| 1992 | #endregion
|
---|
| 1993 |
|
---|
| 1994 | return new ILRetArray<Int64>(retStorage);
|
---|
| 1995 | }
|
---|
| 1996 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 1997 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 1998 | /// <param name="A">Input array A</param>
|
---|
| 1999 | /// <param name="B">Input array B</param>
|
---|
| 2000 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 2001 | /// <item>
|
---|
| 2002 | /// <term>size(A) == size(B)</term>
|
---|
| 2003 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 2004 | /// </item>
|
---|
| 2005 | /// <item>
|
---|
| 2006 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 2007 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 2008 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 2009 | /// </item>
|
---|
| 2010 | /// <item>
|
---|
| 2011 | /// <term>All other cases</term>
|
---|
| 2012 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 2013 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 2014 | /// </item>
|
---|
| 2015 | /// </list></returns>
|
---|
| 2016 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 2017 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 2018 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 2019 | public unsafe static ILRetArray<Int32> apply(Func<Int32, Int32, Int32> func, ILInArray<Int32> A, ILInArray<Int32> B) {
|
---|
| 2020 | using (ILScope.Enter(A, B)) {
|
---|
| 2021 | int outLen;
|
---|
| 2022 | BinOpItMode mode;
|
---|
| 2023 |
|
---|
| 2024 | Int32[] retArr;
|
---|
| 2025 |
|
---|
| 2026 | Int32[] arrA = A.GetArrayForRead();
|
---|
| 2027 |
|
---|
| 2028 | Int32[] arrB = B.GetArrayForRead();
|
---|
| 2029 | ILSize outDims;
|
---|
| 2030 | #region determine operation mode
|
---|
| 2031 | if (A.IsScalar) {
|
---|
| 2032 | outDims = B.Size;
|
---|
| 2033 | if (B.IsScalar) {
|
---|
| 2034 |
|
---|
| 2035 | return new ILRetArray<Int32>(new Int32[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 2036 | } else if (B.IsEmpty) {
|
---|
| 2037 | return ILRetArray<Int32>.empty(outDims);
|
---|
| 2038 | } else {
|
---|
| 2039 | outLen = outDims.NumberOfElements;
|
---|
| 2040 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2041 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
| 2042 | mode = BinOpItMode.SAN;
|
---|
| 2043 | } else {
|
---|
| 2044 | mode = BinOpItMode.SAI;
|
---|
| 2045 | }
|
---|
| 2046 | }
|
---|
| 2047 | } else {
|
---|
| 2048 | outDims = A.Size;
|
---|
| 2049 | if (B.IsScalar) {
|
---|
| 2050 | if (A.IsEmpty) {
|
---|
| 2051 | return ILRetArray<Int32>.empty(A.Size);
|
---|
| 2052 | }
|
---|
| 2053 | outLen = A.S.NumberOfElements;
|
---|
| 2054 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2055 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
| 2056 | mode = BinOpItMode.ASN;
|
---|
| 2057 | } else {
|
---|
| 2058 | mode = BinOpItMode.ASI;
|
---|
| 2059 | }
|
---|
| 2060 | } else {
|
---|
| 2061 | // array + array
|
---|
| 2062 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 2063 | return applyEx(func,A,B);
|
---|
| 2064 | }
|
---|
| 2065 | outLen = A.S.NumberOfElements;
|
---|
| 2066 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 2067 | mode = BinOpItMode.AAIA;
|
---|
| 2068 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2069 | mode = BinOpItMode.AAIB;
|
---|
| 2070 | } else {
|
---|
| 2071 | retArr = ILMemoryPool.Pool.New<Int32>(outLen);
|
---|
| 2072 | mode = BinOpItMode.AAN;
|
---|
| 2073 | }
|
---|
| 2074 | }
|
---|
| 2075 | }
|
---|
| 2076 | #endregion
|
---|
| 2077 | ILDenseStorage<Int32> retStorage = new ILDenseStorage<Int32>(retArr, outDims);
|
---|
| 2078 | int i = 0, workerCount = 1;
|
---|
| 2079 | Action<object> worker = data => {
|
---|
| 2080 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 2081 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 2082 |
|
---|
| 2083 | Int32* cLast, cp = (Int32*)range.Item5 + range.Item1;
|
---|
| 2084 |
|
---|
| 2085 | Int32 scalar;
|
---|
| 2086 | cLast = cp + range.Item2;
|
---|
| 2087 | #region loops
|
---|
| 2088 | switch (mode) {
|
---|
| 2089 | case BinOpItMode.AAIA:
|
---|
| 2090 |
|
---|
| 2091 | Int32* bp = ((Int32*)range.Item4 + range.Item1);
|
---|
| 2092 | while (cp < cLast) {
|
---|
| 2093 |
|
---|
| 2094 | *cp = func(*cp, *bp++);
|
---|
| 2095 | cp++;
|
---|
| 2096 | }
|
---|
| 2097 | break;
|
---|
| 2098 | case BinOpItMode.AAIB:
|
---|
| 2099 |
|
---|
| 2100 | Int32* ap = ((Int32*)range.Item3 + range.Item1);
|
---|
| 2101 | while (cp < cLast) {
|
---|
| 2102 |
|
---|
| 2103 | *cp = func(*ap++, *cp);
|
---|
| 2104 | cp++;
|
---|
| 2105 |
|
---|
| 2106 | }
|
---|
| 2107 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 2108 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 2109 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 2110 | //}
|
---|
| 2111 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 2112 | //double[] locRetArr = retArr;
|
---|
| 2113 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 2114 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 2115 | // if (i2 >= ie) break;
|
---|
| 2116 | //}
|
---|
| 2117 |
|
---|
| 2118 | break;
|
---|
| 2119 | case BinOpItMode.AAN:
|
---|
| 2120 | ap = ((Int32*)range.Item3 + range.Item1);
|
---|
| 2121 | bp = ((Int32*)range.Item4 + range.Item1);
|
---|
| 2122 | while (cp < cLast) {
|
---|
| 2123 |
|
---|
| 2124 | *cp++ = func(*ap++, *bp++);
|
---|
| 2125 | }
|
---|
| 2126 | break;
|
---|
| 2127 | case BinOpItMode.ASI:
|
---|
| 2128 | scalar = *((Int32*)range.Item4);
|
---|
| 2129 | while (cp < cLast) {
|
---|
| 2130 |
|
---|
| 2131 | *cp = func(*cp, scalar);
|
---|
| 2132 | cp++;
|
---|
| 2133 | }
|
---|
| 2134 | break;
|
---|
| 2135 | case BinOpItMode.ASN:
|
---|
| 2136 | ap = ((Int32*)range.Item3 + range.Item1);
|
---|
| 2137 | scalar = *((Int32*)range.Item4);
|
---|
| 2138 | while (cp < cLast) {
|
---|
| 2139 |
|
---|
| 2140 | *cp++ = func(*ap++, scalar);
|
---|
| 2141 | }
|
---|
| 2142 | break;
|
---|
| 2143 | case BinOpItMode.SAI:
|
---|
| 2144 | scalar = *((Int32*)range.Item3);
|
---|
| 2145 | while (cp < cLast) {
|
---|
| 2146 |
|
---|
| 2147 | *cp = func(scalar, *cp);
|
---|
| 2148 | cp++;
|
---|
| 2149 | }
|
---|
| 2150 | break;
|
---|
| 2151 | case BinOpItMode.SAN:
|
---|
| 2152 | scalar = *((Int32*)range.Item3);
|
---|
| 2153 | bp = ((Int32*)range.Item4 + range.Item1);
|
---|
| 2154 | while (cp < cLast) {
|
---|
| 2155 |
|
---|
| 2156 | *cp++ = func(scalar, *bp++);
|
---|
| 2157 | }
|
---|
| 2158 | break;
|
---|
| 2159 | default:
|
---|
| 2160 | break;
|
---|
| 2161 | }
|
---|
| 2162 | #endregion
|
---|
| 2163 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 2164 | //retStorage.PendingEvents.Signal();
|
---|
| 2165 | };
|
---|
| 2166 |
|
---|
| 2167 | #region do the work
|
---|
| 2168 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 2169 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 2170 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 2171 | workItemLength = outLen / workItemCount;
|
---|
| 2172 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 2173 | } else {
|
---|
| 2174 | workItemLength = outLen / 2;
|
---|
| 2175 | workItemCount = 2;
|
---|
| 2176 | }
|
---|
| 2177 | } else {
|
---|
| 2178 | workItemLength = outLen;
|
---|
| 2179 | workItemCount = 1;
|
---|
| 2180 | }
|
---|
| 2181 |
|
---|
| 2182 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 2183 |
|
---|
| 2184 | fixed ( Int32* arrAP = arrA)
|
---|
| 2185 | fixed ( Int32* arrBP = arrB)
|
---|
| 2186 | fixed ( Int32* retArrP = retArr) {
|
---|
| 2187 |
|
---|
| 2188 | for (; i < workItemCount - 1; i++) {
|
---|
| 2189 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 2190 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 2191 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 2192 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 2193 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 2194 | }
|
---|
| 2195 | // the last (or may the only) chunk is done right here
|
---|
| 2196 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 2197 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 2198 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 2199 |
|
---|
| 2200 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 2201 | return workerCount <= 0;
|
---|
| 2202 | });
|
---|
| 2203 | //while (workerCount > 0) ;
|
---|
| 2204 | }
|
---|
| 2205 |
|
---|
| 2206 | #endregion
|
---|
| 2207 | return new ILRetArray<Int32>(retStorage);
|
---|
| 2208 | }
|
---|
| 2209 | }
|
---|
| 2210 |
|
---|
| 2211 | private static unsafe ILRetArray<Int32> applyEx(Func<Int32, Int32, Int32> applyFunc, ILInArray<Int32> A, ILInArray<Int32> B) {
|
---|
| 2212 | #region parameter checking
|
---|
| 2213 | if (isnull(A) || isnull(B))
|
---|
| 2214 | return empty<Int32>(ILSize.Empty00);
|
---|
| 2215 | if (A.IsEmpty) {
|
---|
| 2216 | return empty<Int32>(B.S);
|
---|
| 2217 | } else if (B.IsEmpty) {
|
---|
| 2218 | return empty<Int32>(A.S);
|
---|
| 2219 | }
|
---|
| 2220 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 2221 | // return add(A,B);
|
---|
| 2222 | int dim = -1;
|
---|
| 2223 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 2224 | if (A.S[_L] != B.S[_L]) {
|
---|
| 2225 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 2226 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 2227 | }
|
---|
| 2228 | dim = _L;
|
---|
| 2229 | }
|
---|
| 2230 | }
|
---|
| 2231 | if (dim > 1)
|
---|
| 2232 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 2233 | #endregion
|
---|
| 2234 |
|
---|
| 2235 | #region parameter preparation
|
---|
| 2236 |
|
---|
| 2237 |
|
---|
| 2238 | Int32[] retArr;
|
---|
| 2239 |
|
---|
| 2240 |
|
---|
| 2241 | Int32[] arrA = A.GetArrayForRead();
|
---|
| 2242 |
|
---|
| 2243 |
|
---|
| 2244 | Int32[] arrB = B.GetArrayForRead();
|
---|
| 2245 | ILSize outDims;
|
---|
| 2246 | BinOptItExMode mode;
|
---|
| 2247 | int arrInc = 0;
|
---|
| 2248 | int arrStepInc = 0;
|
---|
| 2249 | int dimLen = 0;
|
---|
| 2250 | if (A.IsVector) {
|
---|
| 2251 | outDims = B.S;
|
---|
| 2252 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2253 | retArr = ILMemoryPool.Pool.New<Int32>(outDims.NumberOfElements);
|
---|
| 2254 | mode = BinOptItExMode.VAN;
|
---|
| 2255 | } else {
|
---|
| 2256 | mode = BinOptItExMode.VAI;
|
---|
| 2257 | }
|
---|
| 2258 | dimLen = A.Length;
|
---|
| 2259 | } else if (B.IsVector) {
|
---|
| 2260 | outDims = A.S;
|
---|
| 2261 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2262 | retArr = ILMemoryPool.Pool.New<Int32>(outDims.NumberOfElements);
|
---|
| 2263 | mode = BinOptItExMode.AVN;
|
---|
| 2264 | } else {
|
---|
| 2265 | mode = BinOptItExMode.AVI;
|
---|
| 2266 | }
|
---|
| 2267 | dimLen = B.Length;
|
---|
| 2268 | } else {
|
---|
| 2269 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 2270 | }
|
---|
| 2271 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 2272 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 2273 | #endregion
|
---|
| 2274 |
|
---|
| 2275 | #region worker loops definition
|
---|
| 2276 | ILDenseStorage<Int32> retStorage = new ILDenseStorage<Int32>(retArr, outDims);
|
---|
| 2277 | int workerCount = 1;
|
---|
| 2278 | Action<object> worker = data => {
|
---|
| 2279 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 2280 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 2281 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 2282 |
|
---|
| 2283 | Int32* ap;
|
---|
| 2284 |
|
---|
| 2285 | Int32* bp;
|
---|
| 2286 |
|
---|
| 2287 | Int32* cp;
|
---|
| 2288 | switch (mode) {
|
---|
| 2289 | case BinOptItExMode.VAN:
|
---|
| 2290 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2291 | ap = (Int32*)range.Item3;
|
---|
| 2292 | bp = (Int32*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 2293 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2294 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2295 |
|
---|
| 2296 | *cp = applyFunc(*ap, *bp);
|
---|
| 2297 | ap++;
|
---|
| 2298 | bp += arrInc;
|
---|
| 2299 | cp += arrInc;
|
---|
| 2300 | }
|
---|
| 2301 | }
|
---|
| 2302 | break;
|
---|
| 2303 | case BinOptItExMode.VAI:
|
---|
| 2304 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2305 | ap = (Int32*)range.Item3;
|
---|
| 2306 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2307 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2308 |
|
---|
| 2309 | *cp = applyFunc(*ap, *cp);
|
---|
| 2310 | ap++;
|
---|
| 2311 | cp += arrInc;
|
---|
| 2312 | }
|
---|
| 2313 | }
|
---|
| 2314 | break;
|
---|
| 2315 | case BinOptItExMode.AVN:
|
---|
| 2316 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2317 | ap = (Int32*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 2318 | bp = (Int32*)range.Item4;
|
---|
| 2319 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2320 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2321 |
|
---|
| 2322 | *cp = applyFunc(*ap, *bp);
|
---|
| 2323 | ap += arrInc;
|
---|
| 2324 | bp++;
|
---|
| 2325 | cp += arrInc;
|
---|
| 2326 | }
|
---|
| 2327 | }
|
---|
| 2328 | break;
|
---|
| 2329 | case BinOptItExMode.AVI:
|
---|
| 2330 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2331 | bp = (Int32*)range.Item4;
|
---|
| 2332 | cp = (Int32*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2333 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2334 |
|
---|
| 2335 | *cp = applyFunc(*cp, *bp);
|
---|
| 2336 | bp++;
|
---|
| 2337 | cp += arrInc;
|
---|
| 2338 | }
|
---|
| 2339 | }
|
---|
| 2340 | break;
|
---|
| 2341 | }
|
---|
| 2342 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 2343 | };
|
---|
| 2344 | #endregion
|
---|
| 2345 |
|
---|
| 2346 | #region work distribution
|
---|
| 2347 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 2348 | int outLen = outDims.NumberOfElements;
|
---|
| 2349 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 2350 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 2351 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 2352 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 2353 | } else {
|
---|
| 2354 | workItemLength = outLen / dimLen / 2;
|
---|
| 2355 | workItemCount = 2;
|
---|
| 2356 | }
|
---|
| 2357 | } else {
|
---|
| 2358 | workItemLength = outLen / dimLen;
|
---|
| 2359 | workItemCount = 1;
|
---|
| 2360 | }
|
---|
| 2361 |
|
---|
| 2362 | fixed (Int32* arrAP = arrA)
|
---|
| 2363 | fixed (Int32* arrBP = arrB)
|
---|
| 2364 | fixed (Int32* retArrP = retArr) {
|
---|
| 2365 |
|
---|
| 2366 | for (; i < workItemCount - 1; i++) {
|
---|
| 2367 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 2368 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 2369 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 2370 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 2371 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 2372 | }
|
---|
| 2373 | // the last (or may the only) chunk is done right here
|
---|
| 2374 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 2375 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 2376 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 2377 |
|
---|
| 2378 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 2379 | }
|
---|
| 2380 | #endregion
|
---|
| 2381 |
|
---|
| 2382 | return new ILRetArray<Int32>(retStorage);
|
---|
| 2383 | }
|
---|
| 2384 | /// <summary>Apply an arbitrary function to two arrays</summary>
|
---|
| 2385 | /// <param name="func">A function c = f(a,b), which will be applied to elements in A and B</param>
|
---|
| 2386 | /// <param name="A">Input array A</param>
|
---|
| 2387 | /// <param name="B">Input array B</param>
|
---|
| 2388 | /// <returns>The combination of A and B. The result and size depends on the inputs:<list type="table">
|
---|
| 2389 | /// <item>
|
---|
| 2390 | /// <term>size(A) == size(B)</term>
|
---|
| 2391 | /// <description>Same size as A/B, elementwise combination of A and B.</description>
|
---|
| 2392 | /// </item>
|
---|
| 2393 | /// <item>
|
---|
| 2394 | /// <term>isscalar(A) || isscalar(B)</term>
|
---|
| 2395 | /// <description>Same size as A or B, whichever is not a scalar, the scalar value being applied to each element
|
---|
| 2396 | /// (i.e. if the non-scalar input is empty, the result is empty).</description>
|
---|
| 2397 | /// </item>
|
---|
| 2398 | /// <item>
|
---|
| 2399 | /// <term>All other cases</term>
|
---|
| 2400 | /// <description>If A or B is a colum vector and the other parameter is an array with a matching column length, the vector is used to operate on all columns of the array.
|
---|
| 2401 | /// Similarly, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length.</description>
|
---|
| 2402 | /// </item>
|
---|
| 2403 | /// </list></returns>
|
---|
| 2404 | /// <remarks><para>The <c>apply</c> function is also implemented for input if e.g. sizes (mxn) and (mx1).
|
---|
| 2405 | /// In this case the vector argument will be combined to each column, resulting in an (mxn) array.
|
---|
| 2406 | /// This feature is, however, officiallny not supported.</para></remarks>
|
---|
| 2407 | public unsafe static ILRetArray<byte> apply(Func<byte, byte, byte> func, ILInArray<byte> A, ILInArray<byte> B) {
|
---|
| 2408 | using (ILScope.Enter(A, B)) {
|
---|
| 2409 | int outLen;
|
---|
| 2410 | BinOpItMode mode;
|
---|
| 2411 |
|
---|
| 2412 | byte[] retArr;
|
---|
| 2413 |
|
---|
| 2414 | byte[] arrA = A.GetArrayForRead();
|
---|
| 2415 |
|
---|
| 2416 | byte[] arrB = B.GetArrayForRead();
|
---|
| 2417 | ILSize outDims;
|
---|
| 2418 | #region determine operation mode
|
---|
| 2419 | if (A.IsScalar) {
|
---|
| 2420 | outDims = B.Size;
|
---|
| 2421 | if (B.IsScalar) {
|
---|
| 2422 |
|
---|
| 2423 | return new ILRetArray<byte>(new byte[1] { func(A.GetValue(0), B.GetValue(0)) }, A.Size);
|
---|
| 2424 | } else if (B.IsEmpty) {
|
---|
| 2425 | return ILRetArray<byte>.empty(outDims);
|
---|
| 2426 | } else {
|
---|
| 2427 | outLen = outDims.NumberOfElements;
|
---|
| 2428 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2429 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
| 2430 | mode = BinOpItMode.SAN;
|
---|
| 2431 | } else {
|
---|
| 2432 | mode = BinOpItMode.SAI;
|
---|
| 2433 | }
|
---|
| 2434 | }
|
---|
| 2435 | } else {
|
---|
| 2436 | outDims = A.Size;
|
---|
| 2437 | if (B.IsScalar) {
|
---|
| 2438 | if (A.IsEmpty) {
|
---|
| 2439 | return ILRetArray<byte>.empty(A.Size);
|
---|
| 2440 | }
|
---|
| 2441 | outLen = A.S.NumberOfElements;
|
---|
| 2442 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2443 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
| 2444 | mode = BinOpItMode.ASN;
|
---|
| 2445 | } else {
|
---|
| 2446 | mode = BinOpItMode.ASI;
|
---|
| 2447 | }
|
---|
| 2448 | } else {
|
---|
| 2449 | // array + array
|
---|
| 2450 | if (!A.Size.IsSameSize(B.Size)) {
|
---|
| 2451 | return applyEx(func,A,B);
|
---|
| 2452 | }
|
---|
| 2453 | outLen = A.S.NumberOfElements;
|
---|
| 2454 | if (A.TryGetStorage4InplaceOp(out retArr))
|
---|
| 2455 | mode = BinOpItMode.AAIA;
|
---|
| 2456 | else if (B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2457 | mode = BinOpItMode.AAIB;
|
---|
| 2458 | } else {
|
---|
| 2459 | retArr = ILMemoryPool.Pool.New<byte>(outLen);
|
---|
| 2460 | mode = BinOpItMode.AAN;
|
---|
| 2461 | }
|
---|
| 2462 | }
|
---|
| 2463 | }
|
---|
| 2464 | #endregion
|
---|
| 2465 | ILDenseStorage<byte> retStorage = new ILDenseStorage<byte>(retArr, outDims);
|
---|
| 2466 | int i = 0, workerCount = 1;
|
---|
| 2467 | Action<object> worker = data => {
|
---|
| 2468 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 2469 | = (Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>)data;
|
---|
| 2470 |
|
---|
| 2471 | byte* cLast, cp = (byte*)range.Item5 + range.Item1;
|
---|
| 2472 |
|
---|
| 2473 | byte scalar;
|
---|
| 2474 | cLast = cp + range.Item2;
|
---|
| 2475 | #region loops
|
---|
| 2476 | switch (mode) {
|
---|
| 2477 | case BinOpItMode.AAIA:
|
---|
| 2478 |
|
---|
| 2479 | byte* bp = ((byte*)range.Item4 + range.Item1);
|
---|
| 2480 | while (cp < cLast) {
|
---|
| 2481 |
|
---|
| 2482 | *cp = func(*cp, *bp++);
|
---|
| 2483 | cp++;
|
---|
| 2484 | }
|
---|
| 2485 | break;
|
---|
| 2486 | case BinOpItMode.AAIB:
|
---|
| 2487 |
|
---|
| 2488 | byte* ap = ((byte*)range.Item3 + range.Item1);
|
---|
| 2489 | while (cp < cLast) {
|
---|
| 2490 |
|
---|
| 2491 | *cp = func(*ap++, *cp);
|
---|
| 2492 | cp++;
|
---|
| 2493 |
|
---|
| 2494 | }
|
---|
| 2495 | //ap = ((double*)range.Item3 + range.Item1);
|
---|
| 2496 | //for (int i2 = range.Item2; i2-- > 0; ) {
|
---|
| 2497 | // *(cp + i2) = *(ap + i2) - *(cp + i2);
|
---|
| 2498 | //}
|
---|
| 2499 | //int ie = range.Item1 + range.Item2-1;
|
---|
| 2500 | //double[] locRetArr = retArr;
|
---|
| 2501 | //for (int i2 = range.Item1; i2 < locRetArr.Length; i2++) {
|
---|
| 2502 | // locRetArr[i2] = arrA[i2] - locRetArr[i2];
|
---|
| 2503 | // if (i2 >= ie) break;
|
---|
| 2504 | //}
|
---|
| 2505 |
|
---|
| 2506 | break;
|
---|
| 2507 | case BinOpItMode.AAN:
|
---|
| 2508 | ap = ((byte*)range.Item3 + range.Item1);
|
---|
| 2509 | bp = ((byte*)range.Item4 + range.Item1);
|
---|
| 2510 | while (cp < cLast) {
|
---|
| 2511 |
|
---|
| 2512 | *cp++ = func(*ap++, *bp++);
|
---|
| 2513 | }
|
---|
| 2514 | break;
|
---|
| 2515 | case BinOpItMode.ASI:
|
---|
| 2516 | scalar = *((byte*)range.Item4);
|
---|
| 2517 | while (cp < cLast) {
|
---|
| 2518 |
|
---|
| 2519 | *cp = func(*cp, scalar);
|
---|
| 2520 | cp++;
|
---|
| 2521 | }
|
---|
| 2522 | break;
|
---|
| 2523 | case BinOpItMode.ASN:
|
---|
| 2524 | ap = ((byte*)range.Item3 + range.Item1);
|
---|
| 2525 | scalar = *((byte*)range.Item4);
|
---|
| 2526 | while (cp < cLast) {
|
---|
| 2527 |
|
---|
| 2528 | *cp++ = func(*ap++, scalar);
|
---|
| 2529 | }
|
---|
| 2530 | break;
|
---|
| 2531 | case BinOpItMode.SAI:
|
---|
| 2532 | scalar = *((byte*)range.Item3);
|
---|
| 2533 | while (cp < cLast) {
|
---|
| 2534 |
|
---|
| 2535 | *cp = func(scalar, *cp);
|
---|
| 2536 | cp++;
|
---|
| 2537 | }
|
---|
| 2538 | break;
|
---|
| 2539 | case BinOpItMode.SAN:
|
---|
| 2540 | scalar = *((byte*)range.Item3);
|
---|
| 2541 | bp = ((byte*)range.Item4 + range.Item1);
|
---|
| 2542 | while (cp < cLast) {
|
---|
| 2543 |
|
---|
| 2544 | *cp++ = func(scalar, *bp++);
|
---|
| 2545 | }
|
---|
| 2546 | break;
|
---|
| 2547 | default:
|
---|
| 2548 | break;
|
---|
| 2549 | }
|
---|
| 2550 | #endregion
|
---|
| 2551 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 2552 | //retStorage.PendingEvents.Signal();
|
---|
| 2553 | };
|
---|
| 2554 |
|
---|
| 2555 | #region do the work
|
---|
| 2556 | int workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 2557 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
|
---|
| 2558 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 2559 | workItemLength = outLen / workItemCount;
|
---|
| 2560 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 2561 | } else {
|
---|
| 2562 | workItemLength = outLen / 2;
|
---|
| 2563 | workItemCount = 2;
|
---|
| 2564 | }
|
---|
| 2565 | } else {
|
---|
| 2566 | workItemLength = outLen;
|
---|
| 2567 | workItemCount = 1;
|
---|
| 2568 | }
|
---|
| 2569 |
|
---|
| 2570 | // retStorage.PendingEvents = new System.Threading.CountdownEvent(workItemCount);
|
---|
| 2571 |
|
---|
| 2572 | fixed ( byte* arrAP = arrA)
|
---|
| 2573 | fixed ( byte* arrBP = arrB)
|
---|
| 2574 | fixed ( byte* retArrP = retArr) {
|
---|
| 2575 |
|
---|
| 2576 | for (; i < workItemCount - 1; i++) {
|
---|
| 2577 | Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode> range
|
---|
| 2578 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 2579 | (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
|
---|
| 2580 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 2581 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 2582 | }
|
---|
| 2583 | // the last (or may the only) chunk is done right here
|
---|
| 2584 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 2585 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr, BinOpItMode>
|
---|
| 2586 | (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
|
---|
| 2587 |
|
---|
| 2588 | System.Threading.SpinWait.SpinUntil(() => {
|
---|
| 2589 | return workerCount <= 0;
|
---|
| 2590 | });
|
---|
| 2591 | //while (workerCount > 0) ;
|
---|
| 2592 | }
|
---|
| 2593 |
|
---|
| 2594 | #endregion
|
---|
| 2595 | return new ILRetArray<byte>(retStorage);
|
---|
| 2596 | }
|
---|
| 2597 | }
|
---|
| 2598 |
|
---|
| 2599 | private static unsafe ILRetArray<byte> applyEx(Func<byte, byte, byte> applyFunc, ILInArray<byte> A, ILInArray<byte> B) {
|
---|
| 2600 | #region parameter checking
|
---|
| 2601 | if (isnull(A) || isnull(B))
|
---|
| 2602 | return empty<byte>(ILSize.Empty00);
|
---|
| 2603 | if (A.IsEmpty) {
|
---|
| 2604 | return empty<byte>(B.S);
|
---|
| 2605 | } else if (B.IsEmpty) {
|
---|
| 2606 | return empty<byte>(A.S);
|
---|
| 2607 | }
|
---|
| 2608 | //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
|
---|
| 2609 | // return add(A,B);
|
---|
| 2610 | int dim = -1;
|
---|
| 2611 | for (int _L = 0; _L < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); _L++) {
|
---|
| 2612 | if (A.S[_L] != B.S[_L]) {
|
---|
| 2613 | if (dim >= 0 || (A.S[_L] != 1 && B.S[_L] != 1)) {
|
---|
| 2614 | throw new ILArgumentException("A and B must have the same size except for one singleton dimension in A or B");
|
---|
| 2615 | }
|
---|
| 2616 | dim = _L;
|
---|
| 2617 | }
|
---|
| 2618 | }
|
---|
| 2619 | if (dim > 1)
|
---|
| 2620 | throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
|
---|
| 2621 | #endregion
|
---|
| 2622 |
|
---|
| 2623 | #region parameter preparation
|
---|
| 2624 |
|
---|
| 2625 |
|
---|
| 2626 | byte[] retArr;
|
---|
| 2627 |
|
---|
| 2628 |
|
---|
| 2629 | byte[] arrA = A.GetArrayForRead();
|
---|
| 2630 |
|
---|
| 2631 |
|
---|
| 2632 | byte[] arrB = B.GetArrayForRead();
|
---|
| 2633 | ILSize outDims;
|
---|
| 2634 | BinOptItExMode mode;
|
---|
| 2635 | int arrInc = 0;
|
---|
| 2636 | int arrStepInc = 0;
|
---|
| 2637 | int dimLen = 0;
|
---|
| 2638 | if (A.IsVector) {
|
---|
| 2639 | outDims = B.S;
|
---|
| 2640 | if (!B.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2641 | retArr = ILMemoryPool.Pool.New<byte>(outDims.NumberOfElements);
|
---|
| 2642 | mode = BinOptItExMode.VAN;
|
---|
| 2643 | } else {
|
---|
| 2644 | mode = BinOptItExMode.VAI;
|
---|
| 2645 | }
|
---|
| 2646 | dimLen = A.Length;
|
---|
| 2647 | } else if (B.IsVector) {
|
---|
| 2648 | outDims = A.S;
|
---|
| 2649 | if (!A.TryGetStorage4InplaceOp(out retArr)) {
|
---|
| 2650 | retArr = ILMemoryPool.Pool.New<byte>(outDims.NumberOfElements);
|
---|
| 2651 | mode = BinOptItExMode.AVN;
|
---|
| 2652 | } else {
|
---|
| 2653 | mode = BinOptItExMode.AVI;
|
---|
| 2654 | }
|
---|
| 2655 | dimLen = B.Length;
|
---|
| 2656 | } else {
|
---|
| 2657 | throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
|
---|
| 2658 | }
|
---|
| 2659 | arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
|
---|
| 2660 | arrStepInc = outDims.SequentialIndexDistance(dim);
|
---|
| 2661 | #endregion
|
---|
| 2662 |
|
---|
| 2663 | #region worker loops definition
|
---|
| 2664 | ILDenseStorage<byte> retStorage = new ILDenseStorage<byte>(retArr, outDims);
|
---|
| 2665 | int workerCount = 1;
|
---|
| 2666 | Action<object> worker = data => {
|
---|
| 2667 | // expects: iStart, iLen, ap, bp, cp
|
---|
| 2668 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range =
|
---|
| 2669 | (Tuple<int, int, IntPtr, IntPtr, IntPtr>)data;
|
---|
| 2670 |
|
---|
| 2671 | byte* ap;
|
---|
| 2672 |
|
---|
| 2673 | byte* bp;
|
---|
| 2674 |
|
---|
| 2675 | byte* cp;
|
---|
| 2676 | switch (mode) {
|
---|
| 2677 | case BinOptItExMode.VAN:
|
---|
| 2678 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2679 | ap = (byte*)range.Item3;
|
---|
| 2680 | bp = (byte*)range.Item4 + range.Item1 + s * arrStepInc; ;
|
---|
| 2681 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2682 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2683 |
|
---|
| 2684 | *cp = applyFunc(*ap, *bp);
|
---|
| 2685 | ap++;
|
---|
| 2686 | bp += arrInc;
|
---|
| 2687 | cp += arrInc;
|
---|
| 2688 | }
|
---|
| 2689 | }
|
---|
| 2690 | break;
|
---|
| 2691 | case BinOptItExMode.VAI:
|
---|
| 2692 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2693 | ap = (byte*)range.Item3;
|
---|
| 2694 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2695 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2696 |
|
---|
| 2697 | *cp = applyFunc(*ap, *cp);
|
---|
| 2698 | ap++;
|
---|
| 2699 | cp += arrInc;
|
---|
| 2700 | }
|
---|
| 2701 | }
|
---|
| 2702 | break;
|
---|
| 2703 | case BinOptItExMode.AVN:
|
---|
| 2704 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2705 | ap = (byte*)range.Item3 + range.Item1 + s * arrStepInc;
|
---|
| 2706 | bp = (byte*)range.Item4;
|
---|
| 2707 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2708 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2709 |
|
---|
| 2710 | *cp = applyFunc(*ap, *bp);
|
---|
| 2711 | ap += arrInc;
|
---|
| 2712 | bp++;
|
---|
| 2713 | cp += arrInc;
|
---|
| 2714 | }
|
---|
| 2715 | }
|
---|
| 2716 | break;
|
---|
| 2717 | case BinOptItExMode.AVI:
|
---|
| 2718 | for (int s = 0; s < range.Item2; s++) {
|
---|
| 2719 | bp = (byte*)range.Item4;
|
---|
| 2720 | cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
|
---|
| 2721 | for (int l = 0; l < dimLen; l++) {
|
---|
| 2722 |
|
---|
| 2723 | *cp = applyFunc(*cp, *bp);
|
---|
| 2724 | bp++;
|
---|
| 2725 | cp += arrInc;
|
---|
| 2726 | }
|
---|
| 2727 | }
|
---|
| 2728 | break;
|
---|
| 2729 | }
|
---|
| 2730 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 2731 | };
|
---|
| 2732 | #endregion
|
---|
| 2733 |
|
---|
| 2734 | #region work distribution
|
---|
| 2735 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
|
---|
| 2736 | int outLen = outDims.NumberOfElements;
|
---|
| 2737 | if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 2738 | if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
|
---|
| 2739 | workItemLength = outLen / dimLen / workItemCount;
|
---|
| 2740 | //workItemLength = (int)((double)outLen / workItemCount * 1.05);
|
---|
| 2741 | } else {
|
---|
| 2742 | workItemLength = outLen / dimLen / 2;
|
---|
| 2743 | workItemCount = 2;
|
---|
| 2744 | }
|
---|
| 2745 | } else {
|
---|
| 2746 | workItemLength = outLen / dimLen;
|
---|
| 2747 | workItemCount = 1;
|
---|
| 2748 | }
|
---|
| 2749 |
|
---|
| 2750 | fixed (byte* arrAP = arrA)
|
---|
| 2751 | fixed (byte* arrBP = arrB)
|
---|
| 2752 | fixed (byte* retArrP = retArr) {
|
---|
| 2753 |
|
---|
| 2754 | for (; i < workItemCount - 1; i++) {
|
---|
| 2755 | Tuple<int, int, IntPtr, IntPtr, IntPtr> range
|
---|
| 2756 | = new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 2757 | (i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
|
---|
| 2758 | System.Threading.Interlocked.Increment(ref workerCount);
|
---|
| 2759 | ILThreadPool.QueueUserWorkItem(i, worker, range);
|
---|
| 2760 | }
|
---|
| 2761 | // the last (or may the only) chunk is done right here
|
---|
| 2762 | //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
|
---|
| 2763 | worker(new Tuple<int, int, IntPtr, IntPtr, IntPtr>
|
---|
| 2764 | (i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
|
---|
| 2765 |
|
---|
| 2766 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 2767 | }
|
---|
| 2768 | #endregion
|
---|
| 2769 |
|
---|
| 2770 | return new ILRetArray<byte>(retStorage);
|
---|
| 2771 | }
|
---|
| 2772 |
|
---|
| 2773 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 2774 |
|
---|
| 2775 | }
|
---|
| 2776 | } |
---|