[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using System.Threading;
|
---|
| 44 | using ILNumerics.Storage;
|
---|
| 45 | using ILNumerics.Misc;
|
---|
| 46 | using ILNumerics.Exceptions;
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | namespace ILNumerics {
|
---|
| 51 | public partial class ILMath {
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// Sum elements of A along specified dimension
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="A">Input array</param>
|
---|
| 57 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 58 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 59 | /// reduced to the length 1 with the sum of all
|
---|
| 60 | /// elements along that dimension.</returns>
|
---|
| 61 | public static ILRetArray<double> sum (ILInArray<double> A, int dim = -1) {
|
---|
| 62 | using (ILScope.Enter(A)) {
|
---|
| 63 | if (dim < 0)
|
---|
| 64 | dim = A.Size.WorkingDimension();
|
---|
| 65 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 66 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 67 | if (A.IsEmpty)
|
---|
| 68 | return ILRetArray<double>.empty(A.Size);
|
---|
| 69 | if (A.IsScalar) {
|
---|
| 70 |
|
---|
| 71 | return new ILRetArray<double>(new double[] { A.GetValue(0) }, 1, 1);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | if (A.S[dim] == 1) return A.C;
|
---|
| 75 |
|
---|
| 76 | int[] newDims = A.S.ToIntArray();
|
---|
| 77 | newDims[dim] = 1;
|
---|
| 78 | ILSize retDimension = new ILSize(newDims);
|
---|
| 79 | double[] retArr = ILMemoryPool.Pool.New< double>(retDimension.NumberOfElements);
|
---|
| 80 |
|
---|
| 81 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 82 | int dimLen = A.Size[dim];
|
---|
| 83 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 84 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 85 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 86 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 87 | int numelA = A.S.NumberOfElements;
|
---|
| 88 |
|
---|
| 89 | double[] aArray = A.GetArrayForRead();
|
---|
| 90 | if (maxRuns == 1) {
|
---|
| 91 |
|
---|
| 92 | double tmp = 0;
|
---|
| 93 | for (int j = 0; j < dimLen; j++) {
|
---|
| 94 | tmp += aArray[j];
|
---|
| 95 | }
|
---|
| 96 | retArr[0] = tmp;
|
---|
| 97 | } else {
|
---|
| 98 | #region may run parallel
|
---|
| 99 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 100 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 101 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 102 |
|
---|
| 103 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 104 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 105 | workItemLength = maxRuns / workItemCount;
|
---|
| 106 | } else {
|
---|
| 107 | workItemLength = maxRuns / 2;
|
---|
| 108 | workItemCount = 2;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | } else {
|
---|
| 112 | workItemLength = maxRuns;
|
---|
| 113 | workItemCount = 1;
|
---|
| 114 | }
|
---|
| 115 | Action<object> action = (data) => {
|
---|
| 116 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 117 | int from = range.Item1, to = range.Item2;
|
---|
| 118 | for (int c = from; c < to; c++) {
|
---|
| 119 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 120 | long posOut = ((long)c * incOut);
|
---|
| 121 | if (posOut > modOut)
|
---|
| 122 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 123 |
|
---|
| 124 | double tmp = 0;
|
---|
| 125 | int end = pos + dimLen * inc;
|
---|
| 126 | for (int j = pos; j < end; j += inc) {
|
---|
| 127 | tmp += aArray[j];
|
---|
| 128 | }
|
---|
| 129 | retArr[posOut] = tmp;
|
---|
| 130 | }
|
---|
| 131 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 132 | };
|
---|
| 133 | for (; i < workItemCount - 1; i++) {
|
---|
| 134 | Interlocked.Increment(ref workerCount);
|
---|
| 135 |
|
---|
| 136 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 137 | }
|
---|
| 138 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 139 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 140 | #endregion
|
---|
| 141 | }
|
---|
| 142 | return new ILRetArray<double>(retArr, newDims);
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | |
---|
| 146 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 147 | |
---|
| 148 | /// <summary>
|
---|
| 149 | /// Sum elements of A along specified dimension
|
---|
| 150 | /// </summary>
|
---|
| 151 | /// <param name="A">Input array</param>
|
---|
| 152 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 153 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 154 | /// reduced to the length 1 with the sum of all
|
---|
| 155 | /// elements along that dimension.</returns>
|
---|
| 156 | public static ILRetArray<Int64> sum (ILInArray<Int64> A, int dim = -1) {
|
---|
| 157 | using (ILScope.Enter(A)) {
|
---|
| 158 | if (dim < 0)
|
---|
| 159 | dim = A.Size.WorkingDimension();
|
---|
| 160 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 161 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 162 | if (A.IsEmpty)
|
---|
| 163 | return ILRetArray<Int64>.empty(A.Size);
|
---|
| 164 | if (A.IsScalar) {
|
---|
| 165 |
|
---|
| 166 | return new ILRetArray<Int64>(new Int64[] { A.GetValue(0) }, 1, 1);
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | if (A.S[dim] == 1) return A.C;
|
---|
| 170 |
|
---|
| 171 | int[] newDims = A.S.ToIntArray();
|
---|
| 172 | newDims[dim] = 1;
|
---|
| 173 | ILSize retDimension = new ILSize(newDims);
|
---|
| 174 | Int64[] retArr = ILMemoryPool.Pool.New< Int64>(retDimension.NumberOfElements);
|
---|
| 175 |
|
---|
| 176 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 177 | int dimLen = A.Size[dim];
|
---|
| 178 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 179 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 180 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 181 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 182 | int numelA = A.S.NumberOfElements;
|
---|
| 183 |
|
---|
| 184 | Int64[] aArray = A.GetArrayForRead();
|
---|
| 185 | if (maxRuns == 1) {
|
---|
| 186 |
|
---|
| 187 | Int64 tmp = 0;
|
---|
| 188 | for (int j = 0; j < dimLen; j++) {
|
---|
| 189 | tmp += aArray[j];
|
---|
| 190 | }
|
---|
| 191 | retArr[0] = tmp;
|
---|
| 192 | } else {
|
---|
| 193 | #region may run parallel
|
---|
| 194 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 195 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 196 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 197 |
|
---|
| 198 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 199 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 200 | workItemLength = maxRuns / workItemCount;
|
---|
| 201 | } else {
|
---|
| 202 | workItemLength = maxRuns / 2;
|
---|
| 203 | workItemCount = 2;
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | } else {
|
---|
| 207 | workItemLength = maxRuns;
|
---|
| 208 | workItemCount = 1;
|
---|
| 209 | }
|
---|
| 210 | Action<object> action = (data) => {
|
---|
| 211 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 212 | int from = range.Item1, to = range.Item2;
|
---|
| 213 | for (int c = from; c < to; c++) {
|
---|
| 214 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 215 | long posOut = ((long)c * incOut);
|
---|
| 216 | if (posOut > modOut)
|
---|
| 217 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 218 |
|
---|
| 219 | Int64 tmp = 0;
|
---|
| 220 | int end = pos + dimLen * inc;
|
---|
| 221 | for (int j = pos; j < end; j += inc) {
|
---|
| 222 | tmp += aArray[j];
|
---|
| 223 | }
|
---|
| 224 | retArr[posOut] = tmp;
|
---|
| 225 | }
|
---|
| 226 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 227 | };
|
---|
| 228 | for (; i < workItemCount - 1; i++) {
|
---|
| 229 | Interlocked.Increment(ref workerCount);
|
---|
| 230 |
|
---|
| 231 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 232 | }
|
---|
| 233 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 234 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 235 | #endregion
|
---|
| 236 | }
|
---|
| 237 | return new ILRetArray<Int64>(retArr, newDims);
|
---|
| 238 | }
|
---|
| 239 | }
|
---|
| 240 | /// <summary>
|
---|
| 241 | /// Sum elements of A along specified dimension
|
---|
| 242 | /// </summary>
|
---|
| 243 | /// <param name="A">Input array</param>
|
---|
| 244 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 245 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 246 | /// reduced to the length 1 with the sum of all
|
---|
| 247 | /// elements along that dimension.</returns>
|
---|
| 248 | public static ILRetArray<Int32> sum (ILInArray<Int32> A, int dim = -1) {
|
---|
| 249 | using (ILScope.Enter(A)) {
|
---|
| 250 | if (dim < 0)
|
---|
| 251 | dim = A.Size.WorkingDimension();
|
---|
| 252 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 253 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 254 | if (A.IsEmpty)
|
---|
| 255 | return ILRetArray<Int32>.empty(A.Size);
|
---|
| 256 | if (A.IsScalar) {
|
---|
| 257 |
|
---|
| 258 | return new ILRetArray<Int32>(new Int32[] { A.GetValue(0) }, 1, 1);
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | if (A.S[dim] == 1) return A.C;
|
---|
| 262 |
|
---|
| 263 | int[] newDims = A.S.ToIntArray();
|
---|
| 264 | newDims[dim] = 1;
|
---|
| 265 | ILSize retDimension = new ILSize(newDims);
|
---|
| 266 | Int32[] retArr = ILMemoryPool.Pool.New< Int32>(retDimension.NumberOfElements);
|
---|
| 267 |
|
---|
| 268 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 269 | int dimLen = A.Size[dim];
|
---|
| 270 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 271 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 272 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 273 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 274 | int numelA = A.S.NumberOfElements;
|
---|
| 275 |
|
---|
| 276 | Int32[] aArray = A.GetArrayForRead();
|
---|
| 277 | if (maxRuns == 1) {
|
---|
| 278 |
|
---|
| 279 | Int32 tmp = 0;
|
---|
| 280 | for (int j = 0; j < dimLen; j++) {
|
---|
| 281 | tmp += aArray[j];
|
---|
| 282 | }
|
---|
| 283 | retArr[0] = tmp;
|
---|
| 284 | } else {
|
---|
| 285 | #region may run parallel
|
---|
| 286 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 287 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 288 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 289 |
|
---|
| 290 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 291 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 292 | workItemLength = maxRuns / workItemCount;
|
---|
| 293 | } else {
|
---|
| 294 | workItemLength = maxRuns / 2;
|
---|
| 295 | workItemCount = 2;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | } else {
|
---|
| 299 | workItemLength = maxRuns;
|
---|
| 300 | workItemCount = 1;
|
---|
| 301 | }
|
---|
| 302 | Action<object> action = (data) => {
|
---|
| 303 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 304 | int from = range.Item1, to = range.Item2;
|
---|
| 305 | for (int c = from; c < to; c++) {
|
---|
| 306 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 307 | long posOut = ((long)c * incOut);
|
---|
| 308 | if (posOut > modOut)
|
---|
| 309 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 310 |
|
---|
| 311 | Int32 tmp = 0;
|
---|
| 312 | int end = pos + dimLen * inc;
|
---|
| 313 | for (int j = pos; j < end; j += inc) {
|
---|
| 314 | tmp += aArray[j];
|
---|
| 315 | }
|
---|
| 316 | retArr[posOut] = tmp;
|
---|
| 317 | }
|
---|
| 318 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 319 | };
|
---|
| 320 | for (; i < workItemCount - 1; i++) {
|
---|
| 321 | Interlocked.Increment(ref workerCount);
|
---|
| 322 |
|
---|
| 323 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 324 | }
|
---|
| 325 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 326 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 327 | #endregion
|
---|
| 328 | }
|
---|
| 329 | return new ILRetArray<Int32>(retArr, newDims);
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 | /// <summary>
|
---|
| 333 | /// Sum elements of A along specified dimension
|
---|
| 334 | /// </summary>
|
---|
| 335 | /// <param name="A">Input array</param>
|
---|
| 336 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 337 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 338 | /// reduced to the length 1 with the sum of all
|
---|
| 339 | /// elements along that dimension.</returns>
|
---|
| 340 | public static ILRetArray<byte> sum (ILInArray<byte> A, int dim = -1) {
|
---|
| 341 | using (ILScope.Enter(A)) {
|
---|
| 342 | if (dim < 0)
|
---|
| 343 | dim = A.Size.WorkingDimension();
|
---|
| 344 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 345 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 346 | if (A.IsEmpty)
|
---|
| 347 | return ILRetArray<byte>.empty(A.Size);
|
---|
| 348 | if (A.IsScalar) {
|
---|
| 349 |
|
---|
| 350 | return new ILRetArray<byte>(new byte[] { A.GetValue(0) }, 1, 1);
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | if (A.S[dim] == 1) return A.C;
|
---|
| 354 |
|
---|
| 355 | int[] newDims = A.S.ToIntArray();
|
---|
| 356 | newDims[dim] = 1;
|
---|
| 357 | ILSize retDimension = new ILSize(newDims);
|
---|
| 358 | byte[] retArr = ILMemoryPool.Pool.New< byte>(retDimension.NumberOfElements);
|
---|
| 359 |
|
---|
| 360 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 361 | int dimLen = A.Size[dim];
|
---|
| 362 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 363 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 364 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 365 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 366 | int numelA = A.S.NumberOfElements;
|
---|
| 367 |
|
---|
| 368 | byte[] aArray = A.GetArrayForRead();
|
---|
| 369 | if (maxRuns == 1) {
|
---|
| 370 |
|
---|
| 371 | byte tmp = 0;
|
---|
| 372 | for (int j = 0; j < dimLen; j++) {
|
---|
| 373 | tmp += aArray[j];
|
---|
| 374 | }
|
---|
| 375 | retArr[0] = tmp;
|
---|
| 376 | } else {
|
---|
| 377 | #region may run parallel
|
---|
| 378 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 379 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 380 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 381 |
|
---|
| 382 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 383 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 384 | workItemLength = maxRuns / workItemCount;
|
---|
| 385 | } else {
|
---|
| 386 | workItemLength = maxRuns / 2;
|
---|
| 387 | workItemCount = 2;
|
---|
| 388 | }
|
---|
| 389 |
|
---|
| 390 | } else {
|
---|
| 391 | workItemLength = maxRuns;
|
---|
| 392 | workItemCount = 1;
|
---|
| 393 | }
|
---|
| 394 | Action<object> action = (data) => {
|
---|
| 395 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 396 | int from = range.Item1, to = range.Item2;
|
---|
| 397 | for (int c = from; c < to; c++) {
|
---|
| 398 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 399 | long posOut = ((long)c * incOut);
|
---|
| 400 | if (posOut > modOut)
|
---|
| 401 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 402 |
|
---|
| 403 | byte tmp = 0;
|
---|
| 404 | int end = pos + dimLen * inc;
|
---|
| 405 | for (int j = pos; j < end; j += inc) {
|
---|
| 406 | tmp += aArray[j];
|
---|
| 407 | }
|
---|
| 408 | retArr[posOut] = tmp;
|
---|
| 409 | }
|
---|
| 410 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 411 | };
|
---|
| 412 | for (; i < workItemCount - 1; i++) {
|
---|
| 413 | Interlocked.Increment(ref workerCount);
|
---|
| 414 |
|
---|
| 415 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 416 | }
|
---|
| 417 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 418 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 419 | #endregion
|
---|
| 420 | }
|
---|
| 421 | return new ILRetArray<byte>(retArr, newDims);
|
---|
| 422 | }
|
---|
| 423 | }
|
---|
| 424 | /// <summary>
|
---|
| 425 | /// Sum elements of A along specified dimension
|
---|
| 426 | /// </summary>
|
---|
| 427 | /// <param name="A">Input array</param>
|
---|
| 428 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 429 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 430 | /// reduced to the length 1 with the sum of all
|
---|
| 431 | /// elements along that dimension.</returns>
|
---|
| 432 | public static ILRetArray<fcomplex> sum (ILInArray<fcomplex> A, int dim = -1) {
|
---|
| 433 | using (ILScope.Enter(A)) {
|
---|
| 434 | if (dim < 0)
|
---|
| 435 | dim = A.Size.WorkingDimension();
|
---|
| 436 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 437 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 438 | if (A.IsEmpty)
|
---|
| 439 | return ILRetArray<fcomplex>.empty(A.Size);
|
---|
| 440 | if (A.IsScalar) {
|
---|
| 441 |
|
---|
| 442 | return new ILRetArray<fcomplex>(new fcomplex[] { A.GetValue(0) }, 1, 1);
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | if (A.S[dim] == 1) return A.C;
|
---|
| 446 |
|
---|
| 447 | int[] newDims = A.S.ToIntArray();
|
---|
| 448 | newDims[dim] = 1;
|
---|
| 449 | ILSize retDimension = new ILSize(newDims);
|
---|
| 450 | fcomplex[] retArr = ILMemoryPool.Pool.New< fcomplex>(retDimension.NumberOfElements);
|
---|
| 451 |
|
---|
| 452 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 453 | int dimLen = A.Size[dim];
|
---|
| 454 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 455 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 456 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 457 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 458 | int numelA = A.S.NumberOfElements;
|
---|
| 459 |
|
---|
| 460 | fcomplex[] aArray = A.GetArrayForRead();
|
---|
| 461 | if (maxRuns == 1) {
|
---|
| 462 |
|
---|
| 463 | fcomplex tmp = 0;
|
---|
| 464 | for (int j = 0; j < dimLen; j++) {
|
---|
| 465 | tmp += aArray[j];
|
---|
| 466 | }
|
---|
| 467 | retArr[0] = tmp;
|
---|
| 468 | } else {
|
---|
| 469 | #region may run parallel
|
---|
| 470 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 471 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 472 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 473 |
|
---|
| 474 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 475 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 476 | workItemLength = maxRuns / workItemCount;
|
---|
| 477 | } else {
|
---|
| 478 | workItemLength = maxRuns / 2;
|
---|
| 479 | workItemCount = 2;
|
---|
| 480 | }
|
---|
| 481 |
|
---|
| 482 | } else {
|
---|
| 483 | workItemLength = maxRuns;
|
---|
| 484 | workItemCount = 1;
|
---|
| 485 | }
|
---|
| 486 | Action<object> action = (data) => {
|
---|
| 487 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 488 | int from = range.Item1, to = range.Item2;
|
---|
| 489 | for (int c = from; c < to; c++) {
|
---|
| 490 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 491 | long posOut = ((long)c * incOut);
|
---|
| 492 | if (posOut > modOut)
|
---|
| 493 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 494 |
|
---|
| 495 | fcomplex tmp = 0;
|
---|
| 496 | int end = pos + dimLen * inc;
|
---|
| 497 | for (int j = pos; j < end; j += inc) {
|
---|
| 498 | tmp += aArray[j];
|
---|
| 499 | }
|
---|
| 500 | retArr[posOut] = tmp;
|
---|
| 501 | }
|
---|
| 502 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 503 | };
|
---|
| 504 | for (; i < workItemCount - 1; i++) {
|
---|
| 505 | Interlocked.Increment(ref workerCount);
|
---|
| 506 |
|
---|
| 507 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 508 | }
|
---|
| 509 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 510 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 511 | #endregion
|
---|
| 512 | }
|
---|
| 513 | return new ILRetArray<fcomplex>(retArr, newDims);
|
---|
| 514 | }
|
---|
| 515 | }
|
---|
| 516 | /// <summary>
|
---|
| 517 | /// Sum elements of A along specified dimension
|
---|
| 518 | /// </summary>
|
---|
| 519 | /// <param name="A">Input array</param>
|
---|
| 520 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 521 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 522 | /// reduced to the length 1 with the sum of all
|
---|
| 523 | /// elements along that dimension.</returns>
|
---|
| 524 | public static ILRetArray<float> sum (ILInArray<float> A, int dim = -1) {
|
---|
| 525 | using (ILScope.Enter(A)) {
|
---|
| 526 | if (dim < 0)
|
---|
| 527 | dim = A.Size.WorkingDimension();
|
---|
| 528 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 529 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 530 | if (A.IsEmpty)
|
---|
| 531 | return ILRetArray<float>.empty(A.Size);
|
---|
| 532 | if (A.IsScalar) {
|
---|
| 533 |
|
---|
| 534 | return new ILRetArray<float>(new float[] { A.GetValue(0) }, 1, 1);
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 | if (A.S[dim] == 1) return A.C;
|
---|
| 538 |
|
---|
| 539 | int[] newDims = A.S.ToIntArray();
|
---|
| 540 | newDims[dim] = 1;
|
---|
| 541 | ILSize retDimension = new ILSize(newDims);
|
---|
| 542 | float[] retArr = ILMemoryPool.Pool.New< float>(retDimension.NumberOfElements);
|
---|
| 543 |
|
---|
| 544 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 545 | int dimLen = A.Size[dim];
|
---|
| 546 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 547 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 548 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 549 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 550 | int numelA = A.S.NumberOfElements;
|
---|
| 551 |
|
---|
| 552 | float[] aArray = A.GetArrayForRead();
|
---|
| 553 | if (maxRuns == 1) {
|
---|
| 554 |
|
---|
| 555 | float tmp = 0;
|
---|
| 556 | for (int j = 0; j < dimLen; j++) {
|
---|
| 557 | tmp += aArray[j];
|
---|
| 558 | }
|
---|
| 559 | retArr[0] = tmp;
|
---|
| 560 | } else {
|
---|
| 561 | #region may run parallel
|
---|
| 562 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 563 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 564 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 565 |
|
---|
| 566 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 567 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 568 | workItemLength = maxRuns / workItemCount;
|
---|
| 569 | } else {
|
---|
| 570 | workItemLength = maxRuns / 2;
|
---|
| 571 | workItemCount = 2;
|
---|
| 572 | }
|
---|
| 573 |
|
---|
| 574 | } else {
|
---|
| 575 | workItemLength = maxRuns;
|
---|
| 576 | workItemCount = 1;
|
---|
| 577 | }
|
---|
| 578 | Action<object> action = (data) => {
|
---|
| 579 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 580 | int from = range.Item1, to = range.Item2;
|
---|
| 581 | for (int c = from; c < to; c++) {
|
---|
| 582 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 583 | long posOut = ((long)c * incOut);
|
---|
| 584 | if (posOut > modOut)
|
---|
| 585 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 586 |
|
---|
| 587 | float tmp = 0;
|
---|
| 588 | int end = pos + dimLen * inc;
|
---|
| 589 | for (int j = pos; j < end; j += inc) {
|
---|
| 590 | tmp += aArray[j];
|
---|
| 591 | }
|
---|
| 592 | retArr[posOut] = tmp;
|
---|
| 593 | }
|
---|
| 594 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 595 | };
|
---|
| 596 | for (; i < workItemCount - 1; i++) {
|
---|
| 597 | Interlocked.Increment(ref workerCount);
|
---|
| 598 |
|
---|
| 599 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 600 | }
|
---|
| 601 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 602 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 603 | #endregion
|
---|
| 604 | }
|
---|
| 605 | return new ILRetArray<float>(retArr, newDims);
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 | /// <summary>
|
---|
| 609 | /// Sum elements of A along specified dimension
|
---|
| 610 | /// </summary>
|
---|
| 611 | /// <param name="A">Input array</param>
|
---|
| 612 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 613 | /// <returns>Array, same size as A, but having the 'dim's dimension
|
---|
| 614 | /// reduced to the length 1 with the sum of all
|
---|
| 615 | /// elements along that dimension.</returns>
|
---|
| 616 | public static ILRetArray<complex> sum (ILInArray<complex> A, int dim = -1) {
|
---|
| 617 | using (ILScope.Enter(A)) {
|
---|
| 618 | if (dim < 0)
|
---|
| 619 | dim = A.Size.WorkingDimension();
|
---|
| 620 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 621 | throw new ILArgumentException("dimension parameter out of range!");
|
---|
| 622 | if (A.IsEmpty)
|
---|
| 623 | return ILRetArray<complex>.empty(A.Size);
|
---|
| 624 | if (A.IsScalar) {
|
---|
| 625 |
|
---|
| 626 | return new ILRetArray<complex>(new complex[] { A.GetValue(0) }, 1, 1);
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 | if (A.S[dim] == 1) return A.C;
|
---|
| 630 |
|
---|
| 631 | int[] newDims = A.S.ToIntArray();
|
---|
| 632 | newDims[dim] = 1;
|
---|
| 633 | ILSize retDimension = new ILSize(newDims);
|
---|
| 634 | complex[] retArr = ILMemoryPool.Pool.New< complex>(retDimension.NumberOfElements);
|
---|
| 635 |
|
---|
| 636 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 637 | int dimLen = A.Size[dim];
|
---|
| 638 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 639 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 640 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 641 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 642 | int numelA = A.S.NumberOfElements;
|
---|
| 643 |
|
---|
| 644 | complex[] aArray = A.GetArrayForRead();
|
---|
| 645 | if (maxRuns == 1) {
|
---|
| 646 |
|
---|
| 647 | complex tmp = 0;
|
---|
| 648 | for (int j = 0; j < dimLen; j++) {
|
---|
| 649 | tmp += aArray[j];
|
---|
| 650 | }
|
---|
| 651 | retArr[0] = tmp;
|
---|
| 652 | } else {
|
---|
| 653 | #region may run parallel
|
---|
| 654 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 655 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 656 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 657 |
|
---|
| 658 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 659 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 660 | workItemLength = maxRuns / workItemCount;
|
---|
| 661 | } else {
|
---|
| 662 | workItemLength = maxRuns / 2;
|
---|
| 663 | workItemCount = 2;
|
---|
| 664 | }
|
---|
| 665 |
|
---|
| 666 | } else {
|
---|
| 667 | workItemLength = maxRuns;
|
---|
| 668 | workItemCount = 1;
|
---|
| 669 | }
|
---|
| 670 | Action<object> action = (data) => {
|
---|
| 671 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 672 | int from = range.Item1, to = range.Item2;
|
---|
| 673 | for (int c = from; c < to; c++) {
|
---|
| 674 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 675 | long posOut = ((long)c * incOut);
|
---|
| 676 | if (posOut > modOut)
|
---|
| 677 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 678 |
|
---|
| 679 | complex tmp = 0;
|
---|
| 680 | int end = pos + dimLen * inc;
|
---|
| 681 | for (int j = pos; j < end; j += inc) {
|
---|
| 682 | tmp += aArray[j];
|
---|
| 683 | }
|
---|
| 684 | retArr[posOut] = tmp;
|
---|
| 685 | }
|
---|
| 686 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 687 | };
|
---|
| 688 | for (; i < workItemCount - 1; i++) {
|
---|
| 689 | Interlocked.Increment(ref workerCount);
|
---|
| 690 |
|
---|
| 691 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 692 | }
|
---|
| 693 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 694 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 695 | #endregion
|
---|
| 696 | }
|
---|
| 697 | return new ILRetArray<complex>(retArr, newDims);
|
---|
| 698 | }
|
---|
| 699 | }
|
---|
| 700 |
|
---|
| 701 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 702 | }
|
---|
| 703 | } |
---|