[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics.Storage;
|
---|
| 44 | using ILNumerics.Misc;
|
---|
| 45 | using ILNumerics.Exceptions;
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | namespace ILNumerics {
|
---|
| 50 | public partial class ILMath {
|
---|
| 51 |
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// Find nonzero elements in A
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="A">Input array</param>
|
---|
| 57 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 58 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 59 | /// Set to 0 to search full array (default).</param>
|
---|
| 60 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 61 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 62 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 63 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 64 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 65 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 66 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 67 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 68 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 69 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 70 | public static ILRetArray<double> find(ILInArray< double> A, int limit = 0,
|
---|
| 71 | ILOutArray<double> C = null, ILOutArray< double> V = null) {
|
---|
| 72 | using (ILScope.Enter(A)) {
|
---|
| 73 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 74 | bool return_values = !Object.Equals(V, null);
|
---|
| 75 | ILArray<double> ret = empty();
|
---|
| 76 | ILSize inDim = A.Size;
|
---|
| 77 | if (inDim.NumberOfElements == 1) {
|
---|
| 78 | #region SCALAR
|
---|
| 79 | // scalar -> return copy
|
---|
| 80 |
|
---|
| 81 | if (A.GetValue(0, 0) != 0.0) {
|
---|
| 82 | if (create_row_columns) {
|
---|
| 83 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 84 | }
|
---|
| 85 | if (return_values) {
|
---|
| 86 | V.a = A.C;
|
---|
| 87 | }
|
---|
| 88 | return zeros<double>(1, 1);
|
---|
| 89 | } else {
|
---|
| 90 | if (create_row_columns) {
|
---|
| 91 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 92 | }
|
---|
| 93 | if (return_values) {
|
---|
| 94 | V.a = empty<double>(ILSize.Empty00);
|
---|
| 95 | }
|
---|
| 96 | return empty<double>(ILSize.Empty00);
|
---|
| 97 | }
|
---|
| 98 | #endregion SCALAR
|
---|
| 99 | }
|
---|
| 100 | long nrElements = inDim.NumberOfElements;
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | if (limit != 0) {
|
---|
| 104 | int lim = Math.Abs(limit);
|
---|
| 105 | if (lim < nrElements)
|
---|
| 106 | nrElements = lim;
|
---|
| 107 | }
|
---|
| 108 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 109 | int foundIdx = 0;
|
---|
| 110 | // physical -> pointer arithmetic
|
---|
| 111 | if (limit >= 0) {
|
---|
| 112 | unsafe {
|
---|
| 113 | fixed (double* pIndices = indices)
|
---|
| 114 | fixed ( double* pX = A.GetArrayForRead()) {
|
---|
| 115 |
|
---|
| 116 | double* lastElement = pX + inDim.NumberOfElements;
|
---|
| 117 |
|
---|
| 118 | double* tmpIn = pX;
|
---|
| 119 | double* pI = pIndices;
|
---|
| 120 | double* pFoundLast = pI + indices.Length;
|
---|
| 121 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 122 |
|
---|
| 123 | if (*tmpIn != 0.0)
|
---|
| 124 | *pI++ = (double)(tmpIn - pX);
|
---|
| 125 | tmpIn++;
|
---|
| 126 | }
|
---|
| 127 | foundIdx = (int)(pI - pIndices);
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | } else {
|
---|
| 131 | // search backwards
|
---|
| 132 | unsafe {
|
---|
| 133 | fixed (double* pIndices = indices)
|
---|
| 134 | fixed ( double* pX = A.GetArrayForRead()) {
|
---|
| 135 |
|
---|
| 136 | double* lastElementX = pX;
|
---|
| 137 |
|
---|
| 138 | double* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 139 | double* pI = pIndices + indices.Length;
|
---|
| 140 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 141 | tmpIn--;
|
---|
| 142 |
|
---|
| 143 | if (*tmpIn != 0.0)
|
---|
| 144 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 145 | }
|
---|
| 146 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | if (foundIdx == 0) {
|
---|
| 151 | return empty();
|
---|
| 152 | }
|
---|
| 153 | // transform to row / columns; extract values if needed
|
---|
| 154 | int leadDimLen = inDim[0];
|
---|
| 155 | if (create_row_columns) {
|
---|
| 156 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 157 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 158 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 159 | if (return_values) {
|
---|
| 160 | V.a = new ILRetArray< double>(ILMemoryPool.Pool.New< double>(foundIdx), foundIdx, 1);
|
---|
| 161 | // copy values, transform to row/columns
|
---|
| 162 | unsafe {
|
---|
| 163 | fixed (double* pIndices = indices,
|
---|
| 164 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 165 | fixed ( double* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 166 | double* pI = (limit >= 0) ?
|
---|
| 167 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 168 | double* pLastIndex = pI + foundIdx;
|
---|
| 169 | double* pR = pRows;
|
---|
| 170 | double* pC = pCols;
|
---|
| 171 |
|
---|
| 172 | double* pV = pValues;
|
---|
| 173 |
|
---|
| 174 | double* pX = pInput;
|
---|
| 175 | while (pI < pLastIndex) {
|
---|
| 176 | *pR++ = *(pI) % leadDimLen;
|
---|
| 177 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 178 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 179 | }
|
---|
| 180 | }
|
---|
| 181 | }
|
---|
| 182 | } else {
|
---|
| 183 | // just return row / columns
|
---|
| 184 | unsafe {
|
---|
| 185 | fixed (double* pIndices = indices,
|
---|
| 186 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 187 | fixed ( double* pInput = A.GetArrayForRead()) {
|
---|
| 188 | double* pI = (limit >= 0) ?
|
---|
| 189 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 190 | double* pLastIndex = pI + foundIdx;
|
---|
| 191 | double* pR = pRows;
|
---|
| 192 | double* pC = pCols;
|
---|
| 193 | while (pI < pLastIndex) {
|
---|
| 194 | *pR++ = *(pI) % leadDimLen;
|
---|
| 195 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 | #endregion RETURN ROWS / COLUMNS
|
---|
| 201 | } else {
|
---|
| 202 | #region RETURN INDICES ONLY
|
---|
| 203 | if (foundIdx != indices.Length) {
|
---|
| 204 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 205 | unsafe {
|
---|
| 206 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 207 | double* pI = (limit >= 0) ?
|
---|
| 208 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 209 | double* pLastIndex = pI + foundIdx;
|
---|
| 210 | double* pR = pRows;
|
---|
| 211 | while (pI < pLastIndex) {
|
---|
| 212 | *pR++ = *pI++;
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | } else {
|
---|
| 217 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 218 | }
|
---|
| 219 | #endregion RETURN INDICES ONLY
|
---|
| 220 | }
|
---|
| 221 | return ret;
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | |
---|
| 225 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 226 | |
---|
| 227 | /// <summary>
|
---|
| 228 | /// Find nonzero elements in A
|
---|
| 229 | /// </summary>
|
---|
| 230 | /// <param name="A">Input array</param>
|
---|
| 231 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 232 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 233 | /// Set to 0 to search full array (default).</param>
|
---|
| 234 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 235 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 236 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 237 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 238 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 239 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 240 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 241 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 242 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 243 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 244 | public static ILRetArray<double> find(ILInArray< Int64> A, int limit = 0,
|
---|
| 245 | ILOutArray<double> C = null, ILOutArray< Int64> V = null) {
|
---|
| 246 | using (ILScope.Enter(A)) {
|
---|
| 247 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 248 | bool return_values = !Object.Equals(V, null);
|
---|
| 249 | ILArray<double> ret = empty();
|
---|
| 250 | ILSize inDim = A.Size;
|
---|
| 251 | if (inDim.NumberOfElements == 1) {
|
---|
| 252 | #region SCALAR
|
---|
| 253 | // scalar -> return copy
|
---|
| 254 | if (A.GetValue(0,0) != 0) {
|
---|
| 255 | if (create_row_columns) {
|
---|
| 256 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 257 | }
|
---|
| 258 | if (return_values) {
|
---|
| 259 | V.a = A.C;
|
---|
| 260 | }
|
---|
| 261 | return zeros<double>(1, 1);
|
---|
| 262 | } else {
|
---|
| 263 | if (create_row_columns) {
|
---|
| 264 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 265 | }
|
---|
| 266 | if (return_values) {
|
---|
| 267 | V.a = empty<Int64>(ILSize.Empty00);
|
---|
| 268 | }
|
---|
| 269 | return empty<double>(ILSize.Empty00);
|
---|
| 270 | }
|
---|
| 271 | #endregion SCALAR
|
---|
| 272 | }
|
---|
| 273 | long nrElements = inDim.NumberOfElements;
|
---|
| 274 |
|
---|
| 275 | if (limit != 0) {
|
---|
| 276 | int lim = Math.Abs(limit);
|
---|
| 277 | if (lim < nrElements)
|
---|
| 278 | nrElements = lim;
|
---|
| 279 | }
|
---|
| 280 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 281 | int foundIdx = 0;
|
---|
| 282 | // physical -> pointer arithmetic
|
---|
| 283 | if (limit >= 0) {
|
---|
| 284 | unsafe {
|
---|
| 285 | fixed (double* pIndices = indices)
|
---|
| 286 | fixed ( Int64* pX = A.GetArrayForRead()) {
|
---|
| 287 |
|
---|
| 288 | Int64* lastElement = pX + inDim.NumberOfElements;
|
---|
| 289 |
|
---|
| 290 | Int64* tmpIn = pX;
|
---|
| 291 | double* pI = pIndices;
|
---|
| 292 | double* pFoundLast = pI + indices.Length;
|
---|
| 293 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 294 | if (*tmpIn != 0)
|
---|
| 295 | *pI++ = (double)(tmpIn - pX);
|
---|
| 296 | tmpIn++;
|
---|
| 297 | }
|
---|
| 298 | foundIdx = (int)(pI - pIndices);
|
---|
| 299 | }
|
---|
| 300 | }
|
---|
| 301 | } else {
|
---|
| 302 | // search backwards
|
---|
| 303 | unsafe {
|
---|
| 304 | fixed (double* pIndices = indices)
|
---|
| 305 | fixed ( Int64* pX = A.GetArrayForRead()) {
|
---|
| 306 |
|
---|
| 307 | Int64* lastElementX = pX;
|
---|
| 308 |
|
---|
| 309 | Int64* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 310 | double* pI = pIndices + indices.Length;
|
---|
| 311 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 312 | tmpIn--;
|
---|
| 313 | if (*tmpIn != 0)
|
---|
| 314 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 315 | }
|
---|
| 316 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 317 | }
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | if (foundIdx == 0) {
|
---|
| 321 | return empty();
|
---|
| 322 | }
|
---|
| 323 | // transform to row / columns; extract values if needed
|
---|
| 324 | int leadDimLen = inDim[0];
|
---|
| 325 | if (create_row_columns) {
|
---|
| 326 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 327 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 328 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 329 | if (return_values) {
|
---|
| 330 | V.a = new ILRetArray< Int64>(ILMemoryPool.Pool.New< Int64>(foundIdx), foundIdx, 1);
|
---|
| 331 | // copy values, transform to row/columns
|
---|
| 332 | unsafe {
|
---|
| 333 | fixed (double* pIndices = indices,
|
---|
| 334 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 335 | fixed ( Int64* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 336 | double* pI = (limit >= 0) ?
|
---|
| 337 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 338 | double* pLastIndex = pI + foundIdx;
|
---|
| 339 | double* pR = pRows;
|
---|
| 340 | double* pC = pCols;
|
---|
| 341 |
|
---|
| 342 | Int64* pV = pValues;
|
---|
| 343 |
|
---|
| 344 | Int64* pX = pInput;
|
---|
| 345 | while (pI < pLastIndex) {
|
---|
| 346 | *pR++ = *(pI) % leadDimLen;
|
---|
| 347 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 348 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 349 | }
|
---|
| 350 | }
|
---|
| 351 | }
|
---|
| 352 | } else {
|
---|
| 353 | // just return row / columns
|
---|
| 354 | unsafe {
|
---|
| 355 | fixed (double* pIndices = indices,
|
---|
| 356 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 357 | fixed ( Int64* pInput = A.GetArrayForRead()) {
|
---|
| 358 | double* pI = (limit >= 0) ?
|
---|
| 359 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 360 | double* pLastIndex = pI + foundIdx;
|
---|
| 361 | double* pR = pRows;
|
---|
| 362 | double* pC = pCols;
|
---|
| 363 | while (pI < pLastIndex) {
|
---|
| 364 | *pR++ = *(pI) % leadDimLen;
|
---|
| 365 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 366 | }
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | }
|
---|
| 370 | #endregion RETURN ROWS / COLUMNS
|
---|
| 371 | } else {
|
---|
| 372 | #region RETURN INDICES ONLY
|
---|
| 373 | if (foundIdx != indices.Length) {
|
---|
| 374 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 375 | unsafe {
|
---|
| 376 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 377 | double* pI = (limit >= 0) ?
|
---|
| 378 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 379 | double* pLastIndex = pI + foundIdx;
|
---|
| 380 | double* pR = pRows;
|
---|
| 381 | while (pI < pLastIndex) {
|
---|
| 382 | *pR++ = *pI++;
|
---|
| 383 | }
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 | } else {
|
---|
| 387 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 388 | }
|
---|
| 389 | #endregion RETURN INDICES ONLY
|
---|
| 390 | }
|
---|
| 391 | return ret;
|
---|
| 392 | }
|
---|
| 393 | }
|
---|
| 394 | /// <summary>
|
---|
| 395 | /// Find nonzero elements in A
|
---|
| 396 | /// </summary>
|
---|
| 397 | /// <param name="A">Input array</param>
|
---|
| 398 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 399 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 400 | /// Set to 0 to search full array (default).</param>
|
---|
| 401 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 402 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 403 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 404 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 405 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 406 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 407 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 408 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 409 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 410 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 411 | public static ILRetArray<double> find(ILInArray< Int32> A, int limit = 0,
|
---|
| 412 | ILOutArray<double> C = null, ILOutArray< Int32> V = null) {
|
---|
| 413 | using (ILScope.Enter(A)) {
|
---|
| 414 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 415 | bool return_values = !Object.Equals(V, null);
|
---|
| 416 | ILArray<double> ret = empty();
|
---|
| 417 | ILSize inDim = A.Size;
|
---|
| 418 | if (inDim.NumberOfElements == 1) {
|
---|
| 419 | #region SCALAR
|
---|
| 420 | // scalar -> return copy
|
---|
| 421 | if (A.GetValue(0,0) != 0) {
|
---|
| 422 | if (create_row_columns) {
|
---|
| 423 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 424 | }
|
---|
| 425 | if (return_values) {
|
---|
| 426 | V.a = A.C;
|
---|
| 427 | }
|
---|
| 428 | return zeros<double>(1, 1);
|
---|
| 429 | } else {
|
---|
| 430 | if (create_row_columns) {
|
---|
| 431 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 432 | }
|
---|
| 433 | if (return_values) {
|
---|
| 434 | V.a = empty<Int32>(ILSize.Empty00);
|
---|
| 435 | }
|
---|
| 436 | return empty<double>(ILSize.Empty00);
|
---|
| 437 | }
|
---|
| 438 | #endregion SCALAR
|
---|
| 439 | }
|
---|
| 440 | long nrElements = inDim.NumberOfElements;
|
---|
| 441 |
|
---|
| 442 | if (limit != 0) {
|
---|
| 443 | int lim = Math.Abs(limit);
|
---|
| 444 | if (lim < nrElements)
|
---|
| 445 | nrElements = lim;
|
---|
| 446 | }
|
---|
| 447 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 448 | int foundIdx = 0;
|
---|
| 449 | // physical -> pointer arithmetic
|
---|
| 450 | if (limit >= 0) {
|
---|
| 451 | unsafe {
|
---|
| 452 | fixed (double* pIndices = indices)
|
---|
| 453 | fixed ( Int32* pX = A.GetArrayForRead()) {
|
---|
| 454 |
|
---|
| 455 | Int32* lastElement = pX + inDim.NumberOfElements;
|
---|
| 456 |
|
---|
| 457 | Int32* tmpIn = pX;
|
---|
| 458 | double* pI = pIndices;
|
---|
| 459 | double* pFoundLast = pI + indices.Length;
|
---|
| 460 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 461 | if (*tmpIn != 0)
|
---|
| 462 | *pI++ = (double)(tmpIn - pX);
|
---|
| 463 | tmpIn++;
|
---|
| 464 | }
|
---|
| 465 | foundIdx = (int)(pI - pIndices);
|
---|
| 466 | }
|
---|
| 467 | }
|
---|
| 468 | } else {
|
---|
| 469 | // search backwards
|
---|
| 470 | unsafe {
|
---|
| 471 | fixed (double* pIndices = indices)
|
---|
| 472 | fixed ( Int32* pX = A.GetArrayForRead()) {
|
---|
| 473 |
|
---|
| 474 | Int32* lastElementX = pX;
|
---|
| 475 |
|
---|
| 476 | Int32* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 477 | double* pI = pIndices + indices.Length;
|
---|
| 478 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 479 | tmpIn--;
|
---|
| 480 | if (*tmpIn != 0)
|
---|
| 481 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 482 | }
|
---|
| 483 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 484 | }
|
---|
| 485 | }
|
---|
| 486 | }
|
---|
| 487 | if (foundIdx == 0) {
|
---|
| 488 | return empty();
|
---|
| 489 | }
|
---|
| 490 | // transform to row / columns; extract values if needed
|
---|
| 491 | int leadDimLen = inDim[0];
|
---|
| 492 | if (create_row_columns) {
|
---|
| 493 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 494 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 495 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 496 | if (return_values) {
|
---|
| 497 | V.a = new ILRetArray< Int32>(ILMemoryPool.Pool.New< Int32>(foundIdx), foundIdx, 1);
|
---|
| 498 | // copy values, transform to row/columns
|
---|
| 499 | unsafe {
|
---|
| 500 | fixed (double* pIndices = indices,
|
---|
| 501 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 502 | fixed ( Int32* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 503 | double* pI = (limit >= 0) ?
|
---|
| 504 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 505 | double* pLastIndex = pI + foundIdx;
|
---|
| 506 | double* pR = pRows;
|
---|
| 507 | double* pC = pCols;
|
---|
| 508 |
|
---|
| 509 | Int32* pV = pValues;
|
---|
| 510 |
|
---|
| 511 | Int32* pX = pInput;
|
---|
| 512 | while (pI < pLastIndex) {
|
---|
| 513 | *pR++ = *(pI) % leadDimLen;
|
---|
| 514 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 515 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | }
|
---|
| 519 | } else {
|
---|
| 520 | // just return row / columns
|
---|
| 521 | unsafe {
|
---|
| 522 | fixed (double* pIndices = indices,
|
---|
| 523 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 524 | fixed ( Int32* pInput = A.GetArrayForRead()) {
|
---|
| 525 | double* pI = (limit >= 0) ?
|
---|
| 526 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 527 | double* pLastIndex = pI + foundIdx;
|
---|
| 528 | double* pR = pRows;
|
---|
| 529 | double* pC = pCols;
|
---|
| 530 | while (pI < pLastIndex) {
|
---|
| 531 | *pR++ = *(pI) % leadDimLen;
|
---|
| 532 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 533 | }
|
---|
| 534 | }
|
---|
| 535 | }
|
---|
| 536 | }
|
---|
| 537 | #endregion RETURN ROWS / COLUMNS
|
---|
| 538 | } else {
|
---|
| 539 | #region RETURN INDICES ONLY
|
---|
| 540 | if (foundIdx != indices.Length) {
|
---|
| 541 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 542 | unsafe {
|
---|
| 543 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 544 | double* pI = (limit >= 0) ?
|
---|
| 545 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 546 | double* pLastIndex = pI + foundIdx;
|
---|
| 547 | double* pR = pRows;
|
---|
| 548 | while (pI < pLastIndex) {
|
---|
| 549 | *pR++ = *pI++;
|
---|
| 550 | }
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
| 553 | } else {
|
---|
| 554 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 555 | }
|
---|
| 556 | #endregion RETURN INDICES ONLY
|
---|
| 557 | }
|
---|
| 558 | return ret;
|
---|
| 559 | }
|
---|
| 560 | }
|
---|
| 561 | /// <summary>
|
---|
| 562 | /// Find nonzero elements in A
|
---|
| 563 | /// </summary>
|
---|
| 564 | /// <param name="A">Input array</param>
|
---|
| 565 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 566 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 567 | /// Set to 0 to search full array (default).</param>
|
---|
| 568 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 569 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 570 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 571 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 572 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 573 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 574 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 575 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 576 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 577 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 578 | public static ILRetArray<double> find(ILInArray< float> A, int limit = 0,
|
---|
| 579 | ILOutArray<double> C = null, ILOutArray< float> V = null) {
|
---|
| 580 | using (ILScope.Enter(A)) {
|
---|
| 581 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 582 | bool return_values = !Object.Equals(V, null);
|
---|
| 583 | ILArray<double> ret = empty();
|
---|
| 584 | ILSize inDim = A.Size;
|
---|
| 585 | if (inDim.NumberOfElements == 1) {
|
---|
| 586 | #region SCALAR
|
---|
| 587 | // scalar -> return copy
|
---|
| 588 | if (A.GetValue(0,0) != 0.0) {
|
---|
| 589 | if (create_row_columns) {
|
---|
| 590 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 591 | }
|
---|
| 592 | if (return_values) {
|
---|
| 593 | V.a = A.C;
|
---|
| 594 | }
|
---|
| 595 | return zeros<double>(1, 1);
|
---|
| 596 | } else {
|
---|
| 597 | if (create_row_columns) {
|
---|
| 598 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 599 | }
|
---|
| 600 | if (return_values) {
|
---|
| 601 | V.a = empty<float>(ILSize.Empty00);
|
---|
| 602 | }
|
---|
| 603 | return empty<double>(ILSize.Empty00);
|
---|
| 604 | }
|
---|
| 605 | #endregion SCALAR
|
---|
| 606 | }
|
---|
| 607 | long nrElements = inDim.NumberOfElements;
|
---|
| 608 |
|
---|
| 609 | if (limit != 0) {
|
---|
| 610 | int lim = Math.Abs(limit);
|
---|
| 611 | if (lim < nrElements)
|
---|
| 612 | nrElements = lim;
|
---|
| 613 | }
|
---|
| 614 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 615 | int foundIdx = 0;
|
---|
| 616 | // physical -> pointer arithmetic
|
---|
| 617 | if (limit >= 0) {
|
---|
| 618 | unsafe {
|
---|
| 619 | fixed (double* pIndices = indices)
|
---|
| 620 | fixed ( float* pX = A.GetArrayForRead()) {
|
---|
| 621 |
|
---|
| 622 | float* lastElement = pX + inDim.NumberOfElements;
|
---|
| 623 |
|
---|
| 624 | float* tmpIn = pX;
|
---|
| 625 | double* pI = pIndices;
|
---|
| 626 | double* pFoundLast = pI + indices.Length;
|
---|
| 627 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 628 | if (*tmpIn != 0.0f)
|
---|
| 629 | *pI++ = (double)(tmpIn - pX);
|
---|
| 630 | tmpIn++;
|
---|
| 631 | }
|
---|
| 632 | foundIdx = (int)(pI - pIndices);
|
---|
| 633 | }
|
---|
| 634 | }
|
---|
| 635 | } else {
|
---|
| 636 | // search backwards
|
---|
| 637 | unsafe {
|
---|
| 638 | fixed (double* pIndices = indices)
|
---|
| 639 | fixed ( float* pX = A.GetArrayForRead()) {
|
---|
| 640 |
|
---|
| 641 | float* lastElementX = pX;
|
---|
| 642 |
|
---|
| 643 | float* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 644 | double* pI = pIndices + indices.Length;
|
---|
| 645 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 646 | tmpIn--;
|
---|
| 647 | if (*tmpIn != 0.0f)
|
---|
| 648 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 649 | }
|
---|
| 650 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 651 | }
|
---|
| 652 | }
|
---|
| 653 | }
|
---|
| 654 | if (foundIdx == 0) {
|
---|
| 655 | return empty();
|
---|
| 656 | }
|
---|
| 657 | // transform to row / columns; extract values if needed
|
---|
| 658 | int leadDimLen = inDim[0];
|
---|
| 659 | if (create_row_columns) {
|
---|
| 660 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 661 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 662 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 663 | if (return_values) {
|
---|
| 664 | V.a = new ILRetArray< float>(ILMemoryPool.Pool.New< float>(foundIdx), foundIdx, 1);
|
---|
| 665 | // copy values, transform to row/columns
|
---|
| 666 | unsafe {
|
---|
| 667 | fixed (double* pIndices = indices,
|
---|
| 668 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 669 | fixed ( float* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 670 | double* pI = (limit >= 0) ?
|
---|
| 671 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 672 | double* pLastIndex = pI + foundIdx;
|
---|
| 673 | double* pR = pRows;
|
---|
| 674 | double* pC = pCols;
|
---|
| 675 |
|
---|
| 676 | float* pV = pValues;
|
---|
| 677 |
|
---|
| 678 | float* pX = pInput;
|
---|
| 679 | while (pI < pLastIndex) {
|
---|
| 680 | *pR++ = *(pI) % leadDimLen;
|
---|
| 681 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 682 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 683 | }
|
---|
| 684 | }
|
---|
| 685 | }
|
---|
| 686 | } else {
|
---|
| 687 | // just return row / columns
|
---|
| 688 | unsafe {
|
---|
| 689 | fixed (double* pIndices = indices,
|
---|
| 690 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 691 | fixed ( float* pInput = A.GetArrayForRead()) {
|
---|
| 692 | double* pI = (limit >= 0) ?
|
---|
| 693 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 694 | double* pLastIndex = pI + foundIdx;
|
---|
| 695 | double* pR = pRows;
|
---|
| 696 | double* pC = pCols;
|
---|
| 697 | while (pI < pLastIndex) {
|
---|
| 698 | *pR++ = *(pI) % leadDimLen;
|
---|
| 699 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 700 | }
|
---|
| 701 | }
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
| 704 | #endregion RETURN ROWS / COLUMNS
|
---|
| 705 | } else {
|
---|
| 706 | #region RETURN INDICES ONLY
|
---|
| 707 | if (foundIdx != indices.Length) {
|
---|
| 708 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 709 | unsafe {
|
---|
| 710 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 711 | double* pI = (limit >= 0) ?
|
---|
| 712 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 713 | double* pLastIndex = pI + foundIdx;
|
---|
| 714 | double* pR = pRows;
|
---|
| 715 | while (pI < pLastIndex) {
|
---|
| 716 | *pR++ = *pI++;
|
---|
| 717 | }
|
---|
| 718 | }
|
---|
| 719 | }
|
---|
| 720 | } else {
|
---|
| 721 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 722 | }
|
---|
| 723 | #endregion RETURN INDICES ONLY
|
---|
| 724 | }
|
---|
| 725 | return ret;
|
---|
| 726 | }
|
---|
| 727 | }
|
---|
| 728 | /// <summary>
|
---|
| 729 | /// Find nonzero elements in A
|
---|
| 730 | /// </summary>
|
---|
| 731 | /// <param name="A">Input array</param>
|
---|
| 732 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 733 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 734 | /// Set to 0 to search full array (default).</param>
|
---|
| 735 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 736 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 737 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 738 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 739 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 740 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 741 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 742 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 743 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 744 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 745 | public static ILRetArray<double> find(ILInArray< fcomplex> A, int limit = 0,
|
---|
| 746 | ILOutArray<double> C = null, ILOutArray< fcomplex> V = null) {
|
---|
| 747 | using (ILScope.Enter(A)) {
|
---|
| 748 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 749 | bool return_values = !Object.Equals(V, null);
|
---|
| 750 | ILArray<double> ret = empty();
|
---|
| 751 | ILSize inDim = A.Size;
|
---|
| 752 | if (inDim.NumberOfElements == 1) {
|
---|
| 753 | #region SCALAR
|
---|
| 754 | // scalar -> return copy
|
---|
| 755 | if (A.GetValue(0,0).real != 0.0 || A.GetValue(0,0).imag != 0.0) {
|
---|
| 756 | if (create_row_columns) {
|
---|
| 757 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 758 | }
|
---|
| 759 | if (return_values) {
|
---|
| 760 | V.a = A.C;
|
---|
| 761 | }
|
---|
| 762 | return zeros<double>(1, 1);
|
---|
| 763 | } else {
|
---|
| 764 | if (create_row_columns) {
|
---|
| 765 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 766 | }
|
---|
| 767 | if (return_values) {
|
---|
| 768 | V.a = empty<fcomplex>(ILSize.Empty00);
|
---|
| 769 | }
|
---|
| 770 | return empty<double>(ILSize.Empty00);
|
---|
| 771 | }
|
---|
| 772 | #endregion SCALAR
|
---|
| 773 | }
|
---|
| 774 | long nrElements = inDim.NumberOfElements;
|
---|
| 775 |
|
---|
| 776 | if (limit != 0) {
|
---|
| 777 | int lim = Math.Abs(limit);
|
---|
| 778 | if (lim < nrElements)
|
---|
| 779 | nrElements = lim;
|
---|
| 780 | }
|
---|
| 781 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 782 | int foundIdx = 0;
|
---|
| 783 | // physical -> pointer arithmetic
|
---|
| 784 | if (limit >= 0) {
|
---|
| 785 | unsafe {
|
---|
| 786 | fixed (double* pIndices = indices)
|
---|
| 787 | fixed ( fcomplex* pX = A.GetArrayForRead()) {
|
---|
| 788 |
|
---|
| 789 | fcomplex* lastElement = pX + inDim.NumberOfElements;
|
---|
| 790 |
|
---|
| 791 | fcomplex* tmpIn = pX;
|
---|
| 792 | double* pI = pIndices;
|
---|
| 793 | double* pFoundLast = pI + indices.Length;
|
---|
| 794 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 795 | if ((*tmpIn).real != 0.0 || (*tmpIn).imag != 0.0)
|
---|
| 796 | *pI++ = (double)(tmpIn - pX);
|
---|
| 797 | tmpIn++;
|
---|
| 798 | }
|
---|
| 799 | foundIdx = (int)(pI - pIndices);
|
---|
| 800 | }
|
---|
| 801 | }
|
---|
| 802 | } else {
|
---|
| 803 | // search backwards
|
---|
| 804 | unsafe {
|
---|
| 805 | fixed (double* pIndices = indices)
|
---|
| 806 | fixed ( fcomplex* pX = A.GetArrayForRead()) {
|
---|
| 807 |
|
---|
| 808 | fcomplex* lastElementX = pX;
|
---|
| 809 |
|
---|
| 810 | fcomplex* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 811 | double* pI = pIndices + indices.Length;
|
---|
| 812 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 813 | tmpIn--;
|
---|
| 814 | if ((*tmpIn).real != 0.0 || (*tmpIn).imag != 0.0)
|
---|
| 815 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 816 | }
|
---|
| 817 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
| 820 | }
|
---|
| 821 | if (foundIdx == 0) {
|
---|
| 822 | return empty();
|
---|
| 823 | }
|
---|
| 824 | // transform to row / columns; extract values if needed
|
---|
| 825 | int leadDimLen = inDim[0];
|
---|
| 826 | if (create_row_columns) {
|
---|
| 827 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 828 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 829 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 830 | if (return_values) {
|
---|
| 831 | V.a = new ILRetArray< fcomplex>(ILMemoryPool.Pool.New< fcomplex>(foundIdx), foundIdx, 1);
|
---|
| 832 | // copy values, transform to row/columns
|
---|
| 833 | unsafe {
|
---|
| 834 | fixed (double* pIndices = indices,
|
---|
| 835 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 836 | fixed ( fcomplex* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 837 | double* pI = (limit >= 0) ?
|
---|
| 838 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 839 | double* pLastIndex = pI + foundIdx;
|
---|
| 840 | double* pR = pRows;
|
---|
| 841 | double* pC = pCols;
|
---|
| 842 |
|
---|
| 843 | fcomplex* pV = pValues;
|
---|
| 844 |
|
---|
| 845 | fcomplex* pX = pInput;
|
---|
| 846 | while (pI < pLastIndex) {
|
---|
| 847 | *pR++ = *(pI) % leadDimLen;
|
---|
| 848 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 849 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 850 | }
|
---|
| 851 | }
|
---|
| 852 | }
|
---|
| 853 | } else {
|
---|
| 854 | // just return row / columns
|
---|
| 855 | unsafe {
|
---|
| 856 | fixed (double* pIndices = indices,
|
---|
| 857 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 858 | fixed ( fcomplex* pInput = A.GetArrayForRead()) {
|
---|
| 859 | double* pI = (limit >= 0) ?
|
---|
| 860 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 861 | double* pLastIndex = pI + foundIdx;
|
---|
| 862 | double* pR = pRows;
|
---|
| 863 | double* pC = pCols;
|
---|
| 864 | while (pI < pLastIndex) {
|
---|
| 865 | *pR++ = *(pI) % leadDimLen;
|
---|
| 866 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 867 | }
|
---|
| 868 | }
|
---|
| 869 | }
|
---|
| 870 | }
|
---|
| 871 | #endregion RETURN ROWS / COLUMNS
|
---|
| 872 | } else {
|
---|
| 873 | #region RETURN INDICES ONLY
|
---|
| 874 | if (foundIdx != indices.Length) {
|
---|
| 875 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 876 | unsafe {
|
---|
| 877 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 878 | double* pI = (limit >= 0) ?
|
---|
| 879 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 880 | double* pLastIndex = pI + foundIdx;
|
---|
| 881 | double* pR = pRows;
|
---|
| 882 | while (pI < pLastIndex) {
|
---|
| 883 | *pR++ = *pI++;
|
---|
| 884 | }
|
---|
| 885 | }
|
---|
| 886 | }
|
---|
| 887 | } else {
|
---|
| 888 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 889 | }
|
---|
| 890 | #endregion RETURN INDICES ONLY
|
---|
| 891 | }
|
---|
| 892 | return ret;
|
---|
| 893 | }
|
---|
| 894 | }
|
---|
| 895 | /// <summary>
|
---|
| 896 | /// Find nonzero elements in A
|
---|
| 897 | /// </summary>
|
---|
| 898 | /// <param name="A">Input array</param>
|
---|
| 899 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 900 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 901 | /// Set to 0 to search full array (default).</param>
|
---|
| 902 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 903 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 904 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 905 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 906 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 907 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 908 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 909 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 910 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 911 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 912 | public static ILRetArray<double> find(ILInArray< complex> A, int limit = 0,
|
---|
| 913 | ILOutArray<double> C = null, ILOutArray< complex> V = null) {
|
---|
| 914 | using (ILScope.Enter(A)) {
|
---|
| 915 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 916 | bool return_values = !Object.Equals(V, null);
|
---|
| 917 | ILArray<double> ret = empty();
|
---|
| 918 | ILSize inDim = A.Size;
|
---|
| 919 | if (inDim.NumberOfElements == 1) {
|
---|
| 920 | #region SCALAR
|
---|
| 921 | // scalar -> return copy
|
---|
| 922 | if (A.GetValue(0,0).real != 0.0 || A.GetValue(0,0).imag != 0.0) {
|
---|
| 923 | if (create_row_columns) {
|
---|
| 924 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 925 | }
|
---|
| 926 | if (return_values) {
|
---|
| 927 | V.a = A.C;
|
---|
| 928 | }
|
---|
| 929 | return zeros<double>(1, 1);
|
---|
| 930 | } else {
|
---|
| 931 | if (create_row_columns) {
|
---|
| 932 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 933 | }
|
---|
| 934 | if (return_values) {
|
---|
| 935 | V.a = empty<complex>(ILSize.Empty00);
|
---|
| 936 | }
|
---|
| 937 | return empty<double>(ILSize.Empty00);
|
---|
| 938 | }
|
---|
| 939 | #endregion SCALAR
|
---|
| 940 | }
|
---|
| 941 | long nrElements = inDim.NumberOfElements;
|
---|
| 942 |
|
---|
| 943 | if (limit != 0) {
|
---|
| 944 | int lim = Math.Abs(limit);
|
---|
| 945 | if (lim < nrElements)
|
---|
| 946 | nrElements = lim;
|
---|
| 947 | }
|
---|
| 948 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 949 | int foundIdx = 0;
|
---|
| 950 | // physical -> pointer arithmetic
|
---|
| 951 | if (limit >= 0) {
|
---|
| 952 | unsafe {
|
---|
| 953 | fixed (double* pIndices = indices)
|
---|
| 954 | fixed ( complex* pX = A.GetArrayForRead()) {
|
---|
| 955 |
|
---|
| 956 | complex* lastElement = pX + inDim.NumberOfElements;
|
---|
| 957 |
|
---|
| 958 | complex* tmpIn = pX;
|
---|
| 959 | double* pI = pIndices;
|
---|
| 960 | double* pFoundLast = pI + indices.Length;
|
---|
| 961 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 962 | if ((*tmpIn).real != 0.0 || (*tmpIn).imag != 0.0)
|
---|
| 963 | *pI++ = (double)(tmpIn - pX);
|
---|
| 964 | tmpIn++;
|
---|
| 965 | }
|
---|
| 966 | foundIdx = (int)(pI - pIndices);
|
---|
| 967 | }
|
---|
| 968 | }
|
---|
| 969 | } else {
|
---|
| 970 | // search backwards
|
---|
| 971 | unsafe {
|
---|
| 972 | fixed (double* pIndices = indices)
|
---|
| 973 | fixed ( complex* pX = A.GetArrayForRead()) {
|
---|
| 974 |
|
---|
| 975 | complex* lastElementX = pX;
|
---|
| 976 |
|
---|
| 977 | complex* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 978 | double* pI = pIndices + indices.Length;
|
---|
| 979 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 980 | tmpIn--;
|
---|
| 981 | if ((*tmpIn).real != 0.0 || (*tmpIn).imag != 0.0)
|
---|
| 982 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 983 | }
|
---|
| 984 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 985 | }
|
---|
| 986 | }
|
---|
| 987 | }
|
---|
| 988 | if (foundIdx == 0) {
|
---|
| 989 | return empty();
|
---|
| 990 | }
|
---|
| 991 | // transform to row / columns; extract values if needed
|
---|
| 992 | int leadDimLen = inDim[0];
|
---|
| 993 | if (create_row_columns) {
|
---|
| 994 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 995 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 996 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 997 | if (return_values) {
|
---|
| 998 | V.a = new ILRetArray< complex>(ILMemoryPool.Pool.New< complex>(foundIdx), foundIdx, 1);
|
---|
| 999 | // copy values, transform to row/columns
|
---|
| 1000 | unsafe {
|
---|
| 1001 | fixed (double* pIndices = indices,
|
---|
| 1002 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 1003 | fixed ( complex* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 1004 | double* pI = (limit >= 0) ?
|
---|
| 1005 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1006 | double* pLastIndex = pI + foundIdx;
|
---|
| 1007 | double* pR = pRows;
|
---|
| 1008 | double* pC = pCols;
|
---|
| 1009 |
|
---|
| 1010 | complex* pV = pValues;
|
---|
| 1011 |
|
---|
| 1012 | complex* pX = pInput;
|
---|
| 1013 | while (pI < pLastIndex) {
|
---|
| 1014 | *pR++ = *(pI) % leadDimLen;
|
---|
| 1015 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 1016 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 1017 | }
|
---|
| 1018 | }
|
---|
| 1019 | }
|
---|
| 1020 | } else {
|
---|
| 1021 | // just return row / columns
|
---|
| 1022 | unsafe {
|
---|
| 1023 | fixed (double* pIndices = indices,
|
---|
| 1024 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 1025 | fixed ( complex* pInput = A.GetArrayForRead()) {
|
---|
| 1026 | double* pI = (limit >= 0) ?
|
---|
| 1027 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1028 | double* pLastIndex = pI + foundIdx;
|
---|
| 1029 | double* pR = pRows;
|
---|
| 1030 | double* pC = pCols;
|
---|
| 1031 | while (pI < pLastIndex) {
|
---|
| 1032 | *pR++ = *(pI) % leadDimLen;
|
---|
| 1033 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 1034 | }
|
---|
| 1035 | }
|
---|
| 1036 | }
|
---|
| 1037 | }
|
---|
| 1038 | #endregion RETURN ROWS / COLUMNS
|
---|
| 1039 | } else {
|
---|
| 1040 | #region RETURN INDICES ONLY
|
---|
| 1041 | if (foundIdx != indices.Length) {
|
---|
| 1042 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 1043 | unsafe {
|
---|
| 1044 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 1045 | double* pI = (limit >= 0) ?
|
---|
| 1046 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1047 | double* pLastIndex = pI + foundIdx;
|
---|
| 1048 | double* pR = pRows;
|
---|
| 1049 | while (pI < pLastIndex) {
|
---|
| 1050 | *pR++ = *pI++;
|
---|
| 1051 | }
|
---|
| 1052 | }
|
---|
| 1053 | }
|
---|
| 1054 | } else {
|
---|
| 1055 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 1056 | }
|
---|
| 1057 | #endregion RETURN INDICES ONLY
|
---|
| 1058 | }
|
---|
| 1059 | return ret;
|
---|
| 1060 | }
|
---|
| 1061 | }
|
---|
| 1062 | /// <summary>
|
---|
| 1063 | /// Find nonzero elements in A
|
---|
| 1064 | /// </summary>
|
---|
| 1065 | /// <param name="A">Input array</param>
|
---|
| 1066 | /// <param name="limit">[Optional] Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 1067 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 1068 | /// Set to 0 to search full array (default).</param>
|
---|
| 1069 | /// <param name="C">[Optional] If not null, the function will return the row indices of nonzero elements
|
---|
| 1070 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 1071 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 1072 | /// <param name="V">[Optional] If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 1073 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 1074 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 1075 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 1076 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 1077 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 1078 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 1079 | public static ILRetArray<double> find(ILInArray< byte> A, int limit = 0,
|
---|
| 1080 | ILOutArray<double> C = null, ILOutArray< byte> V = null) {
|
---|
| 1081 | using (ILScope.Enter(A)) {
|
---|
| 1082 | bool create_row_columns = !Object.Equals(C, null);
|
---|
| 1083 | bool return_values = !Object.Equals(V, null);
|
---|
| 1084 | ILArray<double> ret = empty();
|
---|
| 1085 | ILSize inDim = A.Size;
|
---|
| 1086 | if (inDim.NumberOfElements == 1) {
|
---|
| 1087 | #region SCALAR
|
---|
| 1088 | // scalar -> return copy
|
---|
| 1089 | if (A.GetValue(0,0) != 0) {
|
---|
| 1090 | if (create_row_columns) {
|
---|
| 1091 | C.a = zeros<double>(ILSize.Scalar1_1);
|
---|
| 1092 | }
|
---|
| 1093 | if (return_values) {
|
---|
| 1094 | V.a = A.C;
|
---|
| 1095 | }
|
---|
| 1096 | return zeros<double>(1, 1);
|
---|
| 1097 | } else {
|
---|
| 1098 | if (create_row_columns) {
|
---|
| 1099 | C.a = empty<double>(ILSize.Empty00);
|
---|
| 1100 | }
|
---|
| 1101 | if (return_values) {
|
---|
| 1102 | V.a = empty<byte>(ILSize.Empty00);
|
---|
| 1103 | }
|
---|
| 1104 | return empty<double>(ILSize.Empty00);
|
---|
| 1105 | }
|
---|
| 1106 | #endregion SCALAR
|
---|
| 1107 | }
|
---|
| 1108 | long nrElements = inDim.NumberOfElements;
|
---|
| 1109 |
|
---|
| 1110 | if (limit != 0) {
|
---|
| 1111 | int lim = Math.Abs(limit);
|
---|
| 1112 | if (lim < nrElements)
|
---|
| 1113 | nrElements = lim;
|
---|
| 1114 | }
|
---|
| 1115 | double[] indices = ILMemoryPool.Pool.New<double>(nrElements); // init return array with most elements for non logical inarray -> shorten afterwards
|
---|
| 1116 | int foundIdx = 0;
|
---|
| 1117 | // physical -> pointer arithmetic
|
---|
| 1118 | if (limit >= 0) {
|
---|
| 1119 | unsafe {
|
---|
| 1120 | fixed (double* pIndices = indices)
|
---|
| 1121 | fixed ( byte* pX = A.GetArrayForRead()) {
|
---|
| 1122 |
|
---|
| 1123 | byte* lastElement = pX + inDim.NumberOfElements;
|
---|
| 1124 |
|
---|
| 1125 | byte* tmpIn = pX;
|
---|
| 1126 | double* pI = pIndices;
|
---|
| 1127 | double* pFoundLast = pI + indices.Length;
|
---|
| 1128 | while (tmpIn < lastElement && pI < pFoundLast) {
|
---|
| 1129 | if (*tmpIn != 0)
|
---|
| 1130 | *pI++ = (double)(tmpIn - pX);
|
---|
| 1131 | tmpIn++;
|
---|
| 1132 | }
|
---|
| 1133 | foundIdx = (int)(pI - pIndices);
|
---|
| 1134 | }
|
---|
| 1135 | }
|
---|
| 1136 | } else {
|
---|
| 1137 | // search backwards
|
---|
| 1138 | unsafe {
|
---|
| 1139 | fixed (double* pIndices = indices)
|
---|
| 1140 | fixed ( byte* pX = A.GetArrayForRead()) {
|
---|
| 1141 |
|
---|
| 1142 | byte* lastElementX = pX;
|
---|
| 1143 |
|
---|
| 1144 | byte* tmpIn = pX + inDim.NumberOfElements;
|
---|
| 1145 | double* pI = pIndices + indices.Length;
|
---|
| 1146 | while (tmpIn > lastElementX && pI > pIndices) {
|
---|
| 1147 | tmpIn--;
|
---|
| 1148 | if (*tmpIn != 0)
|
---|
| 1149 | *(--pI) = (double)(tmpIn - pX);
|
---|
| 1150 | }
|
---|
| 1151 | foundIdx = (int)(pIndices + indices.Length - pI);
|
---|
| 1152 | }
|
---|
| 1153 | }
|
---|
| 1154 | }
|
---|
| 1155 | if (foundIdx == 0) {
|
---|
| 1156 | return empty();
|
---|
| 1157 | }
|
---|
| 1158 | // transform to row / columns; extract values if needed
|
---|
| 1159 | int leadDimLen = inDim[0];
|
---|
| 1160 | if (create_row_columns) {
|
---|
| 1161 | #region RETURN ROWS / COLUMNS /VALUES
|
---|
| 1162 | C.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 1163 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 1164 | if (return_values) {
|
---|
| 1165 | V.a = new ILRetArray< byte>(ILMemoryPool.Pool.New< byte>(foundIdx), foundIdx, 1);
|
---|
| 1166 | // copy values, transform to row/columns
|
---|
| 1167 | unsafe {
|
---|
| 1168 | fixed (double* pIndices = indices,
|
---|
| 1169 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 1170 | fixed ( byte* pValues = V.GetArrayForWrite(), pInput = A.GetArrayForRead()) {
|
---|
| 1171 | double* pI = (limit >= 0) ?
|
---|
| 1172 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1173 | double* pLastIndex = pI + foundIdx;
|
---|
| 1174 | double* pR = pRows;
|
---|
| 1175 | double* pC = pCols;
|
---|
| 1176 |
|
---|
| 1177 | byte* pV = pValues;
|
---|
| 1178 |
|
---|
| 1179 | byte* pX = pInput;
|
---|
| 1180 | while (pI < pLastIndex) {
|
---|
| 1181 | *pR++ = *(pI) % leadDimLen;
|
---|
| 1182 | *pC++ = (int)*(pI) / leadDimLen;
|
---|
| 1183 | *pV++ = *(pInput + (int)*pI++);
|
---|
| 1184 | }
|
---|
| 1185 | }
|
---|
| 1186 | }
|
---|
| 1187 | } else {
|
---|
| 1188 | // just return row / columns
|
---|
| 1189 | unsafe {
|
---|
| 1190 | fixed (double* pIndices = indices,
|
---|
| 1191 | pRows = ret.GetArrayForWrite(), pCols = C.GetArrayForWrite())
|
---|
| 1192 | fixed ( byte* pInput = A.GetArrayForRead()) {
|
---|
| 1193 | double* pI = (limit >= 0) ?
|
---|
| 1194 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1195 | double* pLastIndex = pI + foundIdx;
|
---|
| 1196 | double* pR = pRows;
|
---|
| 1197 | double* pC = pCols;
|
---|
| 1198 | while (pI < pLastIndex) {
|
---|
| 1199 | *pR++ = *(pI) % leadDimLen;
|
---|
| 1200 | *pC++ = (int)(*(pI++) / leadDimLen);
|
---|
| 1201 | }
|
---|
| 1202 | }
|
---|
| 1203 | }
|
---|
| 1204 | }
|
---|
| 1205 | #endregion RETURN ROWS / COLUMNS
|
---|
| 1206 | } else {
|
---|
| 1207 | #region RETURN INDICES ONLY
|
---|
| 1208 | if (foundIdx != indices.Length) {
|
---|
| 1209 | ret.a = new ILRetArray<double>(ILMemoryPool.Pool.New<double>(foundIdx), foundIdx, 1);
|
---|
| 1210 | unsafe {
|
---|
| 1211 | fixed (double* pIndices = indices, pRows = ret.GetArrayForWrite()) {
|
---|
| 1212 | double* pI = (limit >= 0) ?
|
---|
| 1213 | pIndices : (pIndices + indices.Length - foundIdx);
|
---|
| 1214 | double* pLastIndex = pI + foundIdx;
|
---|
| 1215 | double* pR = pRows;
|
---|
| 1216 | while (pI < pLastIndex) {
|
---|
| 1217 | *pR++ = *pI++;
|
---|
| 1218 | }
|
---|
| 1219 | }
|
---|
| 1220 | }
|
---|
| 1221 | } else {
|
---|
| 1222 | ret.a = new ILRetArray<double>(indices, foundIdx, 1);
|
---|
| 1223 | }
|
---|
| 1224 | #endregion RETURN INDICES ONLY
|
---|
| 1225 | }
|
---|
| 1226 | return ret;
|
---|
| 1227 | }
|
---|
| 1228 | }
|
---|
| 1229 |
|
---|
| 1230 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 1231 |
|
---|
| 1232 | #region logicals
|
---|
| 1233 | /// <summary>
|
---|
| 1234 | /// Find nonzero elements in A
|
---|
| 1235 | /// </summary>
|
---|
| 1236 | /// <param name="A">Input array</param>
|
---|
| 1237 | /// <param name="limit">Number of elements to search for. If this value is <![CDATA[< 0]]> the function
|
---|
| 1238 | /// will return at most 'limit' nonzero elements from the end of the array ordered by ascending index.
|
---|
| 1239 | /// Set to 0 to search full array (default).</param>
|
---|
| 1240 | /// <param name="C">If not null, the function will return the row indices of nonzero elements
|
---|
| 1241 | /// as main return value. C will therefore hold the column indices of those elements. If A
|
---|
| 1242 | /// has more than 2 dimensions, the column indices will go along the 2nd dimension.</param>
|
---|
| 1243 | /// <param name="V">If not null on entrance, V will hold a copy of the values of nonzero elements returned.</param>
|
---|
| 1244 | /// <returns>Vector containing (sequential) indices of nonzero elements in A. If C was
|
---|
| 1245 | /// not null, return value will contain row indices of nonzero elements. </returns>
|
---|
| 1246 | /// <remarks>The return type of the index vectors is always 'double'. The return type
|
---|
| 1247 | /// of the element vector 'V' depends on the type of input array A. V and C may be null on
|
---|
| 1248 | /// entrance, indicating their information is not needed. If V is not null (e.g. 'empty()') C must be
|
---|
| 1249 | /// not null also. Any initial data of V or C will be lost.</remarks>
|
---|
| 1250 | public static ILRetArray<double> find(ILInLogical A, int limit,
|
---|
| 1251 | ILOutArray<double> C, ILOutLogical V) {
|
---|
| 1252 | using (ILScope.Enter(A)) {
|
---|
| 1253 | if (isnullorempty(A)) {
|
---|
| 1254 | if (!isnull(V)) {
|
---|
| 1255 | V.a = new ILLogical(ILSize.Empty00);
|
---|
| 1256 | }
|
---|
| 1257 | return empty();
|
---|
| 1258 | }
|
---|
| 1259 | ILArray<byte> tmpA = new ILArray<byte>(A.Storage);
|
---|
| 1260 | ILArray<byte> tmpV = null;
|
---|
| 1261 | if (!isnull(V)) {
|
---|
| 1262 | tmpV = new ILArray<byte>(V.Storage);
|
---|
| 1263 | }
|
---|
| 1264 | ILArray<double> ret = find(tmpA, limit, C, tmpV);
|
---|
| 1265 | if (!isnull(tmpV)) {
|
---|
| 1266 | V.a = new ILLogical(new ILLogicalStorage( tmpV.Storage.GetDataArray(), tmpV.S));
|
---|
| 1267 | }
|
---|
| 1268 | return ret;
|
---|
| 1269 | }
|
---|
| 1270 | }
|
---|
| 1271 |
|
---|
| 1272 | #endregion
|
---|
| 1273 |
|
---|
| 1274 | }
|
---|
| 1275 | }
|
---|