1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Exceptions;
|
---|
44 |
|
---|
45 | namespace ILNumerics {
|
---|
46 |
|
---|
47 |
|
---|
48 | public partial class ILMath {
|
---|
49 |
|
---|
50 | /// <summary>
|
---|
51 | /// find clusters for data matrix X
|
---|
52 | /// </summary>
|
---|
53 | /// <param name="X">data matrix, data points are given as columns</param>
|
---|
54 | /// <param name="k">initial number of clusters expected</param>
|
---|
55 | /// <param name="centerInitRandom">false: pick the first k data points as initial centers, true: pick random datapoints</param>
|
---|
56 | /// <param name="maxIterations">maximum number of iterations, the computation will exit after that many iterations.</param>
|
---|
57 | /// <returns>vector of length n with with indices of clusters assigned to each datapoint</returns>
|
---|
58 | public static ILRetArray<double> kMeansClust(ILInArray<double> X, ILBaseArray k, int maxIterations, bool centerInitRandom) {
|
---|
59 | return kMeansClust(X, k, maxIterations, centerInitRandom, null);
|
---|
60 | }
|
---|
61 |
|
---|
62 | /// <summary>
|
---|
63 | /// find clusters for data matrix X
|
---|
64 | /// </summary>
|
---|
65 | /// <param name="X">data matrix, data points are given as columns</param>
|
---|
66 | /// <param name="k">initial number of clusters expected</param>
|
---|
67 | /// <param name="centerInitRandom">false: pick the first k data points as initial centers, true: pick random datapoints</param>
|
---|
68 | /// <param name="maxIterations">maximum number of iterations, the computation will exit after that many iterations.</param>
|
---|
69 | /// <param name="outCenters">return type. if assigned on entry, outCenters will contain the centers of the clusters found.</param>
|
---|
70 | /// <returns>vector of length n with with indices of clusters assigned to each datapoint</returns>
|
---|
71 | public static ILRetArray<double> kMeansClust (ILInArray<double> X, ILBaseArray k, int maxIterations, bool centerInitRandom, ILOutArray<double> outCenters) {
|
---|
72 | using (ILScope.Enter(X, k)) {
|
---|
73 | if (object.Equals(X,null)) {
|
---|
74 | throw new ILArgumentException("X must be data matrix (not null)");
|
---|
75 | }
|
---|
76 | if (X.IsEmpty) {
|
---|
77 | if (!object.Equals(outCenters, null)) {
|
---|
78 | if (X.D[0] > 0) {
|
---|
79 | outCenters.a = empty<double>(new ILSize(X.D[0], 0));
|
---|
80 | } else {
|
---|
81 | outCenters.a = empty<double>(new ILSize(0, X.D[1]));
|
---|
82 | }
|
---|
83 | return empty<double>(X.D);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | if (object.Equals(k,null) || !k.IsScalar || !k.IsNumeric) {
|
---|
87 | throw new ILArgumentException("number of clusters k must be numeric scalar");
|
---|
88 | }
|
---|
89 | int iK = toint32(k).GetValue(0);
|
---|
90 | if (X.D[1] < iK) {
|
---|
91 | throw new ILArgumentException("too few datapoints provided for " + iK.ToString() + " clusters");
|
---|
92 | }
|
---|
93 | if (iK < 0) {
|
---|
94 | throw new ILArgumentException("number of clusters must be positive");
|
---|
95 | }
|
---|
96 | int d = X.D[0], n = X.D[1];
|
---|
97 | if (iK == 0) {
|
---|
98 | if (!object.Equals(outCenters, null)) {
|
---|
99 | outCenters.a = empty<double>(new ILSize(d, iK));
|
---|
100 | }
|
---|
101 | return empty<double>(new ILSize(0, n));
|
---|
102 | }
|
---|
103 |
|
---|
104 | // initialize centers by using random datapoints
|
---|
105 | ILArray<double> centers = empty();
|
---|
106 | if (centerInitRandom) {
|
---|
107 | ILArray<double> pickIndices = empty();
|
---|
108 | sort(rand(1,n),pickIndices,1,false).Dispose();
|
---|
109 | centers.a = X[full,pickIndices[r(0,iK-1)]];
|
---|
110 | } else {
|
---|
111 | centers.a = X[full,r(0,iK-1)];
|
---|
112 | }
|
---|
113 |
|
---|
114 | ILArray<double> classes = zeros(1,n);
|
---|
115 | ILArray<double> oldCenters = centers.C;
|
---|
116 | #if KMEANSVERBOSE
|
---|
117 | System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
|
---|
118 | #endif
|
---|
119 | while (maxIterations --> 0) {
|
---|
120 | #if KMEANSVERBOSE
|
---|
121 | sw.Restart();
|
---|
122 | #endif
|
---|
123 | //ILArray<double> distances = zeros(1, iK);
|
---|
124 |
|
---|
125 | double[] Xarr = X.GetArrayForRead();
|
---|
126 | double[] Carr = classes.GetArrayForWrite();
|
---|
127 | double[] CentArr = centers.GetArrayForRead();
|
---|
128 | double[] Xcur = ILMemoryPool.Pool.New<double>(X.D[0]);
|
---|
129 |
|
---|
130 | for (int i = 0; i < n; i++) {
|
---|
131 | // copy current X[i]
|
---|
132 | int startInd = i * X.D[0];
|
---|
133 | for (int a = X.D[0]; a --> 0; ) {
|
---|
134 | Xcur[a] = Xarr[startInd + a];
|
---|
135 | }
|
---|
136 | // distances to all centers
|
---|
137 | double dist = double.MaxValue;
|
---|
138 | for (int c = 0; c < iK; c++) {
|
---|
139 | double tmp = 0, tmp1 = 0;
|
---|
140 | startInd = c * X.D[0];
|
---|
141 | for (int c1 = X.D[0]; c1-->0; ) {
|
---|
142 | tmp = CentArr[c1 + startInd] - Xcur[c1];
|
---|
143 | tmp1 += tmp * tmp;
|
---|
144 | }
|
---|
145 | if (tmp1 < dist) {
|
---|
146 | dist = tmp1;
|
---|
147 | Carr[i] = c;
|
---|
148 | if (dist == 0)
|
---|
149 | break;
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | ILMemoryPool.Pool.RegisterObject(Xcur);
|
---|
154 |
|
---|
155 | // find cluster affiliates
|
---|
156 | //using (ILScope.Enter()) {
|
---|
157 |
|
---|
158 | //// - for testing a more "similar 2 Fortran" implementation:
|
---|
159 | //ILArray<double> tmpX = X[full, i];
|
---|
160 | //for (int j = 0; j < iK; j++) {
|
---|
161 | // using (ILScope.Enter()) {
|
---|
162 |
|
---|
163 | // //! ... find its nearest cluster
|
---|
164 | // //do j = 1, K
|
---|
165 | // // distances(j) = sum( &
|
---|
166 | // // abs( &
|
---|
167 | // // X(1:M,i) - centers(1:M,j)))
|
---|
168 | // //end do
|
---|
169 |
|
---|
170 | // //tmpArr = minloc ( distances(1:K) )
|
---|
171 | // //classes(i) = tmpArr(1);
|
---|
172 |
|
---|
173 | // distances[j] = sum(abs(tmpX - centers[full, j]));
|
---|
174 | // }
|
---|
175 | //}
|
---|
176 | //ILArray<double> minDistIdx = empty();
|
---|
177 | //min(distances, minDistIdx, 1).Dispose();
|
---|
178 | //int found = (int)minDistIdx[0];
|
---|
179 | //classes[i] = found;
|
---|
180 |
|
---|
181 | //ILArray<double> minDistIdx = empty();
|
---|
182 | //min(sum(apply((a, b) => { return Math.Abs(a - b); }, centers, repmat(X[full, i], 1, iK))), minDistIdx, 1).Dispose();
|
---|
183 | //int found = (int)minDistIdx[0];
|
---|
184 | //classes[i] = found;
|
---|
185 |
|
---|
186 |
|
---|
187 |
|
---|
188 | //ILArray<double> minDistIdx = empty();
|
---|
189 | //min(sum(abs(centers - repmat(X[full, i], 1, iK))), minDistIdx, 1).Dispose();
|
---|
190 | //int found = (int)minDistIdx[0];
|
---|
191 | //classes[i] = found;
|
---|
192 |
|
---|
193 | //numInClass[found] = numInClass[found] + 1;
|
---|
194 | //}
|
---|
195 | //}
|
---|
196 | System.Diagnostics.Debug.Print("kmeans: 1 of {0} MemoryPool.Info: {1}",maxIterations, ILMemoryPool.Pool.Info(true));
|
---|
197 | // update centroids
|
---|
198 | //centers[full] = 0;
|
---|
199 | //for (int i = 0; i < n; i++) {
|
---|
200 | // centers[full,classes[i]] = centers[full,classes[i]] + X[full,i];
|
---|
201 | //}
|
---|
202 | //numInClass[numInClass == 0] = double.NaN;
|
---|
203 | //centers = centers / repmat(numInClass,d,1);
|
---|
204 |
|
---|
205 | for (int i = 0; i < iK; i++) {
|
---|
206 | using (EnterScope()) {
|
---|
207 | ILArray<double> inClass = X[full, find(classes == i)];
|
---|
208 | if (inClass.IsEmpty) {
|
---|
209 | centers[full, i] = double.NaN;
|
---|
210 | } else {
|
---|
211 | centers[full, i] = mean(inClass, 1);
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|
215 | #if KMEANSVERBOSE
|
---|
216 | sw.Stop();
|
---|
217 | Console.Out.WriteLine("Changed centers: {0} elapsed: {1}ms",(double)sum(any(oldCenters != centers)), sw.ElapsedMilliseconds);
|
---|
218 | #endif
|
---|
219 | if (allall(oldCenters == centers)) break;
|
---|
220 | oldCenters.a = centers.C;
|
---|
221 | }
|
---|
222 | if (!object.Equals(outCenters, null))
|
---|
223 | outCenters.a = centers;
|
---|
224 | return classes;
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | }
|
---|
229 | } |
---|