[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics.Exceptions;
|
---|
| 44 |
|
---|
| 45 | namespace ILNumerics {
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 | public partial class ILMath {
|
---|
| 49 |
|
---|
| 50 | /// <summary>
|
---|
| 51 | /// find clusters for data matrix X
|
---|
| 52 | /// </summary>
|
---|
| 53 | /// <param name="X">data matrix, data points are given as columns</param>
|
---|
| 54 | /// <param name="k">initial number of clusters expected</param>
|
---|
| 55 | /// <param name="centerInitRandom">false: pick the first k data points as initial centers, true: pick random datapoints</param>
|
---|
| 56 | /// <param name="maxIterations">maximum number of iterations, the computation will exit after that many iterations.</param>
|
---|
| 57 | /// <returns>vector of length n with with indices of clusters assigned to each datapoint</returns>
|
---|
| 58 | public static ILRetArray<double> kMeansClust(ILInArray<double> X, ILBaseArray k, int maxIterations, bool centerInitRandom) {
|
---|
| 59 | return kMeansClust(X, k, maxIterations, centerInitRandom, null);
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | /// <summary>
|
---|
| 63 | /// find clusters for data matrix X
|
---|
| 64 | /// </summary>
|
---|
| 65 | /// <param name="X">data matrix, data points are given as columns</param>
|
---|
| 66 | /// <param name="k">initial number of clusters expected</param>
|
---|
| 67 | /// <param name="centerInitRandom">false: pick the first k data points as initial centers, true: pick random datapoints</param>
|
---|
| 68 | /// <param name="maxIterations">maximum number of iterations, the computation will exit after that many iterations.</param>
|
---|
| 69 | /// <param name="outCenters">return type. if assigned on entry, outCenters will contain the centers of the clusters found.</param>
|
---|
| 70 | /// <returns>vector of length n with with indices of clusters assigned to each datapoint</returns>
|
---|
| 71 | public static ILRetArray<double> kMeansClust (ILInArray<double> X, ILBaseArray k, int maxIterations, bool centerInitRandom, ILOutArray<double> outCenters) {
|
---|
| 72 | using (ILScope.Enter(X, k)) {
|
---|
| 73 | if (object.Equals(X,null)) {
|
---|
| 74 | throw new ILArgumentException("X must be data matrix (not null)");
|
---|
| 75 | }
|
---|
| 76 | if (X.IsEmpty) {
|
---|
| 77 | if (!object.Equals(outCenters, null)) {
|
---|
| 78 | if (X.D[0] > 0) {
|
---|
| 79 | outCenters.a = empty<double>(new ILSize(X.D[0], 0));
|
---|
| 80 | } else {
|
---|
| 81 | outCenters.a = empty<double>(new ILSize(0, X.D[1]));
|
---|
| 82 | }
|
---|
| 83 | return empty<double>(X.D);
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | if (object.Equals(k,null) || !k.IsScalar || !k.IsNumeric) {
|
---|
| 87 | throw new ILArgumentException("number of clusters k must be numeric scalar");
|
---|
| 88 | }
|
---|
| 89 | int iK = toint32(k).GetValue(0);
|
---|
| 90 | if (X.D[1] < iK) {
|
---|
| 91 | throw new ILArgumentException("too few datapoints provided for " + iK.ToString() + " clusters");
|
---|
| 92 | }
|
---|
| 93 | if (iK < 0) {
|
---|
| 94 | throw new ILArgumentException("number of clusters must be positive");
|
---|
| 95 | }
|
---|
| 96 | int d = X.D[0], n = X.D[1];
|
---|
| 97 | if (iK == 0) {
|
---|
| 98 | if (!object.Equals(outCenters, null)) {
|
---|
| 99 | outCenters.a = empty<double>(new ILSize(d, iK));
|
---|
| 100 | }
|
---|
| 101 | return empty<double>(new ILSize(0, n));
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | // initialize centers by using random datapoints
|
---|
| 105 | ILArray<double> centers = empty();
|
---|
| 106 | if (centerInitRandom) {
|
---|
| 107 | ILArray<double> pickIndices = empty();
|
---|
| 108 | sort(rand(1,n),pickIndices,1,false).Dispose();
|
---|
| 109 | centers.a = X[full,pickIndices[r(0,iK-1)]];
|
---|
| 110 | } else {
|
---|
| 111 | centers.a = X[full,r(0,iK-1)];
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | ILArray<double> classes = zeros(1,n);
|
---|
| 115 | ILArray<double> oldCenters = centers.C;
|
---|
| 116 | #if KMEANSVERBOSE
|
---|
| 117 | System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
|
---|
| 118 | #endif
|
---|
| 119 | while (maxIterations --> 0) {
|
---|
| 120 | #if KMEANSVERBOSE
|
---|
| 121 | sw.Restart();
|
---|
| 122 | #endif
|
---|
| 123 | //ILArray<double> distances = zeros(1, iK);
|
---|
| 124 |
|
---|
| 125 | double[] Xarr = X.GetArrayForRead();
|
---|
| 126 | double[] Carr = classes.GetArrayForWrite();
|
---|
| 127 | double[] CentArr = centers.GetArrayForRead();
|
---|
| 128 | double[] Xcur = ILMemoryPool.Pool.New<double>(X.D[0]);
|
---|
| 129 |
|
---|
| 130 | for (int i = 0; i < n; i++) {
|
---|
| 131 | // copy current X[i]
|
---|
| 132 | int startInd = i * X.D[0];
|
---|
| 133 | for (int a = X.D[0]; a --> 0; ) {
|
---|
| 134 | Xcur[a] = Xarr[startInd + a];
|
---|
| 135 | }
|
---|
| 136 | // distances to all centers
|
---|
| 137 | double dist = double.MaxValue;
|
---|
| 138 | for (int c = 0; c < iK; c++) {
|
---|
| 139 | double tmp = 0, tmp1 = 0;
|
---|
| 140 | startInd = c * X.D[0];
|
---|
| 141 | for (int c1 = X.D[0]; c1-->0; ) {
|
---|
| 142 | tmp = CentArr[c1 + startInd] - Xcur[c1];
|
---|
| 143 | tmp1 += tmp * tmp;
|
---|
| 144 | }
|
---|
| 145 | if (tmp1 < dist) {
|
---|
| 146 | dist = tmp1;
|
---|
| 147 | Carr[i] = c;
|
---|
| 148 | if (dist == 0)
|
---|
| 149 | break;
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | ILMemoryPool.Pool.RegisterObject(Xcur);
|
---|
| 154 |
|
---|
| 155 | // find cluster affiliates
|
---|
| 156 | //using (ILScope.Enter()) {
|
---|
| 157 |
|
---|
| 158 | //// - for testing a more "similar 2 Fortran" implementation:
|
---|
| 159 | //ILArray<double> tmpX = X[full, i];
|
---|
| 160 | //for (int j = 0; j < iK; j++) {
|
---|
| 161 | // using (ILScope.Enter()) {
|
---|
| 162 |
|
---|
| 163 | // //! ... find its nearest cluster
|
---|
| 164 | // //do j = 1, K
|
---|
| 165 | // // distances(j) = sum( &
|
---|
| 166 | // // abs( &
|
---|
| 167 | // // X(1:M,i) - centers(1:M,j)))
|
---|
| 168 | // //end do
|
---|
| 169 |
|
---|
| 170 | // //tmpArr = minloc ( distances(1:K) )
|
---|
| 171 | // //classes(i) = tmpArr(1);
|
---|
| 172 |
|
---|
| 173 | // distances[j] = sum(abs(tmpX - centers[full, j]));
|
---|
| 174 | // }
|
---|
| 175 | //}
|
---|
| 176 | //ILArray<double> minDistIdx = empty();
|
---|
| 177 | //min(distances, minDistIdx, 1).Dispose();
|
---|
| 178 | //int found = (int)minDistIdx[0];
|
---|
| 179 | //classes[i] = found;
|
---|
| 180 |
|
---|
| 181 | //ILArray<double> minDistIdx = empty();
|
---|
| 182 | //min(sum(apply((a, b) => { return Math.Abs(a - b); }, centers, repmat(X[full, i], 1, iK))), minDistIdx, 1).Dispose();
|
---|
| 183 | //int found = (int)minDistIdx[0];
|
---|
| 184 | //classes[i] = found;
|
---|
| 185 |
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | //ILArray<double> minDistIdx = empty();
|
---|
| 189 | //min(sum(abs(centers - repmat(X[full, i], 1, iK))), minDistIdx, 1).Dispose();
|
---|
| 190 | //int found = (int)minDistIdx[0];
|
---|
| 191 | //classes[i] = found;
|
---|
| 192 |
|
---|
| 193 | //numInClass[found] = numInClass[found] + 1;
|
---|
| 194 | //}
|
---|
| 195 | //}
|
---|
| 196 | System.Diagnostics.Debug.Print("kmeans: 1 of {0} MemoryPool.Info: {1}",maxIterations, ILMemoryPool.Pool.Info(true));
|
---|
| 197 | // update centroids
|
---|
| 198 | //centers[full] = 0;
|
---|
| 199 | //for (int i = 0; i < n; i++) {
|
---|
| 200 | // centers[full,classes[i]] = centers[full,classes[i]] + X[full,i];
|
---|
| 201 | //}
|
---|
| 202 | //numInClass[numInClass == 0] = double.NaN;
|
---|
| 203 | //centers = centers / repmat(numInClass,d,1);
|
---|
| 204 |
|
---|
| 205 | for (int i = 0; i < iK; i++) {
|
---|
| 206 | using (EnterScope()) {
|
---|
| 207 | ILArray<double> inClass = X[full, find(classes == i)];
|
---|
| 208 | if (inClass.IsEmpty) {
|
---|
| 209 | centers[full, i] = double.NaN;
|
---|
| 210 | } else {
|
---|
| 211 | centers[full, i] = mean(inClass, 1);
|
---|
| 212 | }
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | #if KMEANSVERBOSE
|
---|
| 216 | sw.Stop();
|
---|
| 217 | Console.Out.WriteLine("Changed centers: {0} elapsed: {1}ms",(double)sum(any(oldCenters != centers)), sw.ElapsedMilliseconds);
|
---|
| 218 | #endif
|
---|
| 219 | if (allall(oldCenters == centers)) break;
|
---|
| 220 | oldCenters.a = centers.C;
|
---|
| 221 | }
|
---|
| 222 | if (!object.Equals(outCenters, null))
|
---|
| 223 | outCenters.a = centers;
|
---|
| 224 | return classes;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | }
|
---|
| 229 | } |
---|