[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics.Exceptions;
|
---|
| 44 |
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | namespace ILNumerics {
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | public partial class ILMath {
|
---|
| 51 |
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// K-Means clustering: find clusters in data matrix X
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="X">Data matrix, data points are given as columns</param>
|
---|
| 57 | /// <param name="k">Initial number of clusters expected</param>
|
---|
| 58 | /// <param name="centerInitRandom">[Optional] false: pick the first k data points as initial centers, true: pick random datapoints (default)</param>
|
---|
| 59 | /// <param name="maxIterations">[Optional] Maximum number of iterations, the computation will exit after that many iterations, default: 10.000</param>
|
---|
| 60 | /// <param name="outCenters">[Input/Output/Optional] If not null on entry, outCenters will contain the centers of the clusters found, default: null</param>
|
---|
| 61 | /// <returns>Vector of length n with with indices of the clustersm which were assigned to each datapoint</returns>
|
---|
| 62 | /// <remarks><para>If <paramref name="outCenters"/> is given not null on input, the algorithm returns the computed centers in that parameter. A
|
---|
| 63 | /// matrix may be given on input, in order to give a hint of the initial center positions. This may help to find correct cluster centers - even if
|
---|
| 64 | /// the initial hint is not exact. In order to do so, the matrix given must be of the correct size (X.D[0] by k) and <paramref name="centerInitRandom"/>
|
---|
| 65 | /// must be set to <c>false</c>.</para></remarks>
|
---|
| 66 | public static ILRetArray<double> kMeansClust(ILInArray<double> X, ILBaseArray k, int maxIterations = 10000,
|
---|
| 67 | bool centerInitRandom = true, ILOutArray<double> outCenters = null) {
|
---|
| 68 | using (ILScope.Enter(X, k)) {
|
---|
| 69 | if (object.Equals(X, null)) {
|
---|
| 70 | throw new ILArgumentException("X must be data matrix (not null)");
|
---|
| 71 | }
|
---|
| 72 | if (X.IsEmpty) {
|
---|
| 73 | if (!object.Equals(outCenters, null)) {
|
---|
| 74 | if (X.S[0] > 0) {
|
---|
| 75 | outCenters.a = empty<double>(new ILSize(X.S[0], 0));
|
---|
| 76 | } else {
|
---|
| 77 | outCenters.a = empty<double>(new ILSize(0, X.S[1]));
|
---|
| 78 | }
|
---|
| 79 | return empty<double>(X.S);
|
---|
| 80 | }
|
---|
| 81 | }
|
---|
| 82 | if (object.Equals(k, null) || !k.IsScalar || !k.IsNumeric) {
|
---|
| 83 | throw new ILArgumentException("number of clusters k must be numeric scalar");
|
---|
| 84 | }
|
---|
| 85 | int iK = toint32(k).GetValue(0);
|
---|
| 86 | if (X.S[1] < iK) {
|
---|
| 87 | throw new ILArgumentException("too few datapoints provided for " + iK.ToString() + " clusters");
|
---|
| 88 | }
|
---|
| 89 | if (iK < 0) {
|
---|
| 90 | throw new ILArgumentException("number of clusters must be positive");
|
---|
| 91 | }
|
---|
| 92 | int d = X.S[0], n = X.S[1];
|
---|
| 93 | if (iK == 0) {
|
---|
| 94 | if (!object.Equals(outCenters, null)) {
|
---|
| 95 | outCenters.a = empty<double>(new ILSize(d, iK));
|
---|
| 96 | }
|
---|
| 97 | return empty<double>(new ILSize(0, n));
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | // initialize centers by using random datapoints
|
---|
| 101 | ILArray<double> centers = empty<double>();
|
---|
| 102 | if (centerInitRandom) {
|
---|
| 103 | ILArray<double> pickIndices = empty();
|
---|
| 104 | sort(rand(1, n), pickIndices, 1, false).Dispose();
|
---|
| 105 | centers.a = X[full, pickIndices[r(0, iK - 1)]];
|
---|
| 106 | } else {
|
---|
| 107 | if (!isnull(outCenters) && outCenters.S[0] == d && outCenters.S[1] == iK) {
|
---|
| 108 | centers.a = outCenters;
|
---|
| 109 | } else {
|
---|
| 110 | centers.a = X[full, r(0, iK - 1)];
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | ILArray<double> classes = zeros<double>(1, n);
|
---|
| 115 | ILArray<double> oldCenters = centers.C;
|
---|
| 116 | #if KMEANSVERBOSE
|
---|
| 117 | System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
|
---|
| 118 | #endif
|
---|
| 119 | while (maxIterations-- > 0) {
|
---|
| 120 | #if KMEANSVERBOSE
|
---|
| 121 | sw.Restart();
|
---|
| 122 | #endif
|
---|
| 123 | for (int i = 0; i < n; i++) {
|
---|
| 124 | // find cluster affiliates
|
---|
| 125 | using (ILScope.Enter()) {
|
---|
| 126 | ILArray<double> minDistIdx = empty();
|
---|
| 127 | //min(sum(abs(centers - X[full, i])), minDistIdx, 1).Dispose();
|
---|
| 128 | min(distL1(centers, X[full, i]), minDistIdx, 1).Dispose();
|
---|
| 129 | classes[i] = (double)minDistIdx[0];
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 | System.Diagnostics.Debug.Print("kmeans: 1 of {0} MemoryPool.Info: {1}", maxIterations, ILMemoryPool.Pool.Info(true));
|
---|
| 133 | for (int i = 0; i < iK; i++) {
|
---|
| 134 | using (ILScope.Enter())
|
---|
| 135 | {
|
---|
| 136 | ILArray<double> inClass = X[full, find(classes == i)];
|
---|
| 137 | if (inClass.IsEmpty) {
|
---|
| 138 | centers[full, i] = double.NaN;
|
---|
| 139 | } else {
|
---|
| 140 | centers[full, i] = mean(inClass, 1);
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | #if KMEANSVERBOSE
|
---|
| 145 | sw.Stop();
|
---|
| 146 | Console.Out.WriteLine("Changed centers: {0} elapsed: {1}ms",(double)sum(any(oldCenters != centers)), sw.ElapsedMilliseconds);
|
---|
| 147 | #endif
|
---|
| 148 | if (allall(oldCenters == centers)) break;
|
---|
| 149 | oldCenters.a = centers.C;
|
---|
| 150 | }
|
---|
| 151 | if (!object.Equals(outCenters, null))
|
---|
| 152 | outCenters.a = centers;
|
---|
| 153 | return classes;
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 | |
---|
| 157 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 158 | |
---|
| 159 | /// <summary>
|
---|
| 160 | /// K-Means clustering: find clusters in data matrix X
|
---|
| 161 | /// </summary>
|
---|
| 162 | /// <param name="X">Data matrix, data points are given as columns</param>
|
---|
| 163 | /// <param name="k">Initial number of clusters expected</param>
|
---|
| 164 | /// <param name="centerInitRandom">[Optional] false: pick the first k data points as initial centers, true: pick random datapoints (default)</param>
|
---|
| 165 | /// <param name="maxIterations">[Optional] Maximum number of iterations, the computation will exit after that many iterations, default: 10.000</param>
|
---|
| 166 | /// <param name="outCenters">[Input/Output/Optional] If not null on entry, outCenters will contain the centers of the clusters found, default: null</param>
|
---|
| 167 | /// <returns>Vector of length n with with indices of the clustersm which were assigned to each datapoint</returns>
|
---|
| 168 | /// <remarks><para>If <paramref name="outCenters"/> is given not null on input, the algorithm returns the computed centers in that parameter. A
|
---|
| 169 | /// matrix may be given on input, in order to give a hint of the initial center positions. This may help to find correct cluster centers - even if
|
---|
| 170 | /// the initial hint is not exact. In order to do so, the matrix given must be of the correct size (X.D[0] by k) and <paramref name="centerInitRandom"/>
|
---|
| 171 | /// must be set to <c>false</c>.</para></remarks>
|
---|
| 172 | public static ILRetArray<float> kMeansClust(ILInArray<float> X, ILBaseArray k, int maxIterations = 10000,
|
---|
| 173 | bool centerInitRandom = true, ILOutArray<float> outCenters = null) {
|
---|
| 174 | using (ILScope.Enter(X, k)) {
|
---|
| 175 | if (object.Equals(X, null)) {
|
---|
| 176 | throw new ILArgumentException("X must be data matrix (not null)");
|
---|
| 177 | }
|
---|
| 178 | if (X.IsEmpty) {
|
---|
| 179 | if (!object.Equals(outCenters, null)) {
|
---|
| 180 | if (X.S[0] > 0) {
|
---|
| 181 | outCenters.a = empty<float>(new ILSize(X.S[0], 0));
|
---|
| 182 | } else {
|
---|
| 183 | outCenters.a = empty<float>(new ILSize(0, X.S[1]));
|
---|
| 184 | }
|
---|
| 185 | return empty<float>(X.S);
|
---|
| 186 | }
|
---|
| 187 | }
|
---|
| 188 | if (object.Equals(k, null) || !k.IsScalar || !k.IsNumeric) {
|
---|
| 189 | throw new ILArgumentException("number of clusters k must be numeric scalar");
|
---|
| 190 | }
|
---|
| 191 | int iK = toint32(k).GetValue(0);
|
---|
| 192 | if (X.S[1] < iK) {
|
---|
| 193 | throw new ILArgumentException("too few datapoints provided for " + iK.ToString() + " clusters");
|
---|
| 194 | }
|
---|
| 195 | if (iK < 0) {
|
---|
| 196 | throw new ILArgumentException("number of clusters must be positive");
|
---|
| 197 | }
|
---|
| 198 | int d = X.S[0], n = X.S[1];
|
---|
| 199 | if (iK == 0) {
|
---|
| 200 | if (!object.Equals(outCenters, null)) {
|
---|
| 201 | outCenters.a = empty<float>(new ILSize(d, iK));
|
---|
| 202 | }
|
---|
| 203 | return empty<float>(new ILSize(0, n));
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | // initialize centers by using random datapoints
|
---|
| 207 | ILArray<float> centers = empty<float>();
|
---|
| 208 | if (centerInitRandom) {
|
---|
| 209 | ILArray<double> pickIndices = empty();
|
---|
| 210 | sort(rand(1, n), pickIndices, 1, false).Dispose();
|
---|
| 211 | centers.a = X[full, pickIndices[r(0, iK - 1)]];
|
---|
| 212 | } else {
|
---|
| 213 | if (!isnull(outCenters) && outCenters.S[0] == d && outCenters.S[1] == iK) {
|
---|
| 214 | centers.a = outCenters;
|
---|
| 215 | } else {
|
---|
| 216 | centers.a = X[full, r(0, iK - 1)];
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | ILArray<float> classes = zeros<float>(1, n);
|
---|
| 221 | ILArray<float> oldCenters = centers.C;
|
---|
| 222 | #if KMEANSVERBOSE
|
---|
| 223 | System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
|
---|
| 224 | #endif
|
---|
| 225 | while (maxIterations-- > 0) {
|
---|
| 226 | #if KMEANSVERBOSE
|
---|
| 227 | sw.Restart();
|
---|
| 228 | #endif
|
---|
| 229 | for (int i = 0; i < n; i++) {
|
---|
| 230 | // find cluster affiliates
|
---|
| 231 | using (ILScope.Enter()) {
|
---|
| 232 | ILArray<double> minDistIdx = empty();
|
---|
| 233 | //min(sum(abs(centers - X[full, i])), minDistIdx, 1).Dispose();
|
---|
| 234 | min(distL1(centers, X[full, i]), minDistIdx, 1).Dispose();
|
---|
| 235 | classes[i] = (float)minDistIdx[0];
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | System.Diagnostics.Debug.Print("kmeans: 1 of {0} MemoryPool.Info: {1}", maxIterations, ILMemoryPool.Pool.Info(true));
|
---|
| 239 | for (int i = 0; i < iK; i++) {
|
---|
| 240 | using (ILScope.Enter())
|
---|
| 241 | {
|
---|
| 242 | ILArray<float> inClass = X[full, find(classes == i)];
|
---|
| 243 | if (inClass.IsEmpty) {
|
---|
| 244 | centers[full, i] = float.NaN;
|
---|
| 245 | } else {
|
---|
| 246 | centers[full, i] = mean(inClass, 1);
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | #if KMEANSVERBOSE
|
---|
| 251 | sw.Stop();
|
---|
| 252 | Console.Out.WriteLine("Changed centers: {0} elapsed: {1}ms",(double)sum(any(oldCenters != centers)), sw.ElapsedMilliseconds);
|
---|
| 253 | #endif
|
---|
| 254 | if (allall(oldCenters == centers)) break;
|
---|
| 255 | oldCenters.a = centers.C;
|
---|
| 256 | }
|
---|
| 257 | if (!object.Equals(outCenters, null))
|
---|
| 258 | outCenters.a = centers;
|
---|
| 259 | return classes;
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 264 |
|
---|
| 265 | }
|
---|
| 266 | }
|
---|