1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Linq;
|
---|
43 | using System.Text;
|
---|
44 |
|
---|
45 | namespace ILNumerics {
|
---|
46 | public partial class ILMath {
|
---|
47 |
|
---|
48 | internal delegate ILRetArray<T> ILRidgeRegressionApplyFunc<T>(ILInArray<T> X, ILRidgeRegressionResult<T> C);
|
---|
49 | /// <summary>
|
---|
50 | /// This class stores the result of a ridge regression
|
---|
51 | /// </summary>
|
---|
52 | /// <typeparam name="T">Element type (precision) for the result</typeparam>
|
---|
53 | /// <remarks>This class is returned from <see cref="ILNumerics.ILMath.ridge_regression(ILInArray<double>, ILInArray<double>, ILBaseArray, ILBaseArray)"/>
|
---|
54 | /// and all its overloads. The class stores all data needed to apply the regression result to new data points. Therefore a
|
---|
55 | /// function <see cref="ILNumerics.ILMath.ILRidgeRegressionResult{T}.Apply(ILNumerics.ILInArray{T}, ILNumerics.ILBaseArray[])" /> is provided.
|
---|
56 | /// <para>The class implements the <c>IDisposable</c> interface and should be used inside a 'using' block or manually be disposed
|
---|
57 | /// after use.</para></remarks>
|
---|
58 | public class ILRidgeRegressionResult<T> : ILResult<T> {
|
---|
59 | internal ILRidgeRegressionApplyFunc<T> m_applyFunc;
|
---|
60 | internal ILArray<T> m_centerX = ILMath.returnType<T>();
|
---|
61 | internal ILArray<T> m_centerY = ILMath.returnType<T>();
|
---|
62 | internal ILArray<T> m_weights = ILMath.returnType<T>();
|
---|
63 | internal int m_p = 1;
|
---|
64 | internal ILArray<T> m_pow = ILMath.returnType<T>();
|
---|
65 |
|
---|
66 | /// <summary>
|
---|
67 | /// Apply the result on new datapoints
|
---|
68 | /// </summary>
|
---|
69 | /// <param name="X">New datapoints, same dimension as used for learning</param>
|
---|
70 | /// <returns></returns>
|
---|
71 | public override ILRetArray<T> Apply(ILInArray<T> X, params ILBaseArray[] arguments) {
|
---|
72 | if (IsDisposed)
|
---|
73 | throw new Exceptions.ILInvalidOperationException("the regression result is disposed already");
|
---|
74 | return m_applyFunc(X,this);
|
---|
75 | }
|
---|
76 |
|
---|
77 | #region IDisposable Members
|
---|
78 | /// <summary>
|
---|
79 | /// Dispose off the result and free all storages used
|
---|
80 | /// </summary>
|
---|
81 | public override void Dispose() {
|
---|
82 | base.Dispose();
|
---|
83 | m_centerX.Dispose();
|
---|
84 | m_centerY.Dispose();
|
---|
85 | m_weights.Dispose();
|
---|
86 | m_pow.Dispose();
|
---|
87 | }
|
---|
88 |
|
---|
89 | #endregion
|
---|
90 | }
|
---|
91 | /// <summary>
|
---|
92 | /// Ordinary least squares regression/ ridge regression
|
---|
93 | /// </summary>
|
---|
94 | /// <param name="X">Data matrix, data points in columns</param>
|
---|
95 | /// <param name="Y">Training targets (or 'labels') corresponding to <paramref name="X"/></param>
|
---|
96 | /// <param name="Degree">Highest degree of polynomials for the design matrix</param>
|
---|
97 | /// <param name="Regularization">Regularization constant (usually some "small" summand for stabilizing the matrix inversion).</param>
|
---|
98 | /// <returns>Train result used for applying the model to new data.</returns>
|
---|
99 | public static ILRidgeRegressionResult<double> ridge_regression(ILInArray<double> X, ILInArray<double> Y, ILBaseArray Degree, ILBaseArray Regularization) {
|
---|
100 | using (ILScope.Enter(X, Y, Degree, Regularization)) {
|
---|
101 |
|
---|
102 | ILArray<double> x = check(X);
|
---|
103 | ILArray<double> y = check(Y);
|
---|
104 |
|
---|
105 | ILRidgeRegressionResult<double> ret = new ILRidgeRegressionResult<double>();
|
---|
106 | double c = (double)todouble(Regularization);
|
---|
107 | int p = (int)toint32(Degree);
|
---|
108 | if (c < 0) c = 1e-10;
|
---|
109 | if (p < 1) p = 1;
|
---|
110 | ret.m_pow.a = repmat(vec<double>(1,p).T,x.S[0],1)[full];
|
---|
111 | ILArray<double> Xd = pow(repmat(x, p, 1), repmat(ret.m_pow, 1, x.S[1]));
|
---|
112 | ret.m_p = p;
|
---|
113 | ret.m_centerX.a = mean(Xd,1);
|
---|
114 | ret.m_centerY.a = mean(y,1);
|
---|
115 | Xd.a = Xd - ret.m_centerX;
|
---|
116 | ILArray<double> Yd = y - ret.m_centerY;
|
---|
117 | ret.m_weights.a = linsolve(multiply(Xd,Xd.T) + c * eye(Xd.S[0],Xd.S[0]) , multiply(Xd,y.T));
|
---|
118 | ret.m_applyFunc = RidgeRegressionApply;
|
---|
119 | return ret;
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | internal static ILRetArray<double> RidgeRegressionApply(ILInArray<double> X, ILRidgeRegressionResult<double> C) {
|
---|
124 | using (ILScope.Enter(X)) {
|
---|
125 | int n = X.S[1];
|
---|
126 | ILArray<double> Xd = pow(repmat(X, C.m_p, 1),repmat(reshape(C.m_pow, numel(C.m_pow), 1), 1, n));
|
---|
127 | return multiply(C.m_weights.T, (Xd - repmat(C.m_centerX, 1, n))) + repmat(C.m_centerY, 1, n);
|
---|
128 | }
|
---|
129 | }
|
---|
130 |
|
---|
131 | }
|
---|
132 | }
|
---|