1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Linq;
|
---|
43 | using System.Text;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 |
|
---|
46 |
|
---|
47 | namespace ILNumerics {
|
---|
48 | public partial class ILMath {
|
---|
49 |
|
---|
50 | public enum DistanceMetrics {
|
---|
51 | Euclidian_L2,
|
---|
52 | Mahalanobis,
|
---|
53 | Manhattan_L1,
|
---|
54 | Minkowski,
|
---|
55 | Chebychev,
|
---|
56 | Cosine,
|
---|
57 | Pearsons,
|
---|
58 | Hamming,
|
---|
59 | Jaccard,
|
---|
60 | Spearman
|
---|
61 | }
|
---|
62 |
|
---|
63 | |
---|
64 | /// <summary>
|
---|
65 | /// Search for k nearest neighbors for every sample in <paramref name="Samples"/> samples
|
---|
66 | /// </summary>
|
---|
67 | /// <param name="Samples">Samples matrix, samples in columns, the number of rows (dimensionality) must match the number of rows in <paramref name="Neighbors"/> </param>
|
---|
68 | /// <param name="Neighbors">Matrix of training samples/ neighbors, this will be searched for matching points, rows: dimensionality, columns: number of points</param>
|
---|
69 | /// <param name="k">[Optional] Number of neighbors to return, k must lay in range: 0 ≤ k < neighbors.D[1]; default: 1</param>
|
---|
70 | /// <param name="metric">[Optional] Distance metric, one out of the <see cref="ILNumerics.ILMath.DistanceMetrics"/> enumeration. Supported are: Euclidian_L2,Manhattan_L1,
|
---|
71 | /// Minkowski, Cosine, Pearsons and Hamming distances; default: 'Euclidian_L2'</param>
|
---|
72 | /// <param name="minkowski_parameter">[Optional] Exponent for minkowski distance; default: 2</param>
|
---|
73 | /// <param name="unstable_error">[Optional] For cosine and pearson distances: if some samples lead to numerical instabilities, an exception is generated; default: true</param>
|
---|
74 | /// <returns>Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in <paramref name="Neighbors"/> matrix</returns>
|
---|
75 | public static ILRetArray<double> knn(ILInArray<double> Samples, ILInArray<double> Neighbors, int k = 10,
|
---|
76 | DistanceMetrics metric = DistanceMetrics.Euclidian_L2, double minkowski_parameter = 2.0,
|
---|
77 | bool unstable_error = true) {
|
---|
78 | using (ILScope.Enter(Samples, Neighbors)) {
|
---|
79 |
|
---|
80 | ILArray<double> samples = Samples;
|
---|
81 | ILArray<double> neighbors = Neighbors;
|
---|
82 |
|
---|
83 | if (k < 0) {
|
---|
84 | throw new ILArgumentException("k must be greater or equal 0");
|
---|
85 | }
|
---|
86 | if (isnullorempty(neighbors)) {
|
---|
87 | throw new ILArgumentException("input argument 'neighbors' must not be null or empty");
|
---|
88 | }
|
---|
89 | if (isnull(samples)) {
|
---|
90 | throw new ILArgumentException("input argument 'samples' must not be null");
|
---|
91 | }
|
---|
92 | if (samples.S[0] != neighbors.S[0])
|
---|
93 | throw new ILArgumentException("number of rows for 'neighbors' and 'samples' must match");
|
---|
94 | if (k > neighbors.S[1])
|
---|
95 | throw new ILArgumentException("k must be smaller or equal to the number of datapoints (number of columns) in A");
|
---|
96 | int nn = neighbors.S[1], am = neighbors.S[0], sn = samples.S[1];
|
---|
97 | ILArray<double> ret = zeros<double>(k, sn);
|
---|
98 | switch (metric) {
|
---|
99 | case DistanceMetrics.Euclidian_L2:
|
---|
100 | for (int i = 0; i < sn; i++) {
|
---|
101 | using (ILScope.Enter()) {
|
---|
102 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
103 | dist.a = sum(dist * dist, 0);
|
---|
104 | ILArray<double> indices = empty<double>();
|
---|
105 | if (k == 1) {
|
---|
106 | min(dist, indices, 1).Dispose();
|
---|
107 | ret[full, i] = indices[0];
|
---|
108 | } else {
|
---|
109 | sort(dist, indices, 1, false).Dispose();
|
---|
110 | ret[full, i] = indices[r(0, k - 1)];
|
---|
111 | }
|
---|
112 | }
|
---|
113 | }
|
---|
114 | break;
|
---|
115 | case DistanceMetrics.Manhattan_L1:
|
---|
116 | for (int i = 0; i < sn; i++) {
|
---|
117 | using (ILScope.Enter()) {
|
---|
118 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
119 | dist.a = sum(abs(dist), 0);
|
---|
120 | ILArray<double> indices = empty<double>();
|
---|
121 | if (k == 1) {
|
---|
122 | min(dist, indices, 1).Dispose();
|
---|
123 | ret[full, i] = indices[0];
|
---|
124 | } else {
|
---|
125 | sort(dist, indices, 1, false).Dispose();
|
---|
126 | ret[full, i] = indices[r(0, k - 1)];
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 | break;
|
---|
131 | case DistanceMetrics.Minkowski:
|
---|
132 | for (int i = 0; i < sn; i++) {
|
---|
133 | using (ILScope.Enter()) {
|
---|
134 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
135 | dist.a = sum(pow(dist,(double)minkowski_parameter), 0);
|
---|
136 | ILArray<double> indices = empty<double>();
|
---|
137 | if (k == 1) {
|
---|
138 | min(dist, indices, 0).Dispose();
|
---|
139 | ret[full, i] = indices[0];
|
---|
140 | } else {
|
---|
141 | sort(dist, indices, 0, false).Dispose();
|
---|
142 | ret[full, i] = indices[r(0, k - 1)];
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|
146 | break;
|
---|
147 | case DistanceMetrics.Cosine:
|
---|
148 | ILArray<double> samples_normalized = sqrt(sum(samples * samples, 0));
|
---|
149 | ILArray<double> neighbs_normalized = sqrt(sum(neighbors * neighbors, 0));
|
---|
150 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
151 | throw new ILArgumentException("possibly numerical instability: some samples are too close to 0. Try using a different metric instead!");
|
---|
152 | }
|
---|
153 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
154 | throw new ILArgumentException("possibly numerical instability: some neighbors are too close to 0. Try using a different metric instead!");
|
---|
155 | }
|
---|
156 | neighbs_normalized.a = neighbors / neighbs_normalized;
|
---|
157 | for (int i = 0; i < sn; i++) {
|
---|
158 | using (ILScope.Enter()) {
|
---|
159 | ILArray<double> dist = 1 - multiply(neighbs_normalized.T, samples[full, i]) / samples_normalized[i];
|
---|
160 | ILArray<double> indices = empty<double>();
|
---|
161 | if (k == 1) {
|
---|
162 | min(dist, indices, 0).Dispose();
|
---|
163 | ret[full, i] = indices[0];
|
---|
164 | } else {
|
---|
165 | sort(dist, indices, 0, false).Dispose();
|
---|
166 | ret[full, i] = indices[r(0, k - 1)];
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | break;
|
---|
171 | case DistanceMetrics.Pearsons:
|
---|
172 | ILArray<double> samples_centered = samples - mean(samples, 0);
|
---|
173 | ILArray<double> neighbs_centered = neighbors - mean(neighbors, 0);
|
---|
174 | samples_normalized = sqrt(sum(samples_centered * samples_centered, 0));
|
---|
175 | neighbs_normalized = sqrt(sum(neighbs_centered * neighbs_centered, 0));
|
---|
176 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
177 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
178 | }
|
---|
179 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
180 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
181 | }
|
---|
182 | neighbs_normalized.a = neighbs_centered / neighbs_normalized;
|
---|
183 | for (int i = 0; i < sn; i++) {
|
---|
184 | using (ILScope.Enter()) {
|
---|
185 | ILArray<double> dist = 1 - multiply(neighbs_normalized.T, samples_centered[full, i]) / samples_normalized[i];
|
---|
186 | ILArray<double> indices = empty<double>();
|
---|
187 | if (k == 1) {
|
---|
188 | min(dist,indices,0).Dispose();
|
---|
189 | ret[full, i] = indices[0];
|
---|
190 | } else {
|
---|
191 | sort(dist, indices, 0, false).Dispose();
|
---|
192 | ret[full, i] = indices[r(0, k - 1)];
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|
196 | break;
|
---|
197 | case DistanceMetrics.Hamming:
|
---|
198 | if (samples.Any((a) => { return a != 0 && a != 1; })) {
|
---|
199 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'samples'");
|
---|
200 | }
|
---|
201 | if (neighbors.Any((a) => { return a != 0 && a != 1; })) {
|
---|
202 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'neighbors'");
|
---|
203 | }
|
---|
204 | for (int i = 0; i < sn; i++) {
|
---|
205 | using (ILScope.Enter()) {
|
---|
206 | ILArray<double> dist = sum(abs(neighbors - samples[full, i]), 0) / am;
|
---|
207 | ILArray<double> indices = empty<double>();
|
---|
208 | if (k == 1) {
|
---|
209 | min(dist, indices, 1).Dispose();
|
---|
210 | ret[full, i] = indices[0];
|
---|
211 | } else {
|
---|
212 | sort(dist, indices, 1, false).Dispose();
|
---|
213 | ret[full, i] = indices[r(0, k - 1)];
|
---|
214 | }
|
---|
215 | }
|
---|
216 | }
|
---|
217 | break;
|
---|
218 | default:
|
---|
219 | throw new ILArgumentException("the selected distance is not supported");
|
---|
220 | }
|
---|
221 | return ret;
|
---|
222 | }
|
---|
223 |
|
---|
224 | }
|
---|
225 | /// <summary>
|
---|
226 | /// Test for numerical instability, expects positive data only!
|
---|
227 | /// </summary>
|
---|
228 | /// <param name="samples_normalized">Input data</param>
|
---|
229 | /// <returns>true: no instability detected, false, possible instablility</returns>
|
---|
230 | private static bool testStable(ILInArray<double> samples_normalized) {
|
---|
231 | using (ILScope.Enter(samples_normalized)) {
|
---|
232 |
|
---|
233 | double max, min;
|
---|
234 | samples_normalized.GetLimits(out min, out max);
|
---|
235 | return min > MachineParameterDouble.eps * max;
|
---|
236 | }
|
---|
237 | }
|
---|
238 | |
---|
239 | #region HYCALPER AUTO GENERATED CODE
|
---|
240 | |
---|
241 | /// <summary>
|
---|
242 | /// Search for k nearest neighbors for every sample in <paramref name="Samples"/> samples
|
---|
243 | /// </summary>
|
---|
244 | /// <param name="Samples">Samples matrix, samples in columns, the number of rows (dimensionality) must match the number of rows in <paramref name="Neighbors"/> </param>
|
---|
245 | /// <param name="Neighbors">Matrix of training samples/ neighbors, this will be searched for matching points, rows: dimensionality, columns: number of points</param>
|
---|
246 | /// <param name="k">[Optional] Number of neighbors to return, k must lay in range: 0 ≤ k < neighbors.D[1]; default: 1</param>
|
---|
247 | /// <param name="metric">[Optional] Distance metric, one out of the <see cref="ILNumerics.ILMath.DistanceMetrics"/> enumeration. Supported are: Euclidian_L2,Manhattan_L1,
|
---|
248 | /// Minkowski, Cosine, Pearsons and Hamming distances; default: 'Euclidian_L2'</param>
|
---|
249 | /// <param name="minkowski_parameter">[Optional] Exponent for minkowski distance; default: 2</param>
|
---|
250 | /// <param name="unstable_error">[Optional] For cosine and pearson distances: if some samples lead to numerical instabilities, an exception is generated; default: true</param>
|
---|
251 | /// <returns>Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in <paramref name="Neighbors"/> matrix</returns>
|
---|
252 | public static ILRetArray<double> knn(ILInArray<float> Samples, ILInArray<float> Neighbors, int k = 10,
|
---|
253 | DistanceMetrics metric = DistanceMetrics.Euclidian_L2, double minkowski_parameter = 2.0,
|
---|
254 | bool unstable_error = true) {
|
---|
255 | using (ILScope.Enter(Samples, Neighbors)) {
|
---|
256 |
|
---|
257 | ILArray<float> samples = Samples;
|
---|
258 | ILArray<float> neighbors = Neighbors;
|
---|
259 |
|
---|
260 | if (k < 0) {
|
---|
261 | throw new ILArgumentException("k must be greater or equal 0");
|
---|
262 | }
|
---|
263 | if (isnullorempty(neighbors)) {
|
---|
264 | throw new ILArgumentException("input argument 'neighbors' must not be null or empty");
|
---|
265 | }
|
---|
266 | if (isnull(samples)) {
|
---|
267 | throw new ILArgumentException("input argument 'samples' must not be null");
|
---|
268 | }
|
---|
269 | if (samples.S[0] != neighbors.S[0])
|
---|
270 | throw new ILArgumentException("number of rows for 'neighbors' and 'samples' must match");
|
---|
271 | if (k > neighbors.S[1])
|
---|
272 | throw new ILArgumentException("k must be smaller or equal to the number of datapoints (number of columns) in A");
|
---|
273 | int nn = neighbors.S[1], am = neighbors.S[0], sn = samples.S[1];
|
---|
274 | ILArray<double> ret = zeros<double>(k, sn);
|
---|
275 | switch (metric) {
|
---|
276 | case DistanceMetrics.Euclidian_L2:
|
---|
277 | for (int i = 0; i < sn; i++) {
|
---|
278 | using (ILScope.Enter()) {
|
---|
279 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
280 | dist.a = sum(dist * dist, 0);
|
---|
281 | ILArray<double> indices = empty<double>();
|
---|
282 | if (k == 1) {
|
---|
283 | min(dist, indices, 1).Dispose();
|
---|
284 | ret[full, i] = indices[0];
|
---|
285 | } else {
|
---|
286 | sort(dist, indices, 1, false).Dispose();
|
---|
287 | ret[full, i] = indices[r(0, k - 1)];
|
---|
288 | }
|
---|
289 | }
|
---|
290 | }
|
---|
291 | break;
|
---|
292 | case DistanceMetrics.Manhattan_L1:
|
---|
293 | for (int i = 0; i < sn; i++) {
|
---|
294 | using (ILScope.Enter()) {
|
---|
295 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
296 | dist.a = sum(abs(dist), 0);
|
---|
297 | ILArray<double> indices = empty<double>();
|
---|
298 | if (k == 1) {
|
---|
299 | min(dist, indices, 1).Dispose();
|
---|
300 | ret[full, i] = indices[0];
|
---|
301 | } else {
|
---|
302 | sort(dist, indices, 1, false).Dispose();
|
---|
303 | ret[full, i] = indices[r(0, k - 1)];
|
---|
304 | }
|
---|
305 | }
|
---|
306 | }
|
---|
307 | break;
|
---|
308 | case DistanceMetrics.Minkowski:
|
---|
309 | for (int i = 0; i < sn; i++) {
|
---|
310 | using (ILScope.Enter()) {
|
---|
311 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
312 | dist.a = sum(pow(dist,(float)minkowski_parameter), 0);
|
---|
313 | ILArray<double> indices = empty<double>();
|
---|
314 | if (k == 1) {
|
---|
315 | min(dist, indices, 0).Dispose();
|
---|
316 | ret[full, i] = indices[0];
|
---|
317 | } else {
|
---|
318 | sort(dist, indices, 0, false).Dispose();
|
---|
319 | ret[full, i] = indices[r(0, k - 1)];
|
---|
320 | }
|
---|
321 | }
|
---|
322 | }
|
---|
323 | break;
|
---|
324 | case DistanceMetrics.Cosine:
|
---|
325 | ILArray<float> samples_normalized = sqrt(sum(samples * samples, 0));
|
---|
326 | ILArray<float> neighbs_normalized = sqrt(sum(neighbors * neighbors, 0));
|
---|
327 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
328 | throw new ILArgumentException("possibly numerical instability: some samples are too close to 0. Try using a different metric instead!");
|
---|
329 | }
|
---|
330 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
331 | throw new ILArgumentException("possibly numerical instability: some neighbors are too close to 0. Try using a different metric instead!");
|
---|
332 | }
|
---|
333 | neighbs_normalized.a = neighbors / neighbs_normalized;
|
---|
334 | for (int i = 0; i < sn; i++) {
|
---|
335 | using (ILScope.Enter()) {
|
---|
336 | ILArray<float> dist = 1 - multiply(neighbs_normalized.T, samples[full, i]) / samples_normalized[i];
|
---|
337 | ILArray<double> indices = empty<double>();
|
---|
338 | if (k == 1) {
|
---|
339 | min(dist, indices, 0).Dispose();
|
---|
340 | ret[full, i] = indices[0];
|
---|
341 | } else {
|
---|
342 | sort(dist, indices, 0, false).Dispose();
|
---|
343 | ret[full, i] = indices[r(0, k - 1)];
|
---|
344 | }
|
---|
345 | }
|
---|
346 | }
|
---|
347 | break;
|
---|
348 | case DistanceMetrics.Pearsons:
|
---|
349 | ILArray<float> samples_centered = samples - mean(samples, 0);
|
---|
350 | ILArray<float> neighbs_centered = neighbors - mean(neighbors, 0);
|
---|
351 | samples_normalized = sqrt(sum(samples_centered * samples_centered, 0));
|
---|
352 | neighbs_normalized = sqrt(sum(neighbs_centered * neighbs_centered, 0));
|
---|
353 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
354 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
355 | }
|
---|
356 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
357 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
358 | }
|
---|
359 | neighbs_normalized.a = neighbs_centered / neighbs_normalized;
|
---|
360 | for (int i = 0; i < sn; i++) {
|
---|
361 | using (ILScope.Enter()) {
|
---|
362 | ILArray<float> dist = 1 - multiply(neighbs_normalized.T, samples_centered[full, i]) / samples_normalized[i];
|
---|
363 | ILArray<double> indices = empty<double>();
|
---|
364 | if (k == 1) {
|
---|
365 | min(dist,indices,0).Dispose();
|
---|
366 | ret[full, i] = indices[0];
|
---|
367 | } else {
|
---|
368 | sort(dist, indices, 0, false).Dispose();
|
---|
369 | ret[full, i] = indices[r(0, k - 1)];
|
---|
370 | }
|
---|
371 | }
|
---|
372 | }
|
---|
373 | break;
|
---|
374 | case DistanceMetrics.Hamming:
|
---|
375 | if (samples.Any((a) => { return a != 0 && a != 1; })) {
|
---|
376 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'samples'");
|
---|
377 | }
|
---|
378 | if (neighbors.Any((a) => { return a != 0 && a != 1; })) {
|
---|
379 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'neighbors'");
|
---|
380 | }
|
---|
381 | for (int i = 0; i < sn; i++) {
|
---|
382 | using (ILScope.Enter()) {
|
---|
383 | ILArray<float> dist = sum(abs(neighbors - samples[full, i]), 0) / am;
|
---|
384 | ILArray<double> indices = empty<double>();
|
---|
385 | if (k == 1) {
|
---|
386 | min(dist, indices, 1).Dispose();
|
---|
387 | ret[full, i] = indices[0];
|
---|
388 | } else {
|
---|
389 | sort(dist, indices, 1, false).Dispose();
|
---|
390 | ret[full, i] = indices[r(0, k - 1)];
|
---|
391 | }
|
---|
392 | }
|
---|
393 | }
|
---|
394 | break;
|
---|
395 | default:
|
---|
396 | throw new ILArgumentException("the selected distance is not supported");
|
---|
397 | }
|
---|
398 | return ret;
|
---|
399 | }
|
---|
400 |
|
---|
401 | }
|
---|
402 | /// <summary>
|
---|
403 | /// Test for numerical instability, expects positive data only!
|
---|
404 | /// </summary>
|
---|
405 | /// <param name="samples_normalized">Input data</param>
|
---|
406 | /// <returns>true: no instability detected, false, possible instablility</returns>
|
---|
407 | private static bool testStable(ILInArray<float> samples_normalized) {
|
---|
408 | using (ILScope.Enter(samples_normalized)) {
|
---|
409 |
|
---|
410 | float max, min;
|
---|
411 | samples_normalized.GetLimits(out min, out max);
|
---|
412 | return min > MachineParameterSingle.eps * max;
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
417 | }
|
---|
418 | }
|
---|