[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Linq;
|
---|
| 43 | using System.Text;
|
---|
| 44 | using ILNumerics.Exceptions;
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | namespace ILNumerics {
|
---|
| 48 | public partial class ILMath {
|
---|
| 49 |
|
---|
| 50 | public enum DistanceMetrics {
|
---|
| 51 | Euclidian_L2,
|
---|
| 52 | Mahalanobis,
|
---|
| 53 | Manhattan_L1,
|
---|
| 54 | Minkowski,
|
---|
| 55 | Chebychev,
|
---|
| 56 | Cosine,
|
---|
| 57 | Pearsons,
|
---|
| 58 | Hamming,
|
---|
| 59 | Jaccard,
|
---|
| 60 | Spearman
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | |
---|
| 64 | /// <summary>
|
---|
| 65 | /// Search for k nearest neighbors for every sample in <paramref name="Samples"/> samples
|
---|
| 66 | /// </summary>
|
---|
| 67 | /// <param name="Samples">Samples matrix, samples in columns, the number of rows (dimensionality) must match the number of rows in <paramref name="Neighbors"/> </param>
|
---|
| 68 | /// <param name="Neighbors">Matrix of training samples/ neighbors, this will be searched for matching points, rows: dimensionality, columns: number of points</param>
|
---|
| 69 | /// <param name="k">[Optional] Number of neighbors to return, k must lay in range: 0 ≤ k < neighbors.D[1]; default: 1</param>
|
---|
| 70 | /// <param name="metric">[Optional] Distance metric, one out of the <see cref="ILNumerics.ILMath.DistanceMetrics"/> enumeration. Supported are: Euclidian_L2,Manhattan_L1,
|
---|
| 71 | /// Minkowski, Cosine, Pearsons and Hamming distances; default: 'Euclidian_L2'</param>
|
---|
| 72 | /// <param name="minkowski_parameter">[Optional] Exponent for minkowski distance; default: 2</param>
|
---|
| 73 | /// <param name="unstable_error">[Optional] For cosine and pearson distances: if some samples lead to numerical instabilities, an exception is generated; default: true</param>
|
---|
| 74 | /// <returns>Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in <paramref name="Neighbors"/> matrix</returns>
|
---|
| 75 | public static ILRetArray<double> knn(ILInArray<double> Samples, ILInArray<double> Neighbors, int k = 10,
|
---|
| 76 | DistanceMetrics metric = DistanceMetrics.Euclidian_L2, double minkowski_parameter = 2.0,
|
---|
| 77 | bool unstable_error = true) {
|
---|
| 78 | using (ILScope.Enter(Samples, Neighbors)) {
|
---|
| 79 |
|
---|
| 80 | ILArray<double> samples = Samples;
|
---|
| 81 | ILArray<double> neighbors = Neighbors;
|
---|
| 82 |
|
---|
| 83 | if (k < 0) {
|
---|
| 84 | throw new ILArgumentException("k must be greater or equal 0");
|
---|
| 85 | }
|
---|
| 86 | if (isnullorempty(neighbors)) {
|
---|
| 87 | throw new ILArgumentException("input argument 'neighbors' must not be null or empty");
|
---|
| 88 | }
|
---|
| 89 | if (isnull(samples)) {
|
---|
| 90 | throw new ILArgumentException("input argument 'samples' must not be null");
|
---|
| 91 | }
|
---|
| 92 | if (samples.S[0] != neighbors.S[0])
|
---|
| 93 | throw new ILArgumentException("number of rows for 'neighbors' and 'samples' must match");
|
---|
| 94 | if (k > neighbors.S[1])
|
---|
| 95 | throw new ILArgumentException("k must be smaller or equal to the number of datapoints (number of columns) in A");
|
---|
| 96 | int nn = neighbors.S[1], am = neighbors.S[0], sn = samples.S[1];
|
---|
| 97 | ILArray<double> ret = zeros<double>(k, sn);
|
---|
| 98 | switch (metric) {
|
---|
| 99 | case DistanceMetrics.Euclidian_L2:
|
---|
| 100 | for (int i = 0; i < sn; i++) {
|
---|
| 101 | using (ILScope.Enter()) {
|
---|
| 102 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
| 103 | dist.a = sum(dist * dist, 0);
|
---|
| 104 | ILArray<double> indices = empty<double>();
|
---|
| 105 | if (k == 1) {
|
---|
| 106 | min(dist, indices, 1).Dispose();
|
---|
| 107 | ret[full, i] = indices[0];
|
---|
| 108 | } else {
|
---|
| 109 | sort(dist, indices, 1, false).Dispose();
|
---|
| 110 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 | break;
|
---|
| 115 | case DistanceMetrics.Manhattan_L1:
|
---|
| 116 | for (int i = 0; i < sn; i++) {
|
---|
| 117 | using (ILScope.Enter()) {
|
---|
| 118 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
| 119 | dist.a = sum(abs(dist), 0);
|
---|
| 120 | ILArray<double> indices = empty<double>();
|
---|
| 121 | if (k == 1) {
|
---|
| 122 | min(dist, indices, 1).Dispose();
|
---|
| 123 | ret[full, i] = indices[0];
|
---|
| 124 | } else {
|
---|
| 125 | sort(dist, indices, 1, false).Dispose();
|
---|
| 126 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | break;
|
---|
| 131 | case DistanceMetrics.Minkowski:
|
---|
| 132 | for (int i = 0; i < sn; i++) {
|
---|
| 133 | using (ILScope.Enter()) {
|
---|
| 134 | ILArray<double> dist = neighbors - samples[full, i];
|
---|
| 135 | dist.a = sum(pow(dist,(double)minkowski_parameter), 0);
|
---|
| 136 | ILArray<double> indices = empty<double>();
|
---|
| 137 | if (k == 1) {
|
---|
| 138 | min(dist, indices, 0).Dispose();
|
---|
| 139 | ret[full, i] = indices[0];
|
---|
| 140 | } else {
|
---|
| 141 | sort(dist, indices, 0, false).Dispose();
|
---|
| 142 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 | break;
|
---|
| 147 | case DistanceMetrics.Cosine:
|
---|
| 148 | ILArray<double> samples_normalized = sqrt(sum(samples * samples, 0));
|
---|
| 149 | ILArray<double> neighbs_normalized = sqrt(sum(neighbors * neighbors, 0));
|
---|
| 150 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
| 151 | throw new ILArgumentException("possibly numerical instability: some samples are too close to 0. Try using a different metric instead!");
|
---|
| 152 | }
|
---|
| 153 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
| 154 | throw new ILArgumentException("possibly numerical instability: some neighbors are too close to 0. Try using a different metric instead!");
|
---|
| 155 | }
|
---|
| 156 | neighbs_normalized.a = neighbors / neighbs_normalized;
|
---|
| 157 | for (int i = 0; i < sn; i++) {
|
---|
| 158 | using (ILScope.Enter()) {
|
---|
| 159 | ILArray<double> dist = 1 - multiply(neighbs_normalized.T, samples[full, i]) / samples_normalized[i];
|
---|
| 160 | ILArray<double> indices = empty<double>();
|
---|
| 161 | if (k == 1) {
|
---|
| 162 | min(dist, indices, 0).Dispose();
|
---|
| 163 | ret[full, i] = indices[0];
|
---|
| 164 | } else {
|
---|
| 165 | sort(dist, indices, 0, false).Dispose();
|
---|
| 166 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | break;
|
---|
| 171 | case DistanceMetrics.Pearsons:
|
---|
| 172 | ILArray<double> samples_centered = samples - mean(samples, 0);
|
---|
| 173 | ILArray<double> neighbs_centered = neighbors - mean(neighbors, 0);
|
---|
| 174 | samples_normalized = sqrt(sum(samples_centered * samples_centered, 0));
|
---|
| 175 | neighbs_normalized = sqrt(sum(neighbs_centered * neighbs_centered, 0));
|
---|
| 176 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
| 177 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
| 178 | }
|
---|
| 179 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
| 180 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
| 181 | }
|
---|
| 182 | neighbs_normalized.a = neighbs_centered / neighbs_normalized;
|
---|
| 183 | for (int i = 0; i < sn; i++) {
|
---|
| 184 | using (ILScope.Enter()) {
|
---|
| 185 | ILArray<double> dist = 1 - multiply(neighbs_normalized.T, samples_centered[full, i]) / samples_normalized[i];
|
---|
| 186 | ILArray<double> indices = empty<double>();
|
---|
| 187 | if (k == 1) {
|
---|
| 188 | min(dist,indices,0).Dispose();
|
---|
| 189 | ret[full, i] = indices[0];
|
---|
| 190 | } else {
|
---|
| 191 | sort(dist, indices, 0, false).Dispose();
|
---|
| 192 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 | }
|
---|
| 196 | break;
|
---|
| 197 | case DistanceMetrics.Hamming:
|
---|
| 198 | if (samples.Any((a) => { return a != 0 && a != 1; })) {
|
---|
| 199 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'samples'");
|
---|
| 200 | }
|
---|
| 201 | if (neighbors.Any((a) => { return a != 0 && a != 1; })) {
|
---|
| 202 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'neighbors'");
|
---|
| 203 | }
|
---|
| 204 | for (int i = 0; i < sn; i++) {
|
---|
| 205 | using (ILScope.Enter()) {
|
---|
| 206 | ILArray<double> dist = sum(abs(neighbors - samples[full, i]), 0) / am;
|
---|
| 207 | ILArray<double> indices = empty<double>();
|
---|
| 208 | if (k == 1) {
|
---|
| 209 | min(dist, indices, 1).Dispose();
|
---|
| 210 | ret[full, i] = indices[0];
|
---|
| 211 | } else {
|
---|
| 212 | sort(dist, indices, 1, false).Dispose();
|
---|
| 213 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | }
|
---|
| 217 | break;
|
---|
| 218 | default:
|
---|
| 219 | throw new ILArgumentException("the selected distance is not supported");
|
---|
| 220 | }
|
---|
| 221 | return ret;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | }
|
---|
| 225 | /// <summary>
|
---|
| 226 | /// Test for numerical instability, expects positive data only!
|
---|
| 227 | /// </summary>
|
---|
| 228 | /// <param name="samples_normalized">Input data</param>
|
---|
| 229 | /// <returns>true: no instability detected, false, possible instablility</returns>
|
---|
| 230 | private static bool testStable(ILInArray<double> samples_normalized) {
|
---|
| 231 | using (ILScope.Enter(samples_normalized)) {
|
---|
| 232 |
|
---|
| 233 | double max, min;
|
---|
| 234 | samples_normalized.GetLimits(out min, out max);
|
---|
| 235 | return min > MachineParameterDouble.eps * max;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | |
---|
| 239 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 240 | |
---|
| 241 | /// <summary>
|
---|
| 242 | /// Search for k nearest neighbors for every sample in <paramref name="Samples"/> samples
|
---|
| 243 | /// </summary>
|
---|
| 244 | /// <param name="Samples">Samples matrix, samples in columns, the number of rows (dimensionality) must match the number of rows in <paramref name="Neighbors"/> </param>
|
---|
| 245 | /// <param name="Neighbors">Matrix of training samples/ neighbors, this will be searched for matching points, rows: dimensionality, columns: number of points</param>
|
---|
| 246 | /// <param name="k">[Optional] Number of neighbors to return, k must lay in range: 0 ≤ k < neighbors.D[1]; default: 1</param>
|
---|
| 247 | /// <param name="metric">[Optional] Distance metric, one out of the <see cref="ILNumerics.ILMath.DistanceMetrics"/> enumeration. Supported are: Euclidian_L2,Manhattan_L1,
|
---|
| 248 | /// Minkowski, Cosine, Pearsons and Hamming distances; default: 'Euclidian_L2'</param>
|
---|
| 249 | /// <param name="minkowski_parameter">[Optional] Exponent for minkowski distance; default: 2</param>
|
---|
| 250 | /// <param name="unstable_error">[Optional] For cosine and pearson distances: if some samples lead to numerical instabilities, an exception is generated; default: true</param>
|
---|
| 251 | /// <returns>Matrix of nearest neighbors, size: k x samples.D[1]; indices of points in <paramref name="Neighbors"/> matrix</returns>
|
---|
| 252 | public static ILRetArray<double> knn(ILInArray<float> Samples, ILInArray<float> Neighbors, int k = 10,
|
---|
| 253 | DistanceMetrics metric = DistanceMetrics.Euclidian_L2, double minkowski_parameter = 2.0,
|
---|
| 254 | bool unstable_error = true) {
|
---|
| 255 | using (ILScope.Enter(Samples, Neighbors)) {
|
---|
| 256 |
|
---|
| 257 | ILArray<float> samples = Samples;
|
---|
| 258 | ILArray<float> neighbors = Neighbors;
|
---|
| 259 |
|
---|
| 260 | if (k < 0) {
|
---|
| 261 | throw new ILArgumentException("k must be greater or equal 0");
|
---|
| 262 | }
|
---|
| 263 | if (isnullorempty(neighbors)) {
|
---|
| 264 | throw new ILArgumentException("input argument 'neighbors' must not be null or empty");
|
---|
| 265 | }
|
---|
| 266 | if (isnull(samples)) {
|
---|
| 267 | throw new ILArgumentException("input argument 'samples' must not be null");
|
---|
| 268 | }
|
---|
| 269 | if (samples.S[0] != neighbors.S[0])
|
---|
| 270 | throw new ILArgumentException("number of rows for 'neighbors' and 'samples' must match");
|
---|
| 271 | if (k > neighbors.S[1])
|
---|
| 272 | throw new ILArgumentException("k must be smaller or equal to the number of datapoints (number of columns) in A");
|
---|
| 273 | int nn = neighbors.S[1], am = neighbors.S[0], sn = samples.S[1];
|
---|
| 274 | ILArray<double> ret = zeros<double>(k, sn);
|
---|
| 275 | switch (metric) {
|
---|
| 276 | case DistanceMetrics.Euclidian_L2:
|
---|
| 277 | for (int i = 0; i < sn; i++) {
|
---|
| 278 | using (ILScope.Enter()) {
|
---|
| 279 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
| 280 | dist.a = sum(dist * dist, 0);
|
---|
| 281 | ILArray<double> indices = empty<double>();
|
---|
| 282 | if (k == 1) {
|
---|
| 283 | min(dist, indices, 1).Dispose();
|
---|
| 284 | ret[full, i] = indices[0];
|
---|
| 285 | } else {
|
---|
| 286 | sort(dist, indices, 1, false).Dispose();
|
---|
| 287 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 288 | }
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
| 291 | break;
|
---|
| 292 | case DistanceMetrics.Manhattan_L1:
|
---|
| 293 | for (int i = 0; i < sn; i++) {
|
---|
| 294 | using (ILScope.Enter()) {
|
---|
| 295 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
| 296 | dist.a = sum(abs(dist), 0);
|
---|
| 297 | ILArray<double> indices = empty<double>();
|
---|
| 298 | if (k == 1) {
|
---|
| 299 | min(dist, indices, 1).Dispose();
|
---|
| 300 | ret[full, i] = indices[0];
|
---|
| 301 | } else {
|
---|
| 302 | sort(dist, indices, 1, false).Dispose();
|
---|
| 303 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 | }
|
---|
| 307 | break;
|
---|
| 308 | case DistanceMetrics.Minkowski:
|
---|
| 309 | for (int i = 0; i < sn; i++) {
|
---|
| 310 | using (ILScope.Enter()) {
|
---|
| 311 | ILArray<float> dist = neighbors - samples[full, i];
|
---|
| 312 | dist.a = sum(pow(dist,(float)minkowski_parameter), 0);
|
---|
| 313 | ILArray<double> indices = empty<double>();
|
---|
| 314 | if (k == 1) {
|
---|
| 315 | min(dist, indices, 0).Dispose();
|
---|
| 316 | ret[full, i] = indices[0];
|
---|
| 317 | } else {
|
---|
| 318 | sort(dist, indices, 0, false).Dispose();
|
---|
| 319 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 320 | }
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 | break;
|
---|
| 324 | case DistanceMetrics.Cosine:
|
---|
| 325 | ILArray<float> samples_normalized = sqrt(sum(samples * samples, 0));
|
---|
| 326 | ILArray<float> neighbs_normalized = sqrt(sum(neighbors * neighbors, 0));
|
---|
| 327 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
| 328 | throw new ILArgumentException("possibly numerical instability: some samples are too close to 0. Try using a different metric instead!");
|
---|
| 329 | }
|
---|
| 330 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
| 331 | throw new ILArgumentException("possibly numerical instability: some neighbors are too close to 0. Try using a different metric instead!");
|
---|
| 332 | }
|
---|
| 333 | neighbs_normalized.a = neighbors / neighbs_normalized;
|
---|
| 334 | for (int i = 0; i < sn; i++) {
|
---|
| 335 | using (ILScope.Enter()) {
|
---|
| 336 | ILArray<float> dist = 1 - multiply(neighbs_normalized.T, samples[full, i]) / samples_normalized[i];
|
---|
| 337 | ILArray<double> indices = empty<double>();
|
---|
| 338 | if (k == 1) {
|
---|
| 339 | min(dist, indices, 0).Dispose();
|
---|
| 340 | ret[full, i] = indices[0];
|
---|
| 341 | } else {
|
---|
| 342 | sort(dist, indices, 0, false).Dispose();
|
---|
| 343 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 344 | }
|
---|
| 345 | }
|
---|
| 346 | }
|
---|
| 347 | break;
|
---|
| 348 | case DistanceMetrics.Pearsons:
|
---|
| 349 | ILArray<float> samples_centered = samples - mean(samples, 0);
|
---|
| 350 | ILArray<float> neighbs_centered = neighbors - mean(neighbors, 0);
|
---|
| 351 | samples_normalized = sqrt(sum(samples_centered * samples_centered, 0));
|
---|
| 352 | neighbs_normalized = sqrt(sum(neighbs_centered * neighbs_centered, 0));
|
---|
| 353 | if (unstable_error && !testStable(samples_normalized)) {
|
---|
| 354 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
| 355 | }
|
---|
| 356 | if (unstable_error && !testStable(neighbs_normalized)) {
|
---|
| 357 | throw new ILArgumentException("possibly numerical instability: standard deviation for some neighbor points is close to zero. Try using a different metric instead!");
|
---|
| 358 | }
|
---|
| 359 | neighbs_normalized.a = neighbs_centered / neighbs_normalized;
|
---|
| 360 | for (int i = 0; i < sn; i++) {
|
---|
| 361 | using (ILScope.Enter()) {
|
---|
| 362 | ILArray<float> dist = 1 - multiply(neighbs_normalized.T, samples_centered[full, i]) / samples_normalized[i];
|
---|
| 363 | ILArray<double> indices = empty<double>();
|
---|
| 364 | if (k == 1) {
|
---|
| 365 | min(dist,indices,0).Dispose();
|
---|
| 366 | ret[full, i] = indices[0];
|
---|
| 367 | } else {
|
---|
| 368 | sort(dist, indices, 0, false).Dispose();
|
---|
| 369 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 370 | }
|
---|
| 371 | }
|
---|
| 372 | }
|
---|
| 373 | break;
|
---|
| 374 | case DistanceMetrics.Hamming:
|
---|
| 375 | if (samples.Any((a) => { return a != 0 && a != 1; })) {
|
---|
| 376 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'samples'");
|
---|
| 377 | }
|
---|
| 378 | if (neighbors.Any((a) => { return a != 0 && a != 1; })) {
|
---|
| 379 | throw new ILArgumentException("hamming distance requires 0 and 1 as value for all elements of 'neighbors'");
|
---|
| 380 | }
|
---|
| 381 | for (int i = 0; i < sn; i++) {
|
---|
| 382 | using (ILScope.Enter()) {
|
---|
| 383 | ILArray<float> dist = sum(abs(neighbors - samples[full, i]), 0) / am;
|
---|
| 384 | ILArray<double> indices = empty<double>();
|
---|
| 385 | if (k == 1) {
|
---|
| 386 | min(dist, indices, 1).Dispose();
|
---|
| 387 | ret[full, i] = indices[0];
|
---|
| 388 | } else {
|
---|
| 389 | sort(dist, indices, 1, false).Dispose();
|
---|
| 390 | ret[full, i] = indices[r(0, k - 1)];
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 | }
|
---|
| 394 | break;
|
---|
| 395 | default:
|
---|
| 396 | throw new ILArgumentException("the selected distance is not supported");
|
---|
| 397 | }
|
---|
| 398 | return ret;
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | }
|
---|
| 402 | /// <summary>
|
---|
| 403 | /// Test for numerical instability, expects positive data only!
|
---|
| 404 | /// </summary>
|
---|
| 405 | /// <param name="samples_normalized">Input data</param>
|
---|
| 406 | /// <returns>true: no instability detected, false, possible instablility</returns>
|
---|
| 407 | private static bool testStable(ILInArray<float> samples_normalized) {
|
---|
| 408 | using (ILScope.Enter(samples_normalized)) {
|
---|
| 409 |
|
---|
| 410 | float max, min;
|
---|
| 411 | samples_normalized.GetLimits(out min, out max);
|
---|
| 412 | return min > MachineParameterSingle.eps * max;
|
---|
| 413 | }
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 417 | }
|
---|
| 418 | }
|
---|