1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
29 | public class InstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
30 | public override string Name {
|
---|
31 | get { return "GPR Benchmark Problems"; }
|
---|
32 | }
|
---|
33 | public override string Description {
|
---|
34 | get { return ""; }
|
---|
35 | }
|
---|
36 | public override Uri WebLink {
|
---|
37 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/AdditionalMaterial"); }
|
---|
38 | }
|
---|
39 | public override string ReferencePublication {
|
---|
40 | get { return ""; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
44 | List<IDataDescriptor> descriptorList = new List<IDataDescriptor>();
|
---|
45 | descriptorList.Add(new GaussianProcessSEIso());
|
---|
46 | descriptorList.Add(new GaussianProcessSEIso1());
|
---|
47 | descriptorList.Add(new GaussianProcessSEIso2());
|
---|
48 | descriptorList.Add(new GaussianProcessSEIso3());
|
---|
49 | descriptorList.Add(new GaussianProcessSEIso4());
|
---|
50 | descriptorList.Add(new GaussianProcessSEIso5());
|
---|
51 | descriptorList.Add(new GaussianProcessSEIso6());
|
---|
52 | descriptorList.Add(new GaussianProcessPolyTen());
|
---|
53 | descriptorList.Add(new GaussianProcessSEIsoDependentNoise());
|
---|
54 | descriptorList.Add(new GaussianProcess2dPeriodic());
|
---|
55 |
|
---|
56 | {
|
---|
57 | var cov = new CovarianceSum();
|
---|
58 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
59 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
60 | cov.Terms.Add(new CovarianceNoise());
|
---|
61 | var hyp = new double[] { -2.8, -0.1, 0.5, 0.3, -1.5 };
|
---|
62 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+SE", cov, hyp));
|
---|
63 | }
|
---|
64 | {
|
---|
65 | var cov = new CovarianceSum();
|
---|
66 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
67 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
68 | cov.Terms.Add(new CovarianceNoise());
|
---|
69 | var hyp = new double[] { -3, 0, 0, -1.5, 0, 2.5, -1.5 };
|
---|
70 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+RQ", cov, hyp));
|
---|
71 | }
|
---|
72 | {
|
---|
73 | var cov = new CovarianceSum();
|
---|
74 | cov.Terms.Add(new CovariancePeriodic());
|
---|
75 | cov.Terms.Add(new CovariancePeriodic());
|
---|
76 | cov.Terms.Add(new CovarianceNoise());
|
---|
77 | var hyp = new double[] { 0, -1.8, -1.5, 0, -0.5, -1, -2.1 };
|
---|
78 | descriptorList.Add(new GaussianProcessRegressionInstance("Periodic+Periodic", cov, hyp));
|
---|
79 | }
|
---|
80 | {
|
---|
81 | var cov = new CovarianceSum();
|
---|
82 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
83 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
84 | cov.Terms.Add(new CovarianceNoise());
|
---|
85 | var hyp = new double[] { 0, 0, -1, 1, -4 };
|
---|
86 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern1+Matern1", cov, hyp));
|
---|
87 | }
|
---|
88 | {
|
---|
89 | var cov = new CovarianceSum();
|
---|
90 | var m1 = new CovarianceMaternIso();
|
---|
91 | m1.DParameter.Value = m1.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
92 | var m2 = new CovarianceMaternIso();
|
---|
93 | m2.DParameter.Value = m2.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
94 | cov.Terms.Add(m1);
|
---|
95 | cov.Terms.Add(m2);
|
---|
96 | cov.Terms.Add(new CovarianceNoise());
|
---|
97 | var hyp = new double[] { -2.7, 0, -1, 1, -1.5 };
|
---|
98 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern3+Matern3", cov, hyp));
|
---|
99 | }
|
---|
100 | {
|
---|
101 | var cov = new CovarianceSum();
|
---|
102 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
103 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
104 | cov.Terms.Add(new CovarianceNoise());
|
---|
105 | var hyp = new double[] { -1.5, -0.5, -3, -1, -1, -3 };
|
---|
106 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+SE", cov, hyp));
|
---|
107 | }
|
---|
108 | {
|
---|
109 | var cov = new CovarianceSum();
|
---|
110 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
111 | var prod = new CovarianceProduct();
|
---|
112 | prod.Factors.Add(new CovarianceLinear());
|
---|
113 | prod.Factors.Add(new CovarianceNoise());
|
---|
114 | cov.Terms.Add(prod);
|
---|
115 | cov.Terms.Add(new CovarianceNoise());
|
---|
116 | var hyp = new double[] { -3, 0, 0, -1.5 };
|
---|
117 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Linear*Noise", cov, hyp));
|
---|
118 | }
|
---|
119 | {
|
---|
120 | var cov = new CovarianceSum();
|
---|
121 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
122 | cov.Terms.Add(new CovariancePeriodic());
|
---|
123 | cov.Terms.Add(new CovarianceNoise());
|
---|
124 | var hyp = new double[] { -1, 0, 0, -1.5, 0, -2 };
|
---|
125 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Periodic", cov, hyp));
|
---|
126 | }
|
---|
127 |
|
---|
128 | {
|
---|
129 | var cov = new CovarianceSum();
|
---|
130 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
131 | cov.Terms.Add(new CovarianceNoise());
|
---|
132 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
133 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: SE", cov, hyp));
|
---|
134 | }
|
---|
135 | {
|
---|
136 | var cov = new CovarianceSum();
|
---|
137 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
138 | cov.Terms.Add(new CovarianceNoise());
|
---|
139 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
140 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: SE Noise", cov, hyp));
|
---|
141 | }
|
---|
142 | {
|
---|
143 | var cov = new CovarianceSum();
|
---|
144 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
145 | cov.Terms.Add(new CovarianceNoise());
|
---|
146 | var hyp = new double[] { -2.5, 0, -1, -7 };
|
---|
147 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: RQ Noise", cov, hyp));
|
---|
148 | }
|
---|
149 | {
|
---|
150 | var cov = new CovarianceSum();
|
---|
151 | var t = new CovarianceMaternIso();
|
---|
152 | t.DParameter.Value = t.DParameter.ValidValues.First(x => x.Value == 3);
|
---|
153 | cov.Terms.Add(t);
|
---|
154 | cov.Terms.Add(new CovarianceNoise());
|
---|
155 | var hyp = new double[] { -1.5, 0, -7 };
|
---|
156 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: Matern3 Noise", cov, hyp));
|
---|
157 | }
|
---|
158 | {
|
---|
159 | var cov = new CovarianceSum();
|
---|
160 | var t = new CovariancePeriodic();
|
---|
161 | t.PeriodParameter.Value = new DoubleValue(0.3);
|
---|
162 | cov.Terms.Add(t);
|
---|
163 | cov.Terms.Add(new CovarianceNoise());
|
---|
164 | var hyp = new double[] { 0, 0, -7 };
|
---|
165 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: Periodic Noise", cov, hyp));
|
---|
166 | }
|
---|
167 | {
|
---|
168 | var cov = new CovarianceSum();
|
---|
169 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
170 | cov.Terms.Add(new CovarianceNoise());
|
---|
171 | var hyp = new double[] { -2.5, 0, -2, -7 };
|
---|
172 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: RQ", cov, hyp));
|
---|
173 | }
|
---|
174 | {
|
---|
175 | var cov = new CovarianceSum();
|
---|
176 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
177 | cov.Terms.Add(new CovarianceNoise());
|
---|
178 | var hyp = new double[] { -2, 0, -7 };
|
---|
179 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: Matern1", cov, hyp));
|
---|
180 | }
|
---|
181 | {
|
---|
182 | var cov = new CovarianceSum();
|
---|
183 | cov.Terms.Add(new CovariancePeriodic());
|
---|
184 | cov.Terms.Add(new CovarianceNoise());
|
---|
185 | var hyp = new double[] { 0, -1.3, 0, -7 };
|
---|
186 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: Periodic", cov, hyp));
|
---|
187 | }
|
---|
188 | {
|
---|
189 | var cov = new CovarianceSum();
|
---|
190 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
191 | cov.Terms.Add(new CovarianceNoise());
|
---|
192 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
193 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: SE", cov, hyp));
|
---|
194 | }
|
---|
195 | {
|
---|
196 | var cov = new CovarianceSum();
|
---|
197 | var m1 = new CovarianceMask();
|
---|
198 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
199 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
200 |
|
---|
201 | var m2 = new CovarianceMask();
|
---|
202 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
203 | m2.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso();
|
---|
204 |
|
---|
205 | cov.Terms.Add(m1);
|
---|
206 | cov.Terms.Add(m2);
|
---|
207 | cov.Terms.Add(new CovarianceNoise());
|
---|
208 | var hyp = new double[] { -2.5, 0, -2.0, 0, -2, -7 };
|
---|
209 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+RQ", cov, hyp));
|
---|
210 | }
|
---|
211 | {
|
---|
212 | var cov = new CovarianceSum();
|
---|
213 | var m1 = new CovarianceMask();
|
---|
214 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
215 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
216 |
|
---|
217 | var m2 = new CovarianceMask();
|
---|
218 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
219 | m2.CovarianceFunctionParameter.Value = new CovarianceMaternIso();
|
---|
220 |
|
---|
221 | cov.Terms.Add(m1);
|
---|
222 | cov.Terms.Add(m2);
|
---|
223 | cov.Terms.Add(new CovarianceNoise());
|
---|
224 | var hyp = new double[] { -2.5, 0, 2, 0, -7 };
|
---|
225 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+Matern1", cov, hyp));
|
---|
226 | }
|
---|
227 | {
|
---|
228 | var cov = new CovarianceSum();
|
---|
229 | var m1 = new CovarianceMask();
|
---|
230 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
231 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
232 |
|
---|
233 | var m2 = new CovarianceMask();
|
---|
234 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
235 | m2.CovarianceFunctionParameter.Value = new CovariancePeriodic();
|
---|
236 |
|
---|
237 | cov.Terms.Add(m1);
|
---|
238 | cov.Terms.Add(m2);
|
---|
239 | cov.Terms.Add(new CovarianceNoise());
|
---|
240 | var hyp = new double[] { -2.5, 0, 0, -1.3, 0, -7 };
|
---|
241 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+Periodic", cov, hyp));
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 |
|
---|
246 | return descriptorList;
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|