1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
28 | public class InstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
29 | public override string Name {
|
---|
30 | get { return "GPR Benchmark Problems"; }
|
---|
31 | }
|
---|
32 | public override string Description {
|
---|
33 | get { return ""; }
|
---|
34 | }
|
---|
35 | public override Uri WebLink {
|
---|
36 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/AdditionalMaterial"); }
|
---|
37 | }
|
---|
38 | public override string ReferencePublication {
|
---|
39 | get { return ""; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
43 | List<IDataDescriptor> descriptorList = new List<IDataDescriptor>();
|
---|
44 | descriptorList.Add(new GaussianProcessSEIso());
|
---|
45 | descriptorList.Add(new GaussianProcessSEIso1());
|
---|
46 | descriptorList.Add(new GaussianProcessSEIso2());
|
---|
47 | descriptorList.Add(new GaussianProcessSEIso3());
|
---|
48 | descriptorList.Add(new GaussianProcessSEIso4());
|
---|
49 | descriptorList.Add(new GaussianProcessSEIso5());
|
---|
50 | descriptorList.Add(new GaussianProcessSEIso6());
|
---|
51 | descriptorList.Add(new GaussianProcessPolyTen());
|
---|
52 | descriptorList.Add(new GaussianProcessSEIsoDependentNoise());
|
---|
53 |
|
---|
54 | {
|
---|
55 | var cov = new CovarianceSum();
|
---|
56 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
57 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
58 | cov.Terms.Add(new CovarianceNoise());
|
---|
59 | var hyp = new double[] { -2.8, -0.1, 0.5, 0.3, -1.5 };
|
---|
60 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+SE", cov, hyp));
|
---|
61 | }
|
---|
62 | {
|
---|
63 | var cov = new CovarianceSum();
|
---|
64 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
65 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
66 | cov.Terms.Add(new CovarianceNoise());
|
---|
67 | var hyp = new double[] { -3, 0, 0, -1.5, 0, 2.5, -1.5 };
|
---|
68 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+RQ", cov, hyp));
|
---|
69 | }
|
---|
70 | {
|
---|
71 | var cov = new CovarianceSum();
|
---|
72 | cov.Terms.Add(new CovariancePeriodic());
|
---|
73 | cov.Terms.Add(new CovariancePeriodic());
|
---|
74 | cov.Terms.Add(new CovarianceNoise());
|
---|
75 | var hyp = new double[] { 0, -1.8, -1.5, 0, -0.5, -1, -2.1 };
|
---|
76 | descriptorList.Add(new GaussianProcessRegressionInstance("Periodic+Periodic", cov, hyp));
|
---|
77 | }
|
---|
78 | {
|
---|
79 | var cov = new CovarianceSum();
|
---|
80 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
81 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
82 | cov.Terms.Add(new CovarianceNoise());
|
---|
83 | var hyp = new double[] { 0, 0, -1, 1, -4 };
|
---|
84 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern1+Matern1", cov, hyp));
|
---|
85 | }
|
---|
86 | {
|
---|
87 | var cov = new CovarianceSum();
|
---|
88 | var m1 = new CovarianceMaternIso();
|
---|
89 | m1.DParameter.Value = m1.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
90 | var m2 = new CovarianceMaternIso();
|
---|
91 | m2.DParameter.Value = m2.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
92 | cov.Terms.Add(m1);
|
---|
93 | cov.Terms.Add(m2);
|
---|
94 | cov.Terms.Add(new CovarianceNoise());
|
---|
95 | var hyp = new double[] { -2.7, 0, -1, 1, -1.5 };
|
---|
96 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern3+Matern3", cov, hyp));
|
---|
97 | }
|
---|
98 | {
|
---|
99 | var cov = new CovarianceSum();
|
---|
100 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
101 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
102 | cov.Terms.Add(new CovarianceNoise());
|
---|
103 | var hyp = new double[] { -1.5, -0.5, -3, -1, -1, -3 };
|
---|
104 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+SE", cov, hyp));
|
---|
105 | }
|
---|
106 | {
|
---|
107 | var cov = new CovarianceSum();
|
---|
108 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
109 | var prod = new CovarianceProduct();
|
---|
110 | prod.Factors.Add(new CovarianceLinear());
|
---|
111 | prod.Factors.Add(new CovarianceNoise());
|
---|
112 | cov.Terms.Add(prod);
|
---|
113 | cov.Terms.Add(new CovarianceNoise());
|
---|
114 | var hyp = new double[] { -3, 0, 0, -1.5 };
|
---|
115 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Linear*Noise", cov, hyp));
|
---|
116 | }
|
---|
117 | {
|
---|
118 | var cov = new CovarianceSum();
|
---|
119 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
120 | cov.Terms.Add(new CovariancePeriodic());
|
---|
121 | cov.Terms.Add(new CovarianceNoise());
|
---|
122 | var hyp = new double[] { -1, 0, 0, -1.5, 0, -2 };
|
---|
123 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Periodic", cov, hyp));
|
---|
124 | }
|
---|
125 |
|
---|
126 |
|
---|
127 | return descriptorList;
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|