[8826] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[9124] | 24 | using System.Linq;
|
---|
[9112] | 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[9212] | 26 | using HeuristicLab.Data;
|
---|
[8826] | 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[8873] | 29 | public class InstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
[8826] | 30 | public override string Name {
|
---|
[8873] | 31 | get { return "GPR Benchmark Problems"; }
|
---|
[8826] | 32 | }
|
---|
| 33 | public override string Description {
|
---|
| 34 | get { return ""; }
|
---|
| 35 | }
|
---|
| 36 | public override Uri WebLink {
|
---|
| 37 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/AdditionalMaterial"); }
|
---|
| 38 | }
|
---|
| 39 | public override string ReferencePublication {
|
---|
| 40 | get { return ""; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
| 44 | List<IDataDescriptor> descriptorList = new List<IDataDescriptor>();
|
---|
[8879] | 45 | descriptorList.Add(new GaussianProcessSEIso());
|
---|
| 46 | descriptorList.Add(new GaussianProcessSEIso1());
|
---|
| 47 | descriptorList.Add(new GaussianProcessSEIso2());
|
---|
| 48 | descriptorList.Add(new GaussianProcessSEIso3());
|
---|
| 49 | descriptorList.Add(new GaussianProcessSEIso4());
|
---|
| 50 | descriptorList.Add(new GaussianProcessSEIso5());
|
---|
| 51 | descriptorList.Add(new GaussianProcessSEIso6());
|
---|
[8826] | 52 | descriptorList.Add(new GaussianProcessPolyTen());
|
---|
| 53 | descriptorList.Add(new GaussianProcessSEIsoDependentNoise());
|
---|
[9214] | 54 | descriptorList.Add(new GaussianProcess2dPeriodic());
|
---|
[9112] | 55 |
|
---|
[9124] | 56 | {
|
---|
| 57 | var cov = new CovarianceSum();
|
---|
| 58 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 59 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 60 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 61 | var hyp = new double[] { -2.8, -0.1, 0.5, 0.3, -1.5 };
|
---|
| 62 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+SE", cov, hyp));
|
---|
[9112] | 63 | }
|
---|
[9124] | 64 | {
|
---|
| 65 | var cov = new CovarianceSum();
|
---|
| 66 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
| 67 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
| 68 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 69 | var hyp = new double[] { -3, 0, 0, -1.5, 0, 2.5, -1.5 };
|
---|
| 70 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+RQ", cov, hyp));
|
---|
| 71 | }
|
---|
| 72 | {
|
---|
| 73 | var cov = new CovarianceSum();
|
---|
| 74 | cov.Terms.Add(new CovariancePeriodic());
|
---|
| 75 | cov.Terms.Add(new CovariancePeriodic());
|
---|
| 76 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 77 | var hyp = new double[] { 0, -1.8, -1.5, 0, -0.5, -1, -2.1 };
|
---|
| 78 | descriptorList.Add(new GaussianProcessRegressionInstance("Periodic+Periodic", cov, hyp));
|
---|
| 79 | }
|
---|
| 80 | {
|
---|
| 81 | var cov = new CovarianceSum();
|
---|
| 82 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
| 83 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
| 84 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 85 | var hyp = new double[] { 0, 0, -1, 1, -4 };
|
---|
| 86 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern1+Matern1", cov, hyp));
|
---|
| 87 | }
|
---|
| 88 | {
|
---|
| 89 | var cov = new CovarianceSum();
|
---|
| 90 | var m1 = new CovarianceMaternIso();
|
---|
| 91 | m1.DParameter.Value = m1.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
| 92 | var m2 = new CovarianceMaternIso();
|
---|
| 93 | m2.DParameter.Value = m2.DParameter.ValidValues.First(v => v.Value == 3);
|
---|
| 94 | cov.Terms.Add(m1);
|
---|
| 95 | cov.Terms.Add(m2);
|
---|
| 96 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 97 | var hyp = new double[] { -2.7, 0, -1, 1, -1.5 };
|
---|
| 98 | descriptorList.Add(new GaussianProcessRegressionInstance("Matern3+Matern3", cov, hyp));
|
---|
| 99 | }
|
---|
| 100 | {
|
---|
| 101 | var cov = new CovarianceSum();
|
---|
| 102 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
| 103 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 104 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 105 | var hyp = new double[] { -1.5, -0.5, -3, -1, -1, -3 };
|
---|
| 106 | descriptorList.Add(new GaussianProcessRegressionInstance("RQ+SE", cov, hyp));
|
---|
| 107 | }
|
---|
| 108 | {
|
---|
| 109 | var cov = new CovarianceSum();
|
---|
| 110 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 111 | var prod = new CovarianceProduct();
|
---|
| 112 | prod.Factors.Add(new CovarianceLinear());
|
---|
| 113 | prod.Factors.Add(new CovarianceNoise());
|
---|
| 114 | cov.Terms.Add(prod);
|
---|
| 115 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 116 | var hyp = new double[] { -3, 0, 0, -1.5 };
|
---|
| 117 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Linear*Noise", cov, hyp));
|
---|
| 118 | }
|
---|
| 119 | {
|
---|
| 120 | var cov = new CovarianceSum();
|
---|
| 121 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 122 | cov.Terms.Add(new CovariancePeriodic());
|
---|
| 123 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 124 | var hyp = new double[] { -1, 0, 0, -1.5, 0, -2 };
|
---|
| 125 | descriptorList.Add(new GaussianProcessRegressionInstance("SE+Periodic", cov, hyp));
|
---|
| 126 | }
|
---|
[9112] | 127 |
|
---|
[9212] | 128 | {
|
---|
| 129 | var cov = new CovarianceSum();
|
---|
| 130 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 131 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 132 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
| 133 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: SE", cov, hyp));
|
---|
| 134 | }
|
---|
| 135 | {
|
---|
| 136 | var cov = new CovarianceSum();
|
---|
[9338] | 137 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 138 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 139 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
| 140 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: SE Noise", cov, hyp));
|
---|
| 141 | }
|
---|
| 142 | {
|
---|
| 143 | var cov = new CovarianceSum();
|
---|
[9212] | 144 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
| 145 | cov.Terms.Add(new CovarianceNoise());
|
---|
[9338] | 146 | var hyp = new double[] { -2.5, 0, -1, -7 };
|
---|
| 147 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: RQ Noise", cov, hyp));
|
---|
| 148 | }
|
---|
| 149 | {
|
---|
| 150 | var cov = new CovarianceSum();
|
---|
| 151 | var t = new CovarianceMaternIso();
|
---|
| 152 | t.DParameter.Value = t.DParameter.ValidValues.First(x => x.Value == 3);
|
---|
| 153 | cov.Terms.Add(t);
|
---|
| 154 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 155 | var hyp = new double[] { -1.5, 0, -7 };
|
---|
| 156 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: Matern3 Noise", cov, hyp));
|
---|
| 157 | }
|
---|
| 158 | {
|
---|
| 159 | var cov = new CovarianceSum();
|
---|
| 160 | var t = new CovariancePeriodic();
|
---|
| 161 | t.PeriodParameter.Value = new DoubleValue(0.3);
|
---|
| 162 | cov.Terms.Add(t);
|
---|
| 163 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 164 | var hyp = new double[] { 0, 0, -7 };
|
---|
| 165 | descriptorList.Add(new GaussianProcessRegressionDemo("1D: Periodic Noise", cov, hyp));
|
---|
| 166 | }
|
---|
| 167 | {
|
---|
| 168 | var cov = new CovarianceSum();
|
---|
| 169 | cov.Terms.Add(new CovarianceRationalQuadraticIso());
|
---|
| 170 | cov.Terms.Add(new CovarianceNoise());
|
---|
[9212] | 171 | var hyp = new double[] { -2.5, 0, -2, -7 };
|
---|
| 172 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: RQ", cov, hyp));
|
---|
| 173 | }
|
---|
| 174 | {
|
---|
| 175 | var cov = new CovarianceSum();
|
---|
| 176 | cov.Terms.Add(new CovarianceMaternIso());
|
---|
| 177 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 178 | var hyp = new double[] { -2, 0, -7 };
|
---|
| 179 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: Matern1", cov, hyp));
|
---|
| 180 | }
|
---|
| 181 | {
|
---|
| 182 | var cov = new CovarianceSum();
|
---|
| 183 | cov.Terms.Add(new CovariancePeriodic());
|
---|
| 184 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 185 | var hyp = new double[] { 0, -1.3, 0, -7 };
|
---|
| 186 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: Periodic", cov, hyp));
|
---|
| 187 | }
|
---|
| 188 | {
|
---|
| 189 | var cov = new CovarianceSum();
|
---|
| 190 | cov.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 191 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 192 | var hyp = new double[] { -2.5, 0, -7 };
|
---|
| 193 | descriptorList.Add(new GaussianProcessRegressionInstance1D("1D: SE", cov, hyp));
|
---|
| 194 | }
|
---|
| 195 | {
|
---|
| 196 | var cov = new CovarianceSum();
|
---|
| 197 | var m1 = new CovarianceMask();
|
---|
| 198 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 199 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
[9124] | 200 |
|
---|
[9212] | 201 | var m2 = new CovarianceMask();
|
---|
| 202 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
| 203 | m2.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso();
|
---|
| 204 |
|
---|
| 205 | cov.Terms.Add(m1);
|
---|
| 206 | cov.Terms.Add(m2);
|
---|
| 207 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 208 | var hyp = new double[] { -2.5, 0, -2.0, 0, -2, -7 };
|
---|
| 209 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+RQ", cov, hyp));
|
---|
| 210 | }
|
---|
| 211 | {
|
---|
| 212 | var cov = new CovarianceSum();
|
---|
| 213 | var m1 = new CovarianceMask();
|
---|
| 214 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 215 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
| 216 |
|
---|
| 217 | var m2 = new CovarianceMask();
|
---|
| 218 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
| 219 | m2.CovarianceFunctionParameter.Value = new CovarianceMaternIso();
|
---|
| 220 |
|
---|
| 221 | cov.Terms.Add(m1);
|
---|
| 222 | cov.Terms.Add(m2);
|
---|
| 223 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 224 | var hyp = new double[] { -2.5, 0, 2, 0, -7 };
|
---|
| 225 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+Matern1", cov, hyp));
|
---|
| 226 | }
|
---|
| 227 | {
|
---|
| 228 | var cov = new CovarianceSum();
|
---|
| 229 | var m1 = new CovarianceMask();
|
---|
| 230 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 231 | m1.CovarianceFunctionParameter.Value = new CovarianceSquaredExponentialIso();
|
---|
| 232 |
|
---|
| 233 | var m2 = new CovarianceMask();
|
---|
| 234 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
| 235 | m2.CovarianceFunctionParameter.Value = new CovariancePeriodic();
|
---|
| 236 |
|
---|
| 237 | cov.Terms.Add(m1);
|
---|
| 238 | cov.Terms.Add(m2);
|
---|
| 239 | cov.Terms.Add(new CovarianceNoise());
|
---|
| 240 | var hyp = new double[] { -2.5, 0, 0, -1.3, 0, -7 };
|
---|
| 241 | descriptorList.Add(new GaussianProcessRegressionInstance2D("2D: SE+Periodic", cov, hyp));
|
---|
| 242 | }
|
---|
| 243 |
|
---|
| 244 |
|
---|
| 245 |
|
---|
[8826] | 246 | return descriptorList;
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 |
|
---|