1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
30 | public class Util {
|
---|
31 |
|
---|
32 |
|
---|
33 | public static List<double> SampleGaussianProcess(IRandom random, ParameterizedCovarianceFunction covFunction, List<List<double>> data) {
|
---|
34 | int n = data[0].Count;
|
---|
35 |
|
---|
36 | var normalRand = new NormalDistributedRandom(random, 0, 1);
|
---|
37 | var alpha = (from i in Enumerable.Range(0, n)
|
---|
38 | select normalRand.NextDouble()).ToArray();
|
---|
39 | return SampleGaussianProcess(random, covFunction, data, alpha);
|
---|
40 | }
|
---|
41 |
|
---|
42 | public static List<double> SampleGaussianProcess(IRandom random, ParameterizedCovarianceFunction covFunction, List<List<double>> data, double[] alpha) {
|
---|
43 | if (alpha.Length != data[0].Count) throw new ArgumentException();
|
---|
44 |
|
---|
45 | double[,] x = new double[data[0].Count, data.Count];
|
---|
46 | for (int i = 0; i < x.GetLength(0); i++)
|
---|
47 | for (int j = 0; j < x.GetLength(1); j++)
|
---|
48 | x[i, j] = data[j][i];
|
---|
49 | double[,] K = new double[x.GetLength(0), x.GetLength(0)];
|
---|
50 | for (int i = 0; i < K.GetLength(0); i++)
|
---|
51 | for (int j = i; j < K.GetLength(1); j++)
|
---|
52 | K[i, j] = covFunction.Covariance(x, i, j);
|
---|
53 |
|
---|
54 | // if (!alglib.spdmatrixcholesky(ref K, K.GetLength(0), true)) throw new ArgumentException();
|
---|
55 | K = toeplitz_cholesky_lower(K.GetLength(0), K);
|
---|
56 | List<double> target = new List<double>(K.GetLength(0));
|
---|
57 | for (int i = 0; i < K.GetLength(0); i++) {
|
---|
58 | double s = 0.0;
|
---|
59 | for (int j = K.GetLength(0) - 1; j >= 0; j--) {
|
---|
60 |
|
---|
61 | s += K[j, i] * alpha[j];
|
---|
62 | }
|
---|
63 |
|
---|
64 | target.Add(s);
|
---|
65 | }
|
---|
66 |
|
---|
67 | return target;
|
---|
68 | }
|
---|
69 |
|
---|
70 | //****************************************************************************80
|
---|
71 |
|
---|
72 | public static double[,] toeplitz_cholesky_lower(int n, double[,] a)
|
---|
73 |
|
---|
74 | //****************************************************************************80
|
---|
75 | //
|
---|
76 | // Purpose:
|
---|
77 | //
|
---|
78 | // TOEPLITZ_CHOLESKY_LOWER: lower Cholesky factor of a Toeplitz matrix.
|
---|
79 | //
|
---|
80 | // Discussion:
|
---|
81 | //
|
---|
82 | // The Toeplitz matrix must be positive semi-definite.
|
---|
83 | //
|
---|
84 | // After factorization, A = L * L'.
|
---|
85 | //
|
---|
86 | // Licensing:
|
---|
87 | //
|
---|
88 | // This code is distributed under the GNU LGPL license.
|
---|
89 | //
|
---|
90 | // Modified:
|
---|
91 | //
|
---|
92 | // 13 November 2012
|
---|
93 | // 29 January 2014: adapted to C# by Gabriel Kronberger
|
---|
94 | // Author:
|
---|
95 | //
|
---|
96 | // John Burkardt
|
---|
97 | //
|
---|
98 | // Reference:
|
---|
99 | //
|
---|
100 | // Michael Stewart,
|
---|
101 | // Cholesky factorization of semi-definite Toeplitz matrices.
|
---|
102 | //
|
---|
103 | // Parameters:
|
---|
104 | //
|
---|
105 | // Input, int N, the order of the matrix.
|
---|
106 | //
|
---|
107 | // Input, double A[N,N], the Toeplitz matrix.
|
---|
108 | //
|
---|
109 | // Output, double TOEPLITZ_CHOLESKY_LOWER[N,N], the lower Cholesky factor.
|
---|
110 | //
|
---|
111 | {
|
---|
112 | double div;
|
---|
113 | double[] g;
|
---|
114 | double g1j;
|
---|
115 | double g2j;
|
---|
116 | int i;
|
---|
117 | int j;
|
---|
118 | double[,] l;
|
---|
119 | double rho;
|
---|
120 |
|
---|
121 | l = new double[n, n];
|
---|
122 |
|
---|
123 | for (j = 0; j < n; j++) {
|
---|
124 | for (i = 0; i < n; i++) {
|
---|
125 | l[i, j] = 0.0;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | g = new double[2 * n];
|
---|
129 |
|
---|
130 | for (j = 0; j < n; j++) {
|
---|
131 | g[0 + j * 2] = a[0, j];
|
---|
132 | }
|
---|
133 | g[1 + 0 * 2] = 0.0;
|
---|
134 | for (j = 1; j < n; j++) {
|
---|
135 | g[1 + j * 2] = a[j, 0];
|
---|
136 | }
|
---|
137 |
|
---|
138 | for (i = 0; i < n; i++) {
|
---|
139 | l[i, 0] = g[0 + i * 2];
|
---|
140 | }
|
---|
141 | for (j = n - 1; 1 <= j; j--) {
|
---|
142 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
143 | }
|
---|
144 | g[0 + 0 * 2] = 0.0;
|
---|
145 |
|
---|
146 | for (i = 1; i < n; i++) {
|
---|
147 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
148 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
149 |
|
---|
150 | for (j = i; j < n; j++) {
|
---|
151 | g1j = g[0 + j * 2];
|
---|
152 | g2j = g[1 + j * 2];
|
---|
153 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
154 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
155 | }
|
---|
156 |
|
---|
157 | for (j = i; j < n; j++) {
|
---|
158 | l[j, i] = g[0 + j * 2];
|
---|
159 | }
|
---|
160 | for (j = n - 1; i < j; j--) {
|
---|
161 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
162 | }
|
---|
163 | g[0 + i * 2] = 0.0;
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | return l;
|
---|
168 | }
|
---|
169 | //****************************************************************************80
|
---|
170 |
|
---|
171 | public static double[,] toeplitz_cholesky_upper(int n, double[,] a)
|
---|
172 |
|
---|
173 | //****************************************************************************80
|
---|
174 | //
|
---|
175 | // Purpose:
|
---|
176 | //
|
---|
177 | // TOEPLITZ_CHOLESKY_UPPER: upper Cholesky factor of a Toeplitz matrix.
|
---|
178 | //
|
---|
179 | // Discussion:
|
---|
180 | //
|
---|
181 | // The Toeplitz matrix must be positive semi-definite.
|
---|
182 | //
|
---|
183 | // After factorization, A = R' * R.
|
---|
184 | //
|
---|
185 | // Licensing:
|
---|
186 | //
|
---|
187 | // This code is distributed under the GNU LGPL license.
|
---|
188 | //
|
---|
189 | // Modified:
|
---|
190 | //
|
---|
191 | // 14 November 2012
|
---|
192 | // 29 January 2014: adapted to C# by Gabriel Kronberger
|
---|
193 | //
|
---|
194 | // Author:
|
---|
195 | //
|
---|
196 | // John Burkardt
|
---|
197 | //
|
---|
198 | // Reference:
|
---|
199 | //
|
---|
200 | // Michael Stewart,
|
---|
201 | // Cholesky factorization of semi-definite Toeplitz matrices.
|
---|
202 | //
|
---|
203 | // Parameters:
|
---|
204 | //
|
---|
205 | // Input, int N, the order of the matrix.
|
---|
206 | //
|
---|
207 | // Input, double A[N,N], the Toeplitz matrix.
|
---|
208 | //
|
---|
209 | // Output, double TOEPLITZ_CHOLESKY_UPPER[N,N], the upper Cholesky factor.
|
---|
210 | //
|
---|
211 | {
|
---|
212 | double div;
|
---|
213 | double[] g;
|
---|
214 | double g1j;
|
---|
215 | double g2j;
|
---|
216 | int i;
|
---|
217 | int j;
|
---|
218 | double[,] r;
|
---|
219 | double rho;
|
---|
220 |
|
---|
221 | r = new double[n, n];
|
---|
222 |
|
---|
223 | for (j = 0; j < n; j++) {
|
---|
224 | for (i = 0; i < n; i++) {
|
---|
225 | r[i, j] = 0.0;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | g = new double[2 * n];
|
---|
229 |
|
---|
230 | for (j = 0; j < n; j++) {
|
---|
231 | g[0 + j * 2] = a[0, j];
|
---|
232 | }
|
---|
233 |
|
---|
234 | g[1 + 0 * 2] = 0.0;
|
---|
235 | for (j = 1; j < n; j++) {
|
---|
236 | g[1 + j * 2] = a[j, 0];
|
---|
237 | }
|
---|
238 | for (j = 0; j < n; j++) {
|
---|
239 | r[0, j] = g[0 + j * 2];
|
---|
240 | }
|
---|
241 | for (j = n - 1; 1 <= j; j--) {
|
---|
242 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
243 | }
|
---|
244 | g[0 + 0 * 2] = 0.0;
|
---|
245 |
|
---|
246 | for (i = 1; i < n; i++) {
|
---|
247 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
248 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
249 | for (j = i; j < n; j++) {
|
---|
250 | g1j = g[0 + j * 2];
|
---|
251 | g2j = g[1 + j * 2];
|
---|
252 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
253 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
254 | }
|
---|
255 | for (j = i; j < n; j++) {
|
---|
256 | r[i, j] = g[0 + j * 2];
|
---|
257 | }
|
---|
258 | for (j = n - 1; i < j; j--) {
|
---|
259 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
260 | }
|
---|
261 | g[0 + i * 2] = 0.0;
|
---|
262 | }
|
---|
263 |
|
---|
264 | return r;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | }
|
---|