[8826] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 30 | public class Util {
|
---|
| 31 |
|
---|
| 32 |
|
---|
[9099] | 33 | public static List<double> SampleGaussianProcess(IRandom random, ParameterizedCovarianceFunction covFunction, List<List<double>> data) {
|
---|
[9124] | 34 | int n = data[0].Count;
|
---|
[8826] | 35 |
|
---|
[9124] | 36 | var normalRand = new NormalDistributedRandom(random, 0, 1);
|
---|
| 37 | var alpha = (from i in Enumerable.Range(0, n)
|
---|
| 38 | select normalRand.NextDouble()).ToArray();
|
---|
| 39 | return SampleGaussianProcess(random, covFunction, data, alpha);
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public static List<double> SampleGaussianProcess(IRandom random, ParameterizedCovarianceFunction covFunction, List<List<double>> data, double[] alpha) {
|
---|
| 43 | if (alpha.Length != data[0].Count) throw new ArgumentException();
|
---|
| 44 |
|
---|
[8873] | 45 | double[,] x = new double[data[0].Count, data.Count];
|
---|
[8826] | 46 | for (int i = 0; i < x.GetLength(0); i++)
|
---|
| 47 | for (int j = 0; j < x.GetLength(1); j++)
|
---|
| 48 | x[i, j] = data[j][i];
|
---|
| 49 | double[,] K = new double[x.GetLength(0), x.GetLength(0)];
|
---|
| 50 | for (int i = 0; i < K.GetLength(0); i++)
|
---|
| 51 | for (int j = i; j < K.GetLength(1); j++)
|
---|
[9099] | 52 | K[i, j] = covFunction.Covariance(x, i, j);
|
---|
[8826] | 53 |
|
---|
[10422] | 54 | // if (!alglib.spdmatrixcholesky(ref K, K.GetLength(0), true)) throw new ArgumentException();
|
---|
| 55 | K = toeplitz_cholesky_lower(K.GetLength(0), K);
|
---|
[8826] | 56 | List<double> target = new List<double>(K.GetLength(0));
|
---|
| 57 | for (int i = 0; i < K.GetLength(0); i++) {
|
---|
| 58 | double s = 0.0;
|
---|
| 59 | for (int j = K.GetLength(0) - 1; j >= 0; j--) {
|
---|
| 60 |
|
---|
[9124] | 61 | s += K[j, i] * alpha[j];
|
---|
[8826] | 62 | }
|
---|
| 63 |
|
---|
| 64 | target.Add(s);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | return target;
|
---|
| 68 | }
|
---|
[10422] | 69 |
|
---|
| 70 | //****************************************************************************80
|
---|
| 71 |
|
---|
| 72 | public static double[,] toeplitz_cholesky_lower(int n, double[,] a)
|
---|
| 73 |
|
---|
| 74 | //****************************************************************************80
|
---|
| 75 | //
|
---|
| 76 | // Purpose:
|
---|
| 77 | //
|
---|
| 78 | // TOEPLITZ_CHOLESKY_LOWER: lower Cholesky factor of a Toeplitz matrix.
|
---|
| 79 | //
|
---|
| 80 | // Discussion:
|
---|
| 81 | //
|
---|
| 82 | // The Toeplitz matrix must be positive semi-definite.
|
---|
| 83 | //
|
---|
| 84 | // After factorization, A = L * L'.
|
---|
| 85 | //
|
---|
| 86 | // Licensing:
|
---|
| 87 | //
|
---|
| 88 | // This code is distributed under the GNU LGPL license.
|
---|
| 89 | //
|
---|
| 90 | // Modified:
|
---|
| 91 | //
|
---|
| 92 | // 13 November 2012
|
---|
| 93 | // 29 January 2014: adapted to C# by Gabriel Kronberger
|
---|
| 94 | // Author:
|
---|
| 95 | //
|
---|
| 96 | // John Burkardt
|
---|
| 97 | //
|
---|
| 98 | // Reference:
|
---|
| 99 | //
|
---|
| 100 | // Michael Stewart,
|
---|
| 101 | // Cholesky factorization of semi-definite Toeplitz matrices.
|
---|
| 102 | //
|
---|
| 103 | // Parameters:
|
---|
| 104 | //
|
---|
| 105 | // Input, int N, the order of the matrix.
|
---|
| 106 | //
|
---|
| 107 | // Input, double A[N,N], the Toeplitz matrix.
|
---|
| 108 | //
|
---|
| 109 | // Output, double TOEPLITZ_CHOLESKY_LOWER[N,N], the lower Cholesky factor.
|
---|
| 110 | //
|
---|
| 111 | {
|
---|
| 112 | double div;
|
---|
| 113 | double[] g;
|
---|
| 114 | double g1j;
|
---|
| 115 | double g2j;
|
---|
| 116 | int i;
|
---|
| 117 | int j;
|
---|
| 118 | double[,] l;
|
---|
| 119 | double rho;
|
---|
| 120 |
|
---|
| 121 | l = new double[n, n];
|
---|
| 122 |
|
---|
| 123 | for (j = 0; j < n; j++) {
|
---|
| 124 | for (i = 0; i < n; i++) {
|
---|
| 125 | l[i, j] = 0.0;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | g = new double[2 * n];
|
---|
| 129 |
|
---|
| 130 | for (j = 0; j < n; j++) {
|
---|
| 131 | g[0 + j * 2] = a[0, j];
|
---|
| 132 | }
|
---|
| 133 | g[1 + 0 * 2] = 0.0;
|
---|
| 134 | for (j = 1; j < n; j++) {
|
---|
| 135 | g[1 + j * 2] = a[j, 0];
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | for (i = 0; i < n; i++) {
|
---|
| 139 | l[i, 0] = g[0 + i * 2];
|
---|
| 140 | }
|
---|
| 141 | for (j = n - 1; 1 <= j; j--) {
|
---|
| 142 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 143 | }
|
---|
| 144 | g[0 + 0 * 2] = 0.0;
|
---|
| 145 |
|
---|
| 146 | for (i = 1; i < n; i++) {
|
---|
| 147 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
| 148 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
| 149 |
|
---|
| 150 | for (j = i; j < n; j++) {
|
---|
| 151 | g1j = g[0 + j * 2];
|
---|
| 152 | g2j = g[1 + j * 2];
|
---|
| 153 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
| 154 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | for (j = i; j < n; j++) {
|
---|
| 158 | l[j, i] = g[0 + j * 2];
|
---|
| 159 | }
|
---|
| 160 | for (j = n - 1; i < j; j--) {
|
---|
| 161 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 162 | }
|
---|
| 163 | g[0 + i * 2] = 0.0;
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 |
|
---|
| 167 | return l;
|
---|
| 168 | }
|
---|
| 169 | //****************************************************************************80
|
---|
| 170 |
|
---|
| 171 | public static double[,] toeplitz_cholesky_upper(int n, double[,] a)
|
---|
| 172 |
|
---|
| 173 | //****************************************************************************80
|
---|
| 174 | //
|
---|
| 175 | // Purpose:
|
---|
| 176 | //
|
---|
| 177 | // TOEPLITZ_CHOLESKY_UPPER: upper Cholesky factor of a Toeplitz matrix.
|
---|
| 178 | //
|
---|
| 179 | // Discussion:
|
---|
| 180 | //
|
---|
| 181 | // The Toeplitz matrix must be positive semi-definite.
|
---|
| 182 | //
|
---|
| 183 | // After factorization, A = R' * R.
|
---|
| 184 | //
|
---|
| 185 | // Licensing:
|
---|
| 186 | //
|
---|
| 187 | // This code is distributed under the GNU LGPL license.
|
---|
| 188 | //
|
---|
| 189 | // Modified:
|
---|
| 190 | //
|
---|
| 191 | // 14 November 2012
|
---|
| 192 | // 29 January 2014: adapted to C# by Gabriel Kronberger
|
---|
| 193 | //
|
---|
| 194 | // Author:
|
---|
| 195 | //
|
---|
| 196 | // John Burkardt
|
---|
| 197 | //
|
---|
| 198 | // Reference:
|
---|
| 199 | //
|
---|
| 200 | // Michael Stewart,
|
---|
| 201 | // Cholesky factorization of semi-definite Toeplitz matrices.
|
---|
| 202 | //
|
---|
| 203 | // Parameters:
|
---|
| 204 | //
|
---|
| 205 | // Input, int N, the order of the matrix.
|
---|
| 206 | //
|
---|
| 207 | // Input, double A[N,N], the Toeplitz matrix.
|
---|
| 208 | //
|
---|
| 209 | // Output, double TOEPLITZ_CHOLESKY_UPPER[N,N], the upper Cholesky factor.
|
---|
| 210 | //
|
---|
| 211 | {
|
---|
| 212 | double div;
|
---|
| 213 | double[] g;
|
---|
| 214 | double g1j;
|
---|
| 215 | double g2j;
|
---|
| 216 | int i;
|
---|
| 217 | int j;
|
---|
| 218 | double[,] r;
|
---|
| 219 | double rho;
|
---|
| 220 |
|
---|
| 221 | r = new double[n, n];
|
---|
| 222 |
|
---|
| 223 | for (j = 0; j < n; j++) {
|
---|
| 224 | for (i = 0; i < n; i++) {
|
---|
| 225 | r[i, j] = 0.0;
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | g = new double[2 * n];
|
---|
| 229 |
|
---|
| 230 | for (j = 0; j < n; j++) {
|
---|
| 231 | g[0 + j * 2] = a[0, j];
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | g[1 + 0 * 2] = 0.0;
|
---|
| 235 | for (j = 1; j < n; j++) {
|
---|
| 236 | g[1 + j * 2] = a[j, 0];
|
---|
| 237 | }
|
---|
| 238 | for (j = 0; j < n; j++) {
|
---|
| 239 | r[0, j] = g[0 + j * 2];
|
---|
| 240 | }
|
---|
| 241 | for (j = n - 1; 1 <= j; j--) {
|
---|
| 242 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 243 | }
|
---|
| 244 | g[0 + 0 * 2] = 0.0;
|
---|
| 245 |
|
---|
| 246 | for (i = 1; i < n; i++) {
|
---|
| 247 | rho = -g[1 + i * 2] / g[0 + i * 2];
|
---|
| 248 | div = Math.Sqrt((1.0 - rho) * (1.0 + rho));
|
---|
| 249 | for (j = i; j < n; j++) {
|
---|
| 250 | g1j = g[0 + j * 2];
|
---|
| 251 | g2j = g[1 + j * 2];
|
---|
| 252 | g[0 + j * 2] = (g1j + rho * g2j) / div;
|
---|
| 253 | g[1 + j * 2] = (rho * g1j + g2j) / div;
|
---|
| 254 | }
|
---|
| 255 | for (j = i; j < n; j++) {
|
---|
| 256 | r[i, j] = g[0 + j * 2];
|
---|
| 257 | }
|
---|
| 258 | for (j = n - 1; i < j; j--) {
|
---|
| 259 | g[0 + j * 2] = g[0 + (j - 1) * 2];
|
---|
| 260 | }
|
---|
| 261 | g[0 + i * 2] = 0.0;
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | return r;
|
---|
| 265 | }
|
---|
[8826] | 266 | }
|
---|
| 267 | }
|
---|