Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessSEIsoDependentNoise.cs @ 11144

Last change on this file since 11144 was 9622, checked in by gkronber, 11 years ago

#1967: fixed generation of GPR problem instances (sampling from Gaussian processes) to work together with the current trunk version

File size: 3.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Algorithms.DataAnalysis;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class GaussianProcessSEIsoDependentNoise : ArtificialRegressionDataDescriptor {
30
31    public override string Name {
32      get {
33        return "Gaussian Process SE iso with dependent noise";
34      }
35    }
36    public override string Description {
37      get { return ""; }
38    }
39    protected override string TargetVariable { get { return "Y"; } }
40    protected override string[] VariableNames { get { return new string[] { "X1", "Y" }; } }
41    protected override string[] AllowedInputVariables { get { return new string[] { "X1" }; } }
42    protected override int TrainingPartitionStart { get { return 0; } }
43    protected override int TrainingPartitionEnd { get { return 250; } }
44    protected override int TestPartitionStart { get { return 250; } }
45    protected override int TestPartitionEnd { get { return 500; } }
46
47    protected override List<List<double>> GenerateValues() {
48
49      List<List<double>> data = new List<List<double>>();
50      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
51        data.Add(ValueGenerator.GenerateSteps(0, 0.99, 0.01).ToList());
52        data[i].AddRange(ValueGenerator.GenerateSteps(0.005, 1, 0.01).ToList());
53      }
54
55      var covarianceFunction = new CovarianceSum();
56      covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso());
57      var prod = new CovarianceProduct();
58      prod.Factors.Add(new CovarianceLinear());
59      prod.Factors.Add(new CovarianceNoise());
60      covarianceFunction.Terms.Add(prod);
61      covarianceFunction.Terms.Add(new CovarianceNoise());
62      var hyp = new double[]
63        {
64          Math.Log(0.1), Math.Log(Math.Sqrt(1)), // SE iso
65          Math.Log(Math.Sqrt(0.5)), // dependent noise
66          Math.Log(Math.Sqrt(0.01)) // noise
67        };
68      var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, new int[] { 0 });
69
70      var mt = new MersenneTwister(31415);
71      var target = Util.SampleGaussianProcess(mt, cov, data);
72      data.Add(target);
73
74      return data;
75    }
76  }
77}
Note: See TracBrowser for help on using the repository browser.