[8826] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 29 | public class GaussianProcessSEIsoDependentNoise : ArtificialRegressionDataDescriptor {
|
---|
| 30 |
|
---|
| 31 | public override string Name {
|
---|
| 32 | get {
|
---|
| 33 | return "Gaussian Process SE iso with dependent noise";
|
---|
| 34 | }
|
---|
| 35 | }
|
---|
| 36 | public override string Description {
|
---|
| 37 | get { return ""; }
|
---|
| 38 | }
|
---|
| 39 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 40 | protected override string[] VariableNames { get { return new string[] { "X1", "Y" }; } }
|
---|
| 41 | protected override string[] AllowedInputVariables { get { return new string[] { "X1" }; } }
|
---|
| 42 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
[9112] | 43 | protected override int TrainingPartitionEnd { get { return 250; } }
|
---|
| 44 | protected override int TestPartitionStart { get { return 250; } }
|
---|
| 45 | protected override int TestPartitionEnd { get { return 500; } }
|
---|
[8826] | 46 |
|
---|
| 47 | protected override List<List<double>> GenerateValues() {
|
---|
| 48 |
|
---|
| 49 | List<List<double>> data = new List<List<double>>();
|
---|
| 50 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 51 | data.Add(ValueGenerator.GenerateSteps(0, 0.99, 0.01).ToList());
|
---|
| 52 | data[i].AddRange(ValueGenerator.GenerateSteps(0.005, 1, 0.01).ToList());
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | var covarianceFunction = new CovarianceSum();
|
---|
| 56 | covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
| 57 | var prod = new CovarianceProduct();
|
---|
[9112] | 58 | prod.Factors.Add(new CovarianceLinear());
|
---|
[8826] | 59 | prod.Factors.Add(new CovarianceNoise());
|
---|
| 60 | covarianceFunction.Terms.Add(prod);
|
---|
| 61 | covarianceFunction.Terms.Add(new CovarianceNoise());
|
---|
[8873] | 62 | var hyp = new double[]
|
---|
| 63 | {
|
---|
| 64 | Math.Log(0.1), Math.Log(Math.Sqrt(1)), // SE iso
|
---|
[9112] | 65 | Math.Log(Math.Sqrt(0.5)), // dependent noise
|
---|
[8873] | 66 | Math.Log(Math.Sqrt(0.01)) // noise
|
---|
| 67 | };
|
---|
[9112] | 68 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);
|
---|
[8826] | 69 |
|
---|
| 70 | var mt = new MersenneTwister(31415);
|
---|
[9099] | 71 | var target = Util.SampleGaussianProcess(mt, cov, data);
|
---|
[8826] | 72 | data.Add(target);
|
---|
| 73 |
|
---|
| 74 | return data;
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 | }
|
---|