1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
29 | public class GaussianProcessSEIso6 : ArtificialRegressionDataDescriptor {
|
---|
30 |
|
---|
31 | public override string Name {
|
---|
32 | get {
|
---|
33 | return "Gaussian Process SEiso 6";
|
---|
34 | }
|
---|
35 | }
|
---|
36 | public override string Description {
|
---|
37 | get { return ""; }
|
---|
38 | }
|
---|
39 | protected override string TargetVariable { get { return "Y"; } }
|
---|
40 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
|
---|
41 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
|
---|
42 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
43 | protected override int TrainingPartitionEnd { get { return 50; } }
|
---|
44 | protected override int TestPartitionStart { get { return 50; } }
|
---|
45 | protected override int TestPartitionEnd { get { return 100; } }
|
---|
46 |
|
---|
47 | protected override List<List<double>> GenerateValues() {
|
---|
48 | List<List<double>> data = new List<List<double>>();
|
---|
49 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
50 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
|
---|
51 | }
|
---|
52 |
|
---|
53 |
|
---|
54 | var hyp = new double[]
|
---|
55 | {
|
---|
56 | 0.0, 0.0, // SEiso
|
---|
57 | 0.0, 0.0,
|
---|
58 | 0.0, 0.0,
|
---|
59 | 0.0, 0.0,
|
---|
60 | -6.0 // noise
|
---|
61 | };
|
---|
62 |
|
---|
63 |
|
---|
64 | var covFun = new CovarianceSum();
|
---|
65 | var m1 = new CovarianceMask();
|
---|
66 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0, 1 });
|
---|
67 |
|
---|
68 | var m2 = new CovarianceMask();
|
---|
69 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2, 3 });
|
---|
70 |
|
---|
71 | var m3 = new CovarianceMask();
|
---|
72 | m3.SelectedDimensionsParameter.Value = new IntArray(new int[] { 4, 5 });
|
---|
73 |
|
---|
74 | var m4 = new CovarianceMask();
|
---|
75 | m4.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0, 6, 8 });
|
---|
76 |
|
---|
77 | covFun.Terms.Add(m1);
|
---|
78 | covFun.Terms.Add(m2);
|
---|
79 | covFun.Terms.Add(m3);
|
---|
80 | covFun.Terms.Add(m4);
|
---|
81 | covFun.Terms.Add(new CovarianceNoise());
|
---|
82 | covFun.SetParameter(hyp.ToArray());
|
---|
83 |
|
---|
84 | var mt = new MersenneTwister();
|
---|
85 | var target = Util.SampleGaussianProcess(mt, covFun, data);
|
---|
86 | data.Add(target);
|
---|
87 |
|
---|
88 | return data;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|