[8879] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 29 | public class GaussianProcessSEIso6 : ArtificialRegressionDataDescriptor {
|
---|
| 30 |
|
---|
| 31 | public override string Name {
|
---|
| 32 | get {
|
---|
| 33 | return "Gaussian Process SEiso 6";
|
---|
| 34 | }
|
---|
| 35 | }
|
---|
| 36 | public override string Description {
|
---|
| 37 | get { return ""; }
|
---|
| 38 | }
|
---|
| 39 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 40 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
|
---|
| 41 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
|
---|
| 42 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
[9112] | 43 | protected override int TrainingPartitionEnd { get { return 250; } }
|
---|
| 44 | protected override int TestPartitionStart { get { return 250; } }
|
---|
| 45 | protected override int TestPartitionEnd { get { return 500; } }
|
---|
[8879] | 46 |
|
---|
| 47 | protected override List<List<double>> GenerateValues() {
|
---|
| 48 | List<List<double>> data = new List<List<double>>();
|
---|
| 49 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 50 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 |
|
---|
| 54 | var hyp = new double[]
|
---|
| 55 | {
|
---|
| 56 | 0.0, 0.0, // SEiso
|
---|
| 57 | 0.0, 0.0,
|
---|
| 58 | 0.0, 0.0,
|
---|
| 59 | 0.0, 0.0,
|
---|
| 60 | -6.0 // noise
|
---|
| 61 | };
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | var covFun = new CovarianceSum();
|
---|
| 65 | var m1 = new CovarianceMask();
|
---|
| 66 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0, 1 });
|
---|
| 67 |
|
---|
| 68 | var m2 = new CovarianceMask();
|
---|
| 69 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2, 3 });
|
---|
| 70 |
|
---|
| 71 | var m3 = new CovarianceMask();
|
---|
| 72 | m3.SelectedDimensionsParameter.Value = new IntArray(new int[] { 4, 5 });
|
---|
| 73 |
|
---|
| 74 | var m4 = new CovarianceMask();
|
---|
| 75 | m4.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0, 6, 8 });
|
---|
| 76 |
|
---|
| 77 | covFun.Terms.Add(m1);
|
---|
| 78 | covFun.Terms.Add(m2);
|
---|
| 79 | covFun.Terms.Add(m3);
|
---|
| 80 | covFun.Terms.Add(m4);
|
---|
| 81 | covFun.Terms.Add(new CovarianceNoise());
|
---|
[9622] | 82 | var cov = covFun.GetParameterizedCovarianceFunction(hyp, new int[] { 0, 1, 2, 3, 4, 5, 6, 8 });
|
---|
[8879] | 83 |
|
---|
[9099] | 84 |
|
---|
[8879] | 85 | var mt = new MersenneTwister();
|
---|
[9099] | 86 | var target = Util.SampleGaussianProcess(mt, cov, data);
|
---|
[8879] | 87 | data.Add(target);
|
---|
| 88 |
|
---|
| 89 | return data;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | }
|
---|