[9212] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 29 | public class GaussianProcessRegressionInstance1D : ArtificialRegressionDataDescriptor {
|
---|
| 30 |
|
---|
| 31 | private const int STEPS = 100;
|
---|
| 32 | public override string Name {
|
---|
| 33 | get { return "Gaussian Process " + name; }
|
---|
| 34 | }
|
---|
| 35 | public override string Description {
|
---|
| 36 | get { return ""; }
|
---|
| 37 | }
|
---|
| 38 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 39 | protected override string[] VariableNames { get { return new string[] { "X1","Y" }; } }
|
---|
| 40 | protected override string[] AllowedInputVariables { get { return new string[] { "X1"}; } }
|
---|
| 41 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 42 | protected override int TrainingPartitionEnd { get { return (STEPS+1); } }
|
---|
| 43 | protected override int TestPartitionStart { get { return TrainingPartitionEnd; } }
|
---|
| 44 | protected override int TestPartitionEnd { get { return 2 * (STEPS + 1); } }
|
---|
| 45 |
|
---|
| 46 | private ParameterizedCovarianceFunction cov;
|
---|
| 47 | private string name;
|
---|
| 48 |
|
---|
| 49 | public GaussianProcessRegressionInstance1D(string name, ICovarianceFunction covarianceFunction, double[] hyp) {
|
---|
| 50 | this.name = name;
|
---|
| 51 | cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | protected override List<List<double>> GenerateValues() {
|
---|
| 55 | List<List<double>> trainingData = new List<List<double>>() {
|
---|
| 56 | ValueGenerator.GenerateSteps(0, 1, 1.0 / STEPS).ToList(),
|
---|
| 57 | };
|
---|
| 58 |
|
---|
| 59 | List<List<double>> testData = new List<List<double>>() {
|
---|
| 60 | ValueGenerator.GenerateSteps(-0.1, 1.1, 1.2 / STEPS).ToList(),
|
---|
| 61 | };
|
---|
| 62 |
|
---|
| 63 | var trainingComb = ValueGenerator.GenerateAllCombinationsOfValuesInLists(trainingData).ToList<IEnumerable<double>>();
|
---|
| 64 | var testComb = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
| 65 |
|
---|
| 66 | List<List<double>> data = new List<List<double>>();
|
---|
| 67 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 68 | data.Add(trainingComb[i].ToList());
|
---|
| 69 | data[i].AddRange(testComb[i]);
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | var mt = new MersenneTwister();
|
---|
| 73 |
|
---|
| 74 | var target = Util.SampleGaussianProcess(mt, cov, data);
|
---|
| 75 | data.Add(target);
|
---|
| 76 |
|
---|
| 77 | return data;
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | }
|
---|