Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessRegressionInstance.cs @ 9122

Last change on this file since 9122 was 9112, checked in by gkronber, 12 years ago

#1967: worked on tuned GP model and benchmark instances

File size: 3.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Algorithms.DataAnalysis;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class GaussianProcessRegressionInstance : ArtificialRegressionDataDescriptor {
30
31    public override string Name {
32      get { return "Gaussian Process " + covarianceFunction.ItemName; }
33    }
34    public override string Description {
35      get { return ""; }
36    }
37    protected override string TargetVariable { get { return "Y"; } }
38    protected override string[] VariableNames { get { return new string[] { "X1", "X2", "Y" }; } }
39    protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
40    protected override int TrainingPartitionStart { get { return 0; } }
41    protected override int TrainingPartitionEnd { get { return 100; } }
42    protected override int TestPartitionStart { get { return 100; } }
43    protected override int TestPartitionEnd { get { return 200; } }
44
45    private ICovarianceFunction covarianceFunction;
46
47    public GaussianProcessRegressionInstance(ICovarianceFunction covarianceFunction) {
48      this.covarianceFunction = covarianceFunction;
49    }
50
51    protected override List<List<double>> GenerateValues() {
52
53      List<List<double>> data = new List<List<double>>();
54      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
55        data.Add(ValueGenerator.GenerateSteps(0, 0.99, 0.01).ToList());
56        data[i].AddRange(ValueGenerator.GenerateSteps(0.005, 1, 0.01).ToList());
57      }
58      var mt = new MersenneTwister();
59
60      var noise = new CovarianceNoise();
61      noise.SetParameter(new double[] { Math.Log(Math.Sqrt(0.01)) });
62      var t = new CovarianceSum();
63      t.Terms.Add(covarianceFunction);
64      t.Terms.Add(noise);
65
66      var p = Enumerable.Range(0, t.GetNumberOfParameters(data.Count)).Select(i => mt.NextDouble() - 1).ToArray();
67
68      var cov = t.GetParameterizedCovarianceFunction(p, null);
69
70      var target = Util.SampleGaussianProcess(mt, cov, data);
71      data.Add(target);
72
73      return data;
74    }
75  }
76}
Note: See TracBrowser for help on using the repository browser.