Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Problems.Instances.DataAnalysis.GaussianProcessRegression/GaussianProcessPolyTen.cs @ 9310

Last change on this file since 9310 was 9112, checked in by gkronber, 12 years ago

#1967: worked on tuned GP model and benchmark instances

File size: 5.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Algorithms.DataAnalysis;
25using HeuristicLab.Data;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class GaussianProcessPolyTen : ArtificialRegressionDataDescriptor {
30
31    public override string Name {
32      get {
33        return "Gaussian Process Poly-10 y = GP(0, CovSEIso(X1)*CovSEIso(X2) + " +
34               "CovSEIso(X3)*CovSEIso(X4) + CovSEIso(X5)*CovSEIso(X6) + CovSEIso(X1)*CovSEIso(X7)*CovSEIso(X9) + CovSEIso(X3)*CovSEIso(X6)*CovSEIso(X10)";
35      }
36    }
37    public override string Description {
38      get { return ""; }
39    }
40    protected override string TargetVariable { get { return "Y"; } }
41    protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
42    protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
43    protected override int TrainingPartitionStart { get { return 0; } }
44    protected override int TrainingPartitionEnd { get { return 500; } }
45    protected override int TestPartitionStart { get { return 500; } }
46    protected override int TestPartitionEnd { get { return 1000; } }
47
48    protected override List<List<double>> GenerateValues() {
49      var mt = new MersenneTwister(31415);
50
51      List<List<double>> data = new List<List<double>>();
52      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
53        data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
54      }
55
56
57      var hyp = new double[]
58        {
59          0.0, 0.0,
60          0.0, 0.0,
61          0.0, 0.0,
62          0.0, 0.0,
63          0.0, 0.0,
64          0.0, 0.0,
65          0.0, 0.0,
66          0.0, 0.0,
67          0.0, 0.0,
68          0.0, 0.0,
69          0.0, 0.0,
70          0.0, 0.0,
71          0.0, 0.0,
72          0.0, 0.0,
73          0.0, 0.0,
74          -5.0 // noise
75        };
76       
77
78      var covarianceFunction = new CovarianceSum();
79      var t1 = new CovarianceProduct();
80      var m1 = new CovarianceMask();
81      m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
82      var m2 = new CovarianceMask();
83      m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
84      t1.Factors.Add(m1);
85      t1.Factors.Add(m2);
86
87      var t2 = new CovarianceProduct();
88      var m3 = new CovarianceMask();
89      m3.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
90      var m4 = new CovarianceMask();
91      m4.SelectedDimensionsParameter.Value = new IntArray(new int[] { 3 });
92      t2.Factors.Add(m3);
93      t2.Factors.Add(m4);
94
95      var t3 = new CovarianceProduct();
96      var m5 = new CovarianceMask();
97      m5.SelectedDimensionsParameter.Value = new IntArray(new int[] { 4 });
98      var m6 = new CovarianceMask();
99      m6.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
100      t3.Factors.Add(m5);
101      t3.Factors.Add(m6);
102
103      var t4 = new CovarianceProduct();
104      var m1_ = new CovarianceMask();
105      m1_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
106      var m7 = new CovarianceMask();
107      m7.SelectedDimensionsParameter.Value = new IntArray(new int[] { 6 });
108      var m9 = new CovarianceMask();
109      m9.SelectedDimensionsParameter.Value = new IntArray(new int[] { 8 });
110      t4.Factors.Add(m1_);
111      t4.Factors.Add(m7);
112      t4.Factors.Add(m9);
113
114      var t5 = new CovarianceProduct();
115      var m3_ = new CovarianceMask();
116      m3_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
117      var m6_ = new CovarianceMask();
118      m6_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
119      var m10 = new CovarianceMask();
120      m10.SelectedDimensionsParameter.Value = new IntArray(new int[] { 9 });
121      t5.Factors.Add(m3);
122      t5.Factors.Add(m6_);
123      t5.Factors.Add(m10);
124
125      covarianceFunction.Terms.Add(t1);
126      covarianceFunction.Terms.Add(t2);
127      covarianceFunction.Terms.Add(t3);
128      covarianceFunction.Terms.Add(t4);
129      covarianceFunction.Terms.Add(t5);
130
131      var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, null);
132
133
134      var target = Util.SampleGaussianProcess(mt, cov, data);
135      data.Add(target);
136
137      return data;
138    }
139  }
140}
Note: See TracBrowser for help on using the repository browser.