1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using System.Threading;
|
---|
4 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
5 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
7 | using HeuristicLab.Random;
|
---|
8 | using HeuristicLabEigen;
|
---|
9 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
10 |
|
---|
11 | namespace HeuristicLab.Problems.GaussianProcessTuning.Tests {
|
---|
12 | [TestClass]
|
---|
13 | public class UnitTest {
|
---|
14 | [TestMethod]
|
---|
15 | public void TestGrammar() {
|
---|
16 | var g = new Grammar();
|
---|
17 | var r = new MersenneTwister();
|
---|
18 | var trees = (from i in Enumerable.Range(0, 1000)
|
---|
19 | select
|
---|
20 | HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ProbabilisticTreeCreator.Create(r, g, 100, 10))
|
---|
21 | .ToArray();
|
---|
22 | }
|
---|
23 |
|
---|
24 | [TestMethod]
|
---|
25 | public void TestInterpreter() {
|
---|
26 | var interpreter = new Interpreter();
|
---|
27 | var g = new Grammar();
|
---|
28 | g.Symbols.Single(s => s is MeanMask).Enabled = true;
|
---|
29 | g.Dimension = 1;
|
---|
30 | var r = new MersenneTwister(31415);
|
---|
31 | var problemData = new RegressionProblemData();
|
---|
32 |
|
---|
33 | for (int i = 0; i < 1000; i++) {
|
---|
34 | var t = HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ProbabilisticTreeCreator.Create(r, g, 50, 7);
|
---|
35 | double negLogLikelihood;
|
---|
36 | HeuristicLab.Algorithms.DataAnalysis.IGaussianProcessSolution solution;
|
---|
37 | interpreter.EvaluateGaussianProcessConfiguration(t, problemData, out negLogLikelihood, out solution);
|
---|
38 | Console.WriteLine();
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [TestMethod]
|
---|
43 | public void TestGeneticAlgorithm() {
|
---|
44 | var prob = new Problem();
|
---|
45 | prob.DimensionParameter.Value.Value = 1;
|
---|
46 | var ga = new GeneticAlgorithm();
|
---|
47 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
48 | ga.PopulationSize.Value = 100;
|
---|
49 | ga.MaximumGenerations.Value = 10;
|
---|
50 | ga.Problem = prob;
|
---|
51 |
|
---|
52 | var signal = new AutoResetEvent(false);
|
---|
53 | Exception ex = null;
|
---|
54 |
|
---|
55 | ga.ExceptionOccurred += (sender, args) => {
|
---|
56 | ex = args.Value;
|
---|
57 | signal.Set();
|
---|
58 | };
|
---|
59 | ga.Stopped += (sender, args) => {
|
---|
60 | signal.Set();
|
---|
61 | };
|
---|
62 |
|
---|
63 | ga.Prepare();
|
---|
64 | ga.Start();
|
---|
65 |
|
---|
66 | signal.WaitOne();
|
---|
67 | if (ex != null) throw ex;
|
---|
68 |
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*
|
---|
72 | [TestMethod]
|
---|
73 | public void TestInterpreterPrediction() {
|
---|
74 | var interpreter = new Interpreter();
|
---|
75 | var g = new Grammar();
|
---|
76 | g.Symbols.Single(s => s is MeanMask).Enabled = true;
|
---|
77 | g.Dimension = 1;
|
---|
78 | var r = new MersenneTwister(31415);
|
---|
79 | var problemData = new RegressionProblemData();
|
---|
80 |
|
---|
81 | double[] means;
|
---|
82 | double[] stdDev;
|
---|
83 | for (int i = 0; i < 10; i++) {
|
---|
84 | var t = HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ProbabilisticTreeCreator.Create(r, g, 50, 7);
|
---|
85 | interpreter.EvaluateGaussianProcessConfiguration(t, problemData, problemData.Dataset, problemData.TestIndices, out means, out stdDev);
|
---|
86 | }
|
---|
87 | }
|
---|
88 | */
|
---|
89 |
|
---|
90 |
|
---|
91 |
|
---|
92 | }
|
---|
93 | }
|
---|