Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h @ 10479

Last change on this file since 10479 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 14.2 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_UMFPACKSUPPORT_H
11#define EIGEN_UMFPACKSUPPORT_H
12
13namespace Eigen {
14
15/* TODO extract L, extract U, compute det, etc... */
16
17// generic double/complex<double> wrapper functions:
18
19inline void umfpack_free_numeric(void **Numeric, double)
20{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
21
22inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
23{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
24
25inline void umfpack_free_symbolic(void **Symbolic, double)
26{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
27
28inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
29{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
30
31inline int umfpack_symbolic(int n_row,int n_col,
32                            const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
33                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
34{
35  return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
36}
37
38inline int umfpack_symbolic(int n_row,int n_col,
39                            const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
40                            const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
41{
42  return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Control,Info);
43}
44
45inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
46                            void *Symbolic, void **Numeric,
47                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
48{
49  return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
50}
51
52inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
53                            void *Symbolic, void **Numeric,
54                            const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
55{
56  return umfpack_zi_numeric(Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
57}
58
59inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
60                          double X[], const double B[], void *Numeric,
61                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
62{
63  return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
64}
65
66inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
67                          std::complex<double> X[], const std::complex<double> B[], void *Numeric,
68                          const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
69{
70  return umfpack_zi_solve(sys,Ap,Ai,&internal::real_ref(Ax[0]),0,&internal::real_ref(X[0]),0,&internal::real_ref(B[0]),0,Numeric,Control,Info);
71}
72
73inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
74{
75  return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
76}
77
78inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
79{
80  return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
81}
82
83inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
84                               int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
85{
86  return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
87}
88
89inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
90                               int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
91{
92  double& lx0_real = internal::real_ref(Lx[0]);
93  double& ux0_real = internal::real_ref(Ux[0]);
94  double& dx0_real = internal::real_ref(Dx[0]);
95  return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
96                                Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
97}
98
99inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
100{
101  return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
102}
103
104inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
105{
106  double& mx_real = internal::real_ref(*Mx);
107  return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
108}
109
110/** \ingroup UmfPackSupport_Module
111  * \brief A sparse LU factorization and solver based on UmfPack
112  *
113  * This class allows to solve for A.X = B sparse linear problems via a LU factorization
114  * using the UmfPack library. The sparse matrix A must be squared and full rank.
115  * The vectors or matrices X and B can be either dense or sparse.
116  *
117  * \WARNING The input matrix A should be in a \b compressed and \b column-major form.
118  * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
119  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
120  *
121  * \sa \ref TutorialSparseDirectSolvers
122  */
123template<typename _MatrixType>
124class UmfPackLU : internal::noncopyable
125{
126  public:
127    typedef _MatrixType MatrixType;
128    typedef typename MatrixType::Scalar Scalar;
129    typedef typename MatrixType::RealScalar RealScalar;
130    typedef typename MatrixType::Index Index;
131    typedef Matrix<Scalar,Dynamic,1> Vector;
132    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
133    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
134    typedef SparseMatrix<Scalar> LUMatrixType;
135    typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
136
137  public:
138
139    UmfPackLU() { init(); }
140
141    UmfPackLU(const MatrixType& matrix)
142    {
143      init();
144      compute(matrix);
145    }
146
147    ~UmfPackLU()
148    {
149      if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
150      if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
151    }
152
153    inline Index rows() const { return m_copyMatrix.rows(); }
154    inline Index cols() const { return m_copyMatrix.cols(); }
155
156    /** \brief Reports whether previous computation was successful.
157      *
158      * \returns \c Success if computation was succesful,
159      *          \c NumericalIssue if the matrix.appears to be negative.
160      */
161    ComputationInfo info() const
162    {
163      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
164      return m_info;
165    }
166
167    inline const LUMatrixType& matrixL() const
168    {
169      if (m_extractedDataAreDirty) extractData();
170      return m_l;
171    }
172
173    inline const LUMatrixType& matrixU() const
174    {
175      if (m_extractedDataAreDirty) extractData();
176      return m_u;
177    }
178
179    inline const IntColVectorType& permutationP() const
180    {
181      if (m_extractedDataAreDirty) extractData();
182      return m_p;
183    }
184
185    inline const IntRowVectorType& permutationQ() const
186    {
187      if (m_extractedDataAreDirty) extractData();
188      return m_q;
189    }
190
191    /** Computes the sparse Cholesky decomposition of \a matrix
192     *  Note that the matrix should be column-major, and in compressed format for best performance.
193     *  \sa SparseMatrix::makeCompressed().
194     */
195    void compute(const MatrixType& matrix)
196    {
197      analyzePattern(matrix);
198      factorize(matrix);
199    }
200
201    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
202      *
203      * \sa compute()
204      */
205    template<typename Rhs>
206    inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
207    {
208      eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
209      eigen_assert(rows()==b.rows()
210                && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
211      return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
212    }
213
214    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
215      *
216      * \sa compute()
217      */
218//     template<typename Rhs>
219//     inline const internal::sparse_solve_retval<UmfPAckLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
220//     {
221//       eigen_assert(m_isInitialized && "UmfPAckLU is not initialized.");
222//       eigen_assert(rows()==b.rows()
223//                 && "UmfPAckLU::solve(): invalid number of rows of the right hand side matrix b");
224//       return internal::sparse_solve_retval<UmfPAckLU, Rhs>(*this, b.derived());
225//     }
226
227    /** Performs a symbolic decomposition on the sparcity of \a matrix.
228      *
229      * This function is particularly useful when solving for several problems having the same structure.
230      *
231      * \sa factorize(), compute()
232      */
233    void analyzePattern(const MatrixType& matrix)
234    {
235      if(m_symbolic)
236        umfpack_free_symbolic(&m_symbolic,Scalar());
237      if(m_numeric)
238        umfpack_free_numeric(&m_numeric,Scalar());
239     
240      grapInput(matrix);
241
242      int errorCode = 0;
243      errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
244                                   &m_symbolic, 0, 0);
245
246      m_isInitialized = true;
247      m_info = errorCode ? InvalidInput : Success;
248      m_analysisIsOk = true;
249      m_factorizationIsOk = false;
250    }
251
252    /** Performs a numeric decomposition of \a matrix
253      *
254      * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
255      *
256      * \sa analyzePattern(), compute()
257      */
258    void factorize(const MatrixType& matrix)
259    {
260      eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
261      if(m_numeric)
262        umfpack_free_numeric(&m_numeric,Scalar());
263
264      grapInput(matrix);
265
266      int errorCode;
267      errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
268                                  m_symbolic, &m_numeric, 0, 0);
269
270      m_info = errorCode ? NumericalIssue : Success;
271      m_factorizationIsOk = true;
272    }
273
274    #ifndef EIGEN_PARSED_BY_DOXYGEN
275    /** \internal */
276    template<typename BDerived,typename XDerived>
277    bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
278    #endif
279
280    Scalar determinant() const;
281
282    void extractData() const;
283
284  protected:
285
286
287    void init()
288    {
289      m_info = InvalidInput;
290      m_isInitialized = false;
291      m_numeric = 0;
292      m_symbolic = 0;
293      m_outerIndexPtr = 0;
294      m_innerIndexPtr = 0;
295      m_valuePtr      = 0;
296    }
297   
298    void grapInput(const MatrixType& mat)
299    {
300      m_copyMatrix.resize(mat.rows(), mat.cols());
301      if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() )
302      {
303        // non supported input -> copy
304        m_copyMatrix = mat;
305        m_outerIndexPtr = m_copyMatrix.outerIndexPtr();
306        m_innerIndexPtr = m_copyMatrix.innerIndexPtr();
307        m_valuePtr      = m_copyMatrix.valuePtr();
308      }
309      else
310      {
311        m_outerIndexPtr = mat.outerIndexPtr();
312        m_innerIndexPtr = mat.innerIndexPtr();
313        m_valuePtr      = mat.valuePtr();
314      }
315    }
316
317    // cached data to reduce reallocation, etc.
318    mutable LUMatrixType m_l;
319    mutable LUMatrixType m_u;
320    mutable IntColVectorType m_p;
321    mutable IntRowVectorType m_q;
322
323    UmfpackMatrixType m_copyMatrix;
324    const Scalar* m_valuePtr;
325    const int* m_outerIndexPtr;
326    const int* m_innerIndexPtr;
327    void* m_numeric;
328    void* m_symbolic;
329
330    mutable ComputationInfo m_info;
331    bool m_isInitialized;
332    int m_factorizationIsOk;
333    int m_analysisIsOk;
334    mutable bool m_extractedDataAreDirty;
335   
336  private:
337    UmfPackLU(UmfPackLU& ) { }
338};
339
340
341template<typename MatrixType>
342void UmfPackLU<MatrixType>::extractData() const
343{
344  if (m_extractedDataAreDirty)
345  {
346    // get size of the data
347    int lnz, unz, rows, cols, nz_udiag;
348    umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
349
350    // allocate data
351    m_l.resize(rows,(std::min)(rows,cols));
352    m_l.resizeNonZeros(lnz);
353
354    m_u.resize((std::min)(rows,cols),cols);
355    m_u.resizeNonZeros(unz);
356
357    m_p.resize(rows);
358    m_q.resize(cols);
359
360    // extract
361    umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
362                        m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
363                        m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
364
365    m_extractedDataAreDirty = false;
366  }
367}
368
369template<typename MatrixType>
370typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
371{
372  Scalar det;
373  umfpack_get_determinant(&det, 0, m_numeric, 0);
374  return det;
375}
376
377template<typename MatrixType>
378template<typename BDerived,typename XDerived>
379bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
380{
381  const int rhsCols = b.cols();
382  eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
383  eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
384
385  int errorCode;
386  for (int j=0; j<rhsCols; ++j)
387  {
388    errorCode = umfpack_solve(UMFPACK_A,
389        m_outerIndexPtr, m_innerIndexPtr, m_valuePtr,
390        &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
391    if (errorCode!=0)
392      return false;
393  }
394
395  return true;
396}
397
398
399namespace internal {
400
401template<typename _MatrixType, typename Rhs>
402struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
403  : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
404{
405  typedef UmfPackLU<_MatrixType> Dec;
406  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
407
408  template<typename Dest> void evalTo(Dest& dst) const
409  {
410    dec()._solve(rhs(),dst);
411  }
412};
413
414template<typename _MatrixType, typename Rhs>
415struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
416  : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
417{
418  typedef UmfPackLU<_MatrixType> Dec;
419  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
420
421  template<typename Dest> void evalTo(Dest& dst) const
422  {
423    dec()._solve(rhs(),dst);
424  }
425};
426
427} // end namespace internal
428
429} // end namespace Eigen
430
431#endif // EIGEN_UMFPACKSUPPORT_H
Note: See TracBrowser for help on using the repository browser.