1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_UMFPACKSUPPORT_H |
---|
11 | #define EIGEN_UMFPACKSUPPORT_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /* TODO extract L, extract U, compute det, etc... */ |
---|
16 | |
---|
17 | // generic double/complex<double> wrapper functions: |
---|
18 | |
---|
19 | inline void umfpack_free_numeric(void **Numeric, double) |
---|
20 | { umfpack_di_free_numeric(Numeric); *Numeric = 0; } |
---|
21 | |
---|
22 | inline void umfpack_free_numeric(void **Numeric, std::complex<double>) |
---|
23 | { umfpack_zi_free_numeric(Numeric); *Numeric = 0; } |
---|
24 | |
---|
25 | inline void umfpack_free_symbolic(void **Symbolic, double) |
---|
26 | { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } |
---|
27 | |
---|
28 | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>) |
---|
29 | { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } |
---|
30 | |
---|
31 | inline int umfpack_symbolic(int n_row,int n_col, |
---|
32 | const int Ap[], const int Ai[], const double Ax[], void **Symbolic, |
---|
33 | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) |
---|
34 | { |
---|
35 | return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); |
---|
36 | } |
---|
37 | |
---|
38 | inline int umfpack_symbolic(int n_row,int n_col, |
---|
39 | const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, |
---|
40 | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) |
---|
41 | { |
---|
42 | return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Control,Info); |
---|
43 | } |
---|
44 | |
---|
45 | inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], |
---|
46 | void *Symbolic, void **Numeric, |
---|
47 | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) |
---|
48 | { |
---|
49 | return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); |
---|
50 | } |
---|
51 | |
---|
52 | inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], |
---|
53 | void *Symbolic, void **Numeric, |
---|
54 | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) |
---|
55 | { |
---|
56 | return umfpack_zi_numeric(Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); |
---|
57 | } |
---|
58 | |
---|
59 | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], |
---|
60 | double X[], const double B[], void *Numeric, |
---|
61 | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
---|
62 | { |
---|
63 | return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); |
---|
64 | } |
---|
65 | |
---|
66 | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], |
---|
67 | std::complex<double> X[], const std::complex<double> B[], void *Numeric, |
---|
68 | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
---|
69 | { |
---|
70 | return umfpack_zi_solve(sys,Ap,Ai,&internal::real_ref(Ax[0]),0,&internal::real_ref(X[0]),0,&internal::real_ref(B[0]),0,Numeric,Control,Info); |
---|
71 | } |
---|
72 | |
---|
73 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) |
---|
74 | { |
---|
75 | return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); |
---|
76 | } |
---|
77 | |
---|
78 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) |
---|
79 | { |
---|
80 | return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); |
---|
81 | } |
---|
82 | |
---|
83 | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], |
---|
84 | int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) |
---|
85 | { |
---|
86 | return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); |
---|
87 | } |
---|
88 | |
---|
89 | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], |
---|
90 | int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) |
---|
91 | { |
---|
92 | double& lx0_real = internal::real_ref(Lx[0]); |
---|
93 | double& ux0_real = internal::real_ref(Ux[0]); |
---|
94 | double& dx0_real = internal::real_ref(Dx[0]); |
---|
95 | return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, |
---|
96 | Dx?&dx0_real:0,0,do_recip,Rs,Numeric); |
---|
97 | } |
---|
98 | |
---|
99 | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) |
---|
100 | { |
---|
101 | return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); |
---|
102 | } |
---|
103 | |
---|
104 | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) |
---|
105 | { |
---|
106 | double& mx_real = internal::real_ref(*Mx); |
---|
107 | return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); |
---|
108 | } |
---|
109 | |
---|
110 | /** \ingroup UmfPackSupport_Module |
---|
111 | * \brief A sparse LU factorization and solver based on UmfPack |
---|
112 | * |
---|
113 | * This class allows to solve for A.X = B sparse linear problems via a LU factorization |
---|
114 | * using the UmfPack library. The sparse matrix A must be squared and full rank. |
---|
115 | * The vectors or matrices X and B can be either dense or sparse. |
---|
116 | * |
---|
117 | * \WARNING The input matrix A should be in a \b compressed and \b column-major form. |
---|
118 | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. |
---|
119 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
120 | * |
---|
121 | * \sa \ref TutorialSparseDirectSolvers |
---|
122 | */ |
---|
123 | template<typename _MatrixType> |
---|
124 | class UmfPackLU : internal::noncopyable |
---|
125 | { |
---|
126 | public: |
---|
127 | typedef _MatrixType MatrixType; |
---|
128 | typedef typename MatrixType::Scalar Scalar; |
---|
129 | typedef typename MatrixType::RealScalar RealScalar; |
---|
130 | typedef typename MatrixType::Index Index; |
---|
131 | typedef Matrix<Scalar,Dynamic,1> Vector; |
---|
132 | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; |
---|
133 | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; |
---|
134 | typedef SparseMatrix<Scalar> LUMatrixType; |
---|
135 | typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType; |
---|
136 | |
---|
137 | public: |
---|
138 | |
---|
139 | UmfPackLU() { init(); } |
---|
140 | |
---|
141 | UmfPackLU(const MatrixType& matrix) |
---|
142 | { |
---|
143 | init(); |
---|
144 | compute(matrix); |
---|
145 | } |
---|
146 | |
---|
147 | ~UmfPackLU() |
---|
148 | { |
---|
149 | if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); |
---|
150 | if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); |
---|
151 | } |
---|
152 | |
---|
153 | inline Index rows() const { return m_copyMatrix.rows(); } |
---|
154 | inline Index cols() const { return m_copyMatrix.cols(); } |
---|
155 | |
---|
156 | /** \brief Reports whether previous computation was successful. |
---|
157 | * |
---|
158 | * \returns \c Success if computation was succesful, |
---|
159 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
160 | */ |
---|
161 | ComputationInfo info() const |
---|
162 | { |
---|
163 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
---|
164 | return m_info; |
---|
165 | } |
---|
166 | |
---|
167 | inline const LUMatrixType& matrixL() const |
---|
168 | { |
---|
169 | if (m_extractedDataAreDirty) extractData(); |
---|
170 | return m_l; |
---|
171 | } |
---|
172 | |
---|
173 | inline const LUMatrixType& matrixU() const |
---|
174 | { |
---|
175 | if (m_extractedDataAreDirty) extractData(); |
---|
176 | return m_u; |
---|
177 | } |
---|
178 | |
---|
179 | inline const IntColVectorType& permutationP() const |
---|
180 | { |
---|
181 | if (m_extractedDataAreDirty) extractData(); |
---|
182 | return m_p; |
---|
183 | } |
---|
184 | |
---|
185 | inline const IntRowVectorType& permutationQ() const |
---|
186 | { |
---|
187 | if (m_extractedDataAreDirty) extractData(); |
---|
188 | return m_q; |
---|
189 | } |
---|
190 | |
---|
191 | /** Computes the sparse Cholesky decomposition of \a matrix |
---|
192 | * Note that the matrix should be column-major, and in compressed format for best performance. |
---|
193 | * \sa SparseMatrix::makeCompressed(). |
---|
194 | */ |
---|
195 | void compute(const MatrixType& matrix) |
---|
196 | { |
---|
197 | analyzePattern(matrix); |
---|
198 | factorize(matrix); |
---|
199 | } |
---|
200 | |
---|
201 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
202 | * |
---|
203 | * \sa compute() |
---|
204 | */ |
---|
205 | template<typename Rhs> |
---|
206 | inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const |
---|
207 | { |
---|
208 | eigen_assert(m_isInitialized && "UmfPackLU is not initialized."); |
---|
209 | eigen_assert(rows()==b.rows() |
---|
210 | && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b"); |
---|
211 | return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived()); |
---|
212 | } |
---|
213 | |
---|
214 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
215 | * |
---|
216 | * \sa compute() |
---|
217 | */ |
---|
218 | // template<typename Rhs> |
---|
219 | // inline const internal::sparse_solve_retval<UmfPAckLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const |
---|
220 | // { |
---|
221 | // eigen_assert(m_isInitialized && "UmfPAckLU is not initialized."); |
---|
222 | // eigen_assert(rows()==b.rows() |
---|
223 | // && "UmfPAckLU::solve(): invalid number of rows of the right hand side matrix b"); |
---|
224 | // return internal::sparse_solve_retval<UmfPAckLU, Rhs>(*this, b.derived()); |
---|
225 | // } |
---|
226 | |
---|
227 | /** Performs a symbolic decomposition on the sparcity of \a matrix. |
---|
228 | * |
---|
229 | * This function is particularly useful when solving for several problems having the same structure. |
---|
230 | * |
---|
231 | * \sa factorize(), compute() |
---|
232 | */ |
---|
233 | void analyzePattern(const MatrixType& matrix) |
---|
234 | { |
---|
235 | if(m_symbolic) |
---|
236 | umfpack_free_symbolic(&m_symbolic,Scalar()); |
---|
237 | if(m_numeric) |
---|
238 | umfpack_free_numeric(&m_numeric,Scalar()); |
---|
239 | |
---|
240 | grapInput(matrix); |
---|
241 | |
---|
242 | int errorCode = 0; |
---|
243 | errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), m_outerIndexPtr, m_innerIndexPtr, m_valuePtr, |
---|
244 | &m_symbolic, 0, 0); |
---|
245 | |
---|
246 | m_isInitialized = true; |
---|
247 | m_info = errorCode ? InvalidInput : Success; |
---|
248 | m_analysisIsOk = true; |
---|
249 | m_factorizationIsOk = false; |
---|
250 | } |
---|
251 | |
---|
252 | /** Performs a numeric decomposition of \a matrix |
---|
253 | * |
---|
254 | * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. |
---|
255 | * |
---|
256 | * \sa analyzePattern(), compute() |
---|
257 | */ |
---|
258 | void factorize(const MatrixType& matrix) |
---|
259 | { |
---|
260 | eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); |
---|
261 | if(m_numeric) |
---|
262 | umfpack_free_numeric(&m_numeric,Scalar()); |
---|
263 | |
---|
264 | grapInput(matrix); |
---|
265 | |
---|
266 | int errorCode; |
---|
267 | errorCode = umfpack_numeric(m_outerIndexPtr, m_innerIndexPtr, m_valuePtr, |
---|
268 | m_symbolic, &m_numeric, 0, 0); |
---|
269 | |
---|
270 | m_info = errorCode ? NumericalIssue : Success; |
---|
271 | m_factorizationIsOk = true; |
---|
272 | } |
---|
273 | |
---|
274 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
275 | /** \internal */ |
---|
276 | template<typename BDerived,typename XDerived> |
---|
277 | bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; |
---|
278 | #endif |
---|
279 | |
---|
280 | Scalar determinant() const; |
---|
281 | |
---|
282 | void extractData() const; |
---|
283 | |
---|
284 | protected: |
---|
285 | |
---|
286 | |
---|
287 | void init() |
---|
288 | { |
---|
289 | m_info = InvalidInput; |
---|
290 | m_isInitialized = false; |
---|
291 | m_numeric = 0; |
---|
292 | m_symbolic = 0; |
---|
293 | m_outerIndexPtr = 0; |
---|
294 | m_innerIndexPtr = 0; |
---|
295 | m_valuePtr = 0; |
---|
296 | } |
---|
297 | |
---|
298 | void grapInput(const MatrixType& mat) |
---|
299 | { |
---|
300 | m_copyMatrix.resize(mat.rows(), mat.cols()); |
---|
301 | if( ((MatrixType::Flags&RowMajorBit)==RowMajorBit) || sizeof(typename MatrixType::Index)!=sizeof(int) || !mat.isCompressed() ) |
---|
302 | { |
---|
303 | // non supported input -> copy |
---|
304 | m_copyMatrix = mat; |
---|
305 | m_outerIndexPtr = m_copyMatrix.outerIndexPtr(); |
---|
306 | m_innerIndexPtr = m_copyMatrix.innerIndexPtr(); |
---|
307 | m_valuePtr = m_copyMatrix.valuePtr(); |
---|
308 | } |
---|
309 | else |
---|
310 | { |
---|
311 | m_outerIndexPtr = mat.outerIndexPtr(); |
---|
312 | m_innerIndexPtr = mat.innerIndexPtr(); |
---|
313 | m_valuePtr = mat.valuePtr(); |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | // cached data to reduce reallocation, etc. |
---|
318 | mutable LUMatrixType m_l; |
---|
319 | mutable LUMatrixType m_u; |
---|
320 | mutable IntColVectorType m_p; |
---|
321 | mutable IntRowVectorType m_q; |
---|
322 | |
---|
323 | UmfpackMatrixType m_copyMatrix; |
---|
324 | const Scalar* m_valuePtr; |
---|
325 | const int* m_outerIndexPtr; |
---|
326 | const int* m_innerIndexPtr; |
---|
327 | void* m_numeric; |
---|
328 | void* m_symbolic; |
---|
329 | |
---|
330 | mutable ComputationInfo m_info; |
---|
331 | bool m_isInitialized; |
---|
332 | int m_factorizationIsOk; |
---|
333 | int m_analysisIsOk; |
---|
334 | mutable bool m_extractedDataAreDirty; |
---|
335 | |
---|
336 | private: |
---|
337 | UmfPackLU(UmfPackLU& ) { } |
---|
338 | }; |
---|
339 | |
---|
340 | |
---|
341 | template<typename MatrixType> |
---|
342 | void UmfPackLU<MatrixType>::extractData() const |
---|
343 | { |
---|
344 | if (m_extractedDataAreDirty) |
---|
345 | { |
---|
346 | // get size of the data |
---|
347 | int lnz, unz, rows, cols, nz_udiag; |
---|
348 | umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); |
---|
349 | |
---|
350 | // allocate data |
---|
351 | m_l.resize(rows,(std::min)(rows,cols)); |
---|
352 | m_l.resizeNonZeros(lnz); |
---|
353 | |
---|
354 | m_u.resize((std::min)(rows,cols),cols); |
---|
355 | m_u.resizeNonZeros(unz); |
---|
356 | |
---|
357 | m_p.resize(rows); |
---|
358 | m_q.resize(cols); |
---|
359 | |
---|
360 | // extract |
---|
361 | umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), |
---|
362 | m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), |
---|
363 | m_p.data(), m_q.data(), 0, 0, 0, m_numeric); |
---|
364 | |
---|
365 | m_extractedDataAreDirty = false; |
---|
366 | } |
---|
367 | } |
---|
368 | |
---|
369 | template<typename MatrixType> |
---|
370 | typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const |
---|
371 | { |
---|
372 | Scalar det; |
---|
373 | umfpack_get_determinant(&det, 0, m_numeric, 0); |
---|
374 | return det; |
---|
375 | } |
---|
376 | |
---|
377 | template<typename MatrixType> |
---|
378 | template<typename BDerived,typename XDerived> |
---|
379 | bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const |
---|
380 | { |
---|
381 | const int rhsCols = b.cols(); |
---|
382 | eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); |
---|
383 | eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); |
---|
384 | |
---|
385 | int errorCode; |
---|
386 | for (int j=0; j<rhsCols; ++j) |
---|
387 | { |
---|
388 | errorCode = umfpack_solve(UMFPACK_A, |
---|
389 | m_outerIndexPtr, m_innerIndexPtr, m_valuePtr, |
---|
390 | &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0); |
---|
391 | if (errorCode!=0) |
---|
392 | return false; |
---|
393 | } |
---|
394 | |
---|
395 | return true; |
---|
396 | } |
---|
397 | |
---|
398 | |
---|
399 | namespace internal { |
---|
400 | |
---|
401 | template<typename _MatrixType, typename Rhs> |
---|
402 | struct solve_retval<UmfPackLU<_MatrixType>, Rhs> |
---|
403 | : solve_retval_base<UmfPackLU<_MatrixType>, Rhs> |
---|
404 | { |
---|
405 | typedef UmfPackLU<_MatrixType> Dec; |
---|
406 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
407 | |
---|
408 | template<typename Dest> void evalTo(Dest& dst) const |
---|
409 | { |
---|
410 | dec()._solve(rhs(),dst); |
---|
411 | } |
---|
412 | }; |
---|
413 | |
---|
414 | template<typename _MatrixType, typename Rhs> |
---|
415 | struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs> |
---|
416 | : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs> |
---|
417 | { |
---|
418 | typedef UmfPackLU<_MatrixType> Dec; |
---|
419 | EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
---|
420 | |
---|
421 | template<typename Dest> void evalTo(Dest& dst) const |
---|
422 | { |
---|
423 | dec()._solve(rhs(),dst); |
---|
424 | } |
---|
425 | }; |
---|
426 | |
---|
427 | } // end namespace internal |
---|
428 | |
---|
429 | } // end namespace Eigen |
---|
430 | |
---|
431 | #endif // EIGEN_UMFPACKSUPPORT_H |
---|