[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | /* |
---|
| 11 | |
---|
| 12 | NOTE: the _symbolic, and _numeric functions has been adapted from |
---|
| 13 | the LDL library: |
---|
| 14 | |
---|
| 15 | LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. |
---|
| 16 | |
---|
| 17 | LDL License: |
---|
| 18 | |
---|
| 19 | Your use or distribution of LDL or any modified version of |
---|
| 20 | LDL implies that you agree to this License. |
---|
| 21 | |
---|
| 22 | This library is free software; you can redistribute it and/or |
---|
| 23 | modify it under the terms of the GNU Lesser General Public |
---|
| 24 | License as published by the Free Software Foundation; either |
---|
| 25 | version 2.1 of the License, or (at your option) any later version. |
---|
| 26 | |
---|
| 27 | This library is distributed in the hope that it will be useful, |
---|
| 28 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 29 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 30 | Lesser General Public License for more details. |
---|
| 31 | |
---|
| 32 | You should have received a copy of the GNU Lesser General Public |
---|
| 33 | License along with this library; if not, write to the Free Software |
---|
| 34 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 |
---|
| 35 | USA |
---|
| 36 | |
---|
| 37 | Permission is hereby granted to use or copy this program under the |
---|
| 38 | terms of the GNU LGPL, provided that the Copyright, this License, |
---|
| 39 | and the Availability of the original version is retained on all copies. |
---|
| 40 | User documentation of any code that uses this code or any modified |
---|
| 41 | version of this code must cite the Copyright, this License, the |
---|
| 42 | Availability note, and "Used by permission." Permission to modify |
---|
| 43 | the code and to distribute modified code is granted, provided the |
---|
| 44 | Copyright, this License, and the Availability note are retained, |
---|
| 45 | and a notice that the code was modified is included. |
---|
| 46 | */ |
---|
| 47 | |
---|
| 48 | #include "../Core/util/NonMPL2.h" |
---|
| 49 | |
---|
| 50 | #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H |
---|
| 51 | #define EIGEN_SIMPLICIAL_CHOLESKY_H |
---|
| 52 | |
---|
| 53 | namespace Eigen { |
---|
| 54 | |
---|
| 55 | enum SimplicialCholeskyMode { |
---|
| 56 | SimplicialCholeskyLLT, |
---|
| 57 | SimplicialCholeskyLDLT |
---|
| 58 | }; |
---|
| 59 | |
---|
| 60 | /** \ingroup SparseCholesky_Module |
---|
| 61 | * \brief A direct sparse Cholesky factorizations |
---|
| 62 | * |
---|
| 63 | * These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are |
---|
| 64 | * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
---|
| 65 | * X and B can be either dense or sparse. |
---|
| 66 | * |
---|
| 67 | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
---|
| 68 | * such that the factorized matrix is P A P^-1. |
---|
| 69 | * |
---|
| 70 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
| 71 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
| 72 | * or Upper. Default is Lower. |
---|
| 73 | * |
---|
| 74 | */ |
---|
| 75 | template<typename Derived> |
---|
| 76 | class SimplicialCholeskyBase : internal::noncopyable |
---|
| 77 | { |
---|
| 78 | public: |
---|
| 79 | typedef typename internal::traits<Derived>::MatrixType MatrixType; |
---|
| 80 | enum { UpLo = internal::traits<Derived>::UpLo }; |
---|
| 81 | typedef typename MatrixType::Scalar Scalar; |
---|
| 82 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 83 | typedef typename MatrixType::Index Index; |
---|
| 84 | typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
---|
| 85 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 86 | |
---|
| 87 | public: |
---|
| 88 | |
---|
| 89 | /** Default constructor */ |
---|
| 90 | SimplicialCholeskyBase() |
---|
| 91 | : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1) |
---|
| 92 | {} |
---|
| 93 | |
---|
| 94 | SimplicialCholeskyBase(const MatrixType& matrix) |
---|
| 95 | : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1) |
---|
| 96 | { |
---|
| 97 | derived().compute(matrix); |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | ~SimplicialCholeskyBase() |
---|
| 101 | { |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | Derived& derived() { return *static_cast<Derived*>(this); } |
---|
| 105 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
---|
| 106 | |
---|
| 107 | inline Index cols() const { return m_matrix.cols(); } |
---|
| 108 | inline Index rows() const { return m_matrix.rows(); } |
---|
| 109 | |
---|
| 110 | /** \brief Reports whether previous computation was successful. |
---|
| 111 | * |
---|
| 112 | * \returns \c Success if computation was succesful, |
---|
| 113 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
| 114 | */ |
---|
| 115 | ComputationInfo info() const |
---|
| 116 | { |
---|
| 117 | eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
---|
| 118 | return m_info; |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
| 122 | * |
---|
| 123 | * \sa compute() |
---|
| 124 | */ |
---|
| 125 | template<typename Rhs> |
---|
| 126 | inline const internal::solve_retval<SimplicialCholeskyBase, Rhs> |
---|
| 127 | solve(const MatrixBase<Rhs>& b) const |
---|
| 128 | { |
---|
| 129 | eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); |
---|
| 130 | eigen_assert(rows()==b.rows() |
---|
| 131 | && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 132 | return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived()); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
| 136 | * |
---|
| 137 | * \sa compute() |
---|
| 138 | */ |
---|
| 139 | template<typename Rhs> |
---|
| 140 | inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs> |
---|
| 141 | solve(const SparseMatrixBase<Rhs>& b) const |
---|
| 142 | { |
---|
| 143 | eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); |
---|
| 144 | eigen_assert(rows()==b.rows() |
---|
| 145 | && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 146 | return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived()); |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | /** \returns the permutation P |
---|
| 150 | * \sa permutationPinv() */ |
---|
| 151 | const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const |
---|
| 152 | { return m_P; } |
---|
| 153 | |
---|
| 154 | /** \returns the inverse P^-1 of the permutation P |
---|
| 155 | * \sa permutationP() */ |
---|
| 156 | const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const |
---|
| 157 | { return m_Pinv; } |
---|
| 158 | |
---|
| 159 | /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. |
---|
| 160 | * |
---|
| 161 | * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n |
---|
| 162 | * \c d_ii = \a offset + \a scale * \c d_ii |
---|
| 163 | * |
---|
| 164 | * The default is the identity transformation with \a offset=0, and \a scale=1. |
---|
| 165 | * |
---|
| 166 | * \returns a reference to \c *this. |
---|
| 167 | */ |
---|
| 168 | Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) |
---|
| 169 | { |
---|
| 170 | m_shiftOffset = offset; |
---|
| 171 | m_shiftScale = scale; |
---|
| 172 | return derived(); |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
---|
| 176 | /** \internal */ |
---|
| 177 | template<typename Stream> |
---|
| 178 | void dumpMemory(Stream& s) |
---|
| 179 | { |
---|
| 180 | int total = 0; |
---|
| 181 | s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; |
---|
| 182 | s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; |
---|
| 183 | s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
---|
| 184 | s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
---|
| 185 | s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
---|
| 186 | s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
---|
| 187 | s << " TOTAL: " << (total>> 20) << "Mb" << "\n"; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /** \internal */ |
---|
| 191 | template<typename Rhs,typename Dest> |
---|
| 192 | void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
---|
| 193 | { |
---|
| 194 | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
---|
| 195 | eigen_assert(m_matrix.rows()==b.rows()); |
---|
| 196 | |
---|
| 197 | if(m_info!=Success) |
---|
| 198 | return; |
---|
| 199 | |
---|
| 200 | if(m_P.size()>0) |
---|
| 201 | dest = m_P * b; |
---|
| 202 | else |
---|
| 203 | dest = b; |
---|
| 204 | |
---|
| 205 | if(m_matrix.nonZeros()>0) // otherwise L==I |
---|
| 206 | derived().matrixL().solveInPlace(dest); |
---|
| 207 | |
---|
| 208 | if(m_diag.size()>0) |
---|
| 209 | dest = m_diag.asDiagonal().inverse() * dest; |
---|
| 210 | |
---|
| 211 | if (m_matrix.nonZeros()>0) // otherwise U==I |
---|
| 212 | derived().matrixU().solveInPlace(dest); |
---|
| 213 | |
---|
| 214 | if(m_P.size()>0) |
---|
| 215 | dest = m_Pinv * dest; |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /** \internal */ |
---|
| 219 | template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex> |
---|
| 220 | void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
---|
| 221 | { |
---|
| 222 | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
---|
| 223 | eigen_assert(m_matrix.rows()==b.rows()); |
---|
| 224 | |
---|
| 225 | // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix. |
---|
| 226 | static const int NbColsAtOnce = 4; |
---|
| 227 | int rhsCols = b.cols(); |
---|
| 228 | int size = b.rows(); |
---|
| 229 | Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols); |
---|
| 230 | for(int k=0; k<rhsCols; k+=NbColsAtOnce) |
---|
| 231 | { |
---|
| 232 | int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce); |
---|
| 233 | tmp.leftCols(actualCols) = b.middleCols(k,actualCols); |
---|
| 234 | tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols)); |
---|
| 235 | dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView(); |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | #endif // EIGEN_PARSED_BY_DOXYGEN |
---|
| 240 | |
---|
| 241 | protected: |
---|
| 242 | |
---|
| 243 | /** Computes the sparse Cholesky decomposition of \a matrix */ |
---|
| 244 | template<bool DoLDLT> |
---|
| 245 | void compute(const MatrixType& matrix) |
---|
| 246 | { |
---|
| 247 | eigen_assert(matrix.rows()==matrix.cols()); |
---|
| 248 | Index size = matrix.cols(); |
---|
| 249 | CholMatrixType ap(size,size); |
---|
| 250 | ordering(matrix, ap); |
---|
| 251 | analyzePattern_preordered(ap, DoLDLT); |
---|
| 252 | factorize_preordered<DoLDLT>(ap); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | template<bool DoLDLT> |
---|
| 256 | void factorize(const MatrixType& a) |
---|
| 257 | { |
---|
| 258 | eigen_assert(a.rows()==a.cols()); |
---|
| 259 | int size = a.cols(); |
---|
| 260 | CholMatrixType ap(size,size); |
---|
| 261 | ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); |
---|
| 262 | factorize_preordered<DoLDLT>(ap); |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | template<bool DoLDLT> |
---|
| 266 | void factorize_preordered(const CholMatrixType& a); |
---|
| 267 | |
---|
| 268 | void analyzePattern(const MatrixType& a, bool doLDLT) |
---|
| 269 | { |
---|
| 270 | eigen_assert(a.rows()==a.cols()); |
---|
| 271 | int size = a.cols(); |
---|
| 272 | CholMatrixType ap(size,size); |
---|
| 273 | ordering(a, ap); |
---|
| 274 | analyzePattern_preordered(ap,doLDLT); |
---|
| 275 | } |
---|
| 276 | void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); |
---|
| 277 | |
---|
| 278 | void ordering(const MatrixType& a, CholMatrixType& ap); |
---|
| 279 | |
---|
| 280 | /** keeps off-diagonal entries; drops diagonal entries */ |
---|
| 281 | struct keep_diag { |
---|
| 282 | inline bool operator() (const Index& row, const Index& col, const Scalar&) const |
---|
| 283 | { |
---|
| 284 | return row!=col; |
---|
| 285 | } |
---|
| 286 | }; |
---|
| 287 | |
---|
| 288 | mutable ComputationInfo m_info; |
---|
| 289 | bool m_isInitialized; |
---|
| 290 | bool m_factorizationIsOk; |
---|
| 291 | bool m_analysisIsOk; |
---|
| 292 | |
---|
| 293 | CholMatrixType m_matrix; |
---|
| 294 | VectorType m_diag; // the diagonal coefficients (LDLT mode) |
---|
| 295 | VectorXi m_parent; // elimination tree |
---|
| 296 | VectorXi m_nonZerosPerCol; |
---|
| 297 | PermutationMatrix<Dynamic,Dynamic,Index> m_P; // the permutation |
---|
| 298 | PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // the inverse permutation |
---|
| 299 | |
---|
| 300 | RealScalar m_shiftOffset; |
---|
| 301 | RealScalar m_shiftScale; |
---|
| 302 | }; |
---|
| 303 | |
---|
| 304 | template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT; |
---|
| 305 | template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT; |
---|
| 306 | template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky; |
---|
| 307 | |
---|
| 308 | namespace internal { |
---|
| 309 | |
---|
| 310 | template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> > |
---|
| 311 | { |
---|
| 312 | typedef _MatrixType MatrixType; |
---|
| 313 | enum { UpLo = _UpLo }; |
---|
| 314 | typedef typename MatrixType::Scalar Scalar; |
---|
| 315 | typedef typename MatrixType::Index Index; |
---|
| 316 | typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType; |
---|
| 317 | typedef SparseTriangularView<CholMatrixType, Eigen::Lower> MatrixL; |
---|
| 318 | typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU; |
---|
| 319 | static inline MatrixL getL(const MatrixType& m) { return m; } |
---|
| 320 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
---|
| 321 | }; |
---|
| 322 | |
---|
| 323 | template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> > |
---|
| 324 | { |
---|
| 325 | typedef _MatrixType MatrixType; |
---|
| 326 | enum { UpLo = _UpLo }; |
---|
| 327 | typedef typename MatrixType::Scalar Scalar; |
---|
| 328 | typedef typename MatrixType::Index Index; |
---|
| 329 | typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType; |
---|
| 330 | typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower> MatrixL; |
---|
| 331 | typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU; |
---|
| 332 | static inline MatrixL getL(const MatrixType& m) { return m; } |
---|
| 333 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
---|
| 334 | }; |
---|
| 335 | |
---|
| 336 | template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> > |
---|
| 337 | { |
---|
| 338 | typedef _MatrixType MatrixType; |
---|
| 339 | enum { UpLo = _UpLo }; |
---|
| 340 | }; |
---|
| 341 | |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | /** \ingroup SparseCholesky_Module |
---|
| 345 | * \class SimplicialLLT |
---|
| 346 | * \brief A direct sparse LLT Cholesky factorizations |
---|
| 347 | * |
---|
| 348 | * This class provides a LL^T Cholesky factorizations of sparse matrices that are |
---|
| 349 | * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
---|
| 350 | * X and B can be either dense or sparse. |
---|
| 351 | * |
---|
| 352 | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
---|
| 353 | * such that the factorized matrix is P A P^-1. |
---|
| 354 | * |
---|
| 355 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
| 356 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
| 357 | * or Upper. Default is Lower. |
---|
| 358 | * |
---|
| 359 | * \sa class SimplicialLDLT |
---|
| 360 | */ |
---|
| 361 | template<typename _MatrixType, int _UpLo> |
---|
| 362 | class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> > |
---|
| 363 | { |
---|
| 364 | public: |
---|
| 365 | typedef _MatrixType MatrixType; |
---|
| 366 | enum { UpLo = _UpLo }; |
---|
| 367 | typedef SimplicialCholeskyBase<SimplicialLLT> Base; |
---|
| 368 | typedef typename MatrixType::Scalar Scalar; |
---|
| 369 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 370 | typedef typename MatrixType::Index Index; |
---|
| 371 | typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
---|
| 372 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 373 | typedef internal::traits<SimplicialLLT> Traits; |
---|
| 374 | typedef typename Traits::MatrixL MatrixL; |
---|
| 375 | typedef typename Traits::MatrixU MatrixU; |
---|
| 376 | public: |
---|
| 377 | /** Default constructor */ |
---|
| 378 | SimplicialLLT() : Base() {} |
---|
| 379 | /** Constructs and performs the LLT factorization of \a matrix */ |
---|
| 380 | SimplicialLLT(const MatrixType& matrix) |
---|
| 381 | : Base(matrix) {} |
---|
| 382 | |
---|
| 383 | /** \returns an expression of the factor L */ |
---|
| 384 | inline const MatrixL matrixL() const { |
---|
| 385 | eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); |
---|
| 386 | return Traits::getL(Base::m_matrix); |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | /** \returns an expression of the factor U (= L^*) */ |
---|
| 390 | inline const MatrixU matrixU() const { |
---|
| 391 | eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); |
---|
| 392 | return Traits::getU(Base::m_matrix); |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | /** Computes the sparse Cholesky decomposition of \a matrix */ |
---|
| 396 | SimplicialLLT& compute(const MatrixType& matrix) |
---|
| 397 | { |
---|
| 398 | Base::template compute<false>(matrix); |
---|
| 399 | return *this; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | /** Performs a symbolic decomposition on the sparcity of \a matrix. |
---|
| 403 | * |
---|
| 404 | * This function is particularly useful when solving for several problems having the same structure. |
---|
| 405 | * |
---|
| 406 | * \sa factorize() |
---|
| 407 | */ |
---|
| 408 | void analyzePattern(const MatrixType& a) |
---|
| 409 | { |
---|
| 410 | Base::analyzePattern(a, false); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /** Performs a numeric decomposition of \a matrix |
---|
| 414 | * |
---|
| 415 | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
---|
| 416 | * |
---|
| 417 | * \sa analyzePattern() |
---|
| 418 | */ |
---|
| 419 | void factorize(const MatrixType& a) |
---|
| 420 | { |
---|
| 421 | Base::template factorize<false>(a); |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | /** \returns the determinant of the underlying matrix from the current factorization */ |
---|
| 425 | Scalar determinant() const |
---|
| 426 | { |
---|
| 427 | Scalar detL = Base::m_matrix.diagonal().prod(); |
---|
| 428 | return internal::abs2(detL); |
---|
| 429 | } |
---|
| 430 | }; |
---|
| 431 | |
---|
| 432 | /** \ingroup SparseCholesky_Module |
---|
| 433 | * \class SimplicialLDLT |
---|
| 434 | * \brief A direct sparse LDLT Cholesky factorizations without square root. |
---|
| 435 | * |
---|
| 436 | * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are |
---|
| 437 | * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
---|
| 438 | * X and B can be either dense or sparse. |
---|
| 439 | * |
---|
| 440 | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
---|
| 441 | * such that the factorized matrix is P A P^-1. |
---|
| 442 | * |
---|
| 443 | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
---|
| 444 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
| 445 | * or Upper. Default is Lower. |
---|
| 446 | * |
---|
| 447 | * \sa class SimplicialLLT |
---|
| 448 | */ |
---|
| 449 | template<typename _MatrixType, int _UpLo> |
---|
| 450 | class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> > |
---|
| 451 | { |
---|
| 452 | public: |
---|
| 453 | typedef _MatrixType MatrixType; |
---|
| 454 | enum { UpLo = _UpLo }; |
---|
| 455 | typedef SimplicialCholeskyBase<SimplicialLDLT> Base; |
---|
| 456 | typedef typename MatrixType::Scalar Scalar; |
---|
| 457 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 458 | typedef typename MatrixType::Index Index; |
---|
| 459 | typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
---|
| 460 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 461 | typedef internal::traits<SimplicialLDLT> Traits; |
---|
| 462 | typedef typename Traits::MatrixL MatrixL; |
---|
| 463 | typedef typename Traits::MatrixU MatrixU; |
---|
| 464 | public: |
---|
| 465 | /** Default constructor */ |
---|
| 466 | SimplicialLDLT() : Base() {} |
---|
| 467 | |
---|
| 468 | /** Constructs and performs the LLT factorization of \a matrix */ |
---|
| 469 | SimplicialLDLT(const MatrixType& matrix) |
---|
| 470 | : Base(matrix) {} |
---|
| 471 | |
---|
| 472 | /** \returns a vector expression of the diagonal D */ |
---|
| 473 | inline const VectorType vectorD() const { |
---|
| 474 | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
---|
| 475 | return Base::m_diag; |
---|
| 476 | } |
---|
| 477 | /** \returns an expression of the factor L */ |
---|
| 478 | inline const MatrixL matrixL() const { |
---|
| 479 | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
---|
| 480 | return Traits::getL(Base::m_matrix); |
---|
| 481 | } |
---|
| 482 | |
---|
| 483 | /** \returns an expression of the factor U (= L^*) */ |
---|
| 484 | inline const MatrixU matrixU() const { |
---|
| 485 | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
---|
| 486 | return Traits::getU(Base::m_matrix); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | /** Computes the sparse Cholesky decomposition of \a matrix */ |
---|
| 490 | SimplicialLDLT& compute(const MatrixType& matrix) |
---|
| 491 | { |
---|
| 492 | Base::template compute<true>(matrix); |
---|
| 493 | return *this; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | /** Performs a symbolic decomposition on the sparcity of \a matrix. |
---|
| 497 | * |
---|
| 498 | * This function is particularly useful when solving for several problems having the same structure. |
---|
| 499 | * |
---|
| 500 | * \sa factorize() |
---|
| 501 | */ |
---|
| 502 | void analyzePattern(const MatrixType& a) |
---|
| 503 | { |
---|
| 504 | Base::analyzePattern(a, true); |
---|
| 505 | } |
---|
| 506 | |
---|
| 507 | /** Performs a numeric decomposition of \a matrix |
---|
| 508 | * |
---|
| 509 | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
---|
| 510 | * |
---|
| 511 | * \sa analyzePattern() |
---|
| 512 | */ |
---|
| 513 | void factorize(const MatrixType& a) |
---|
| 514 | { |
---|
| 515 | Base::template factorize<true>(a); |
---|
| 516 | } |
---|
| 517 | |
---|
| 518 | /** \returns the determinant of the underlying matrix from the current factorization */ |
---|
| 519 | Scalar determinant() const |
---|
| 520 | { |
---|
| 521 | return Base::m_diag.prod(); |
---|
| 522 | } |
---|
| 523 | }; |
---|
| 524 | |
---|
| 525 | /** \deprecated use SimplicialLDLT or class SimplicialLLT |
---|
| 526 | * \ingroup SparseCholesky_Module |
---|
| 527 | * \class SimplicialCholesky |
---|
| 528 | * |
---|
| 529 | * \sa class SimplicialLDLT, class SimplicialLLT |
---|
| 530 | */ |
---|
| 531 | template<typename _MatrixType, int _UpLo> |
---|
| 532 | class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> > |
---|
| 533 | { |
---|
| 534 | public: |
---|
| 535 | typedef _MatrixType MatrixType; |
---|
| 536 | enum { UpLo = _UpLo }; |
---|
| 537 | typedef SimplicialCholeskyBase<SimplicialCholesky> Base; |
---|
| 538 | typedef typename MatrixType::Scalar Scalar; |
---|
| 539 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 540 | typedef typename MatrixType::Index Index; |
---|
| 541 | typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
---|
| 542 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 543 | typedef internal::traits<SimplicialCholesky> Traits; |
---|
| 544 | typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits; |
---|
| 545 | typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits; |
---|
| 546 | public: |
---|
| 547 | SimplicialCholesky() : Base(), m_LDLT(true) {} |
---|
| 548 | |
---|
| 549 | SimplicialCholesky(const MatrixType& matrix) |
---|
| 550 | : Base(), m_LDLT(true) |
---|
| 551 | { |
---|
| 552 | compute(matrix); |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | SimplicialCholesky& setMode(SimplicialCholeskyMode mode) |
---|
| 556 | { |
---|
| 557 | switch(mode) |
---|
| 558 | { |
---|
| 559 | case SimplicialCholeskyLLT: |
---|
| 560 | m_LDLT = false; |
---|
| 561 | break; |
---|
| 562 | case SimplicialCholeskyLDLT: |
---|
| 563 | m_LDLT = true; |
---|
| 564 | break; |
---|
| 565 | default: |
---|
| 566 | break; |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | return *this; |
---|
| 570 | } |
---|
| 571 | |
---|
| 572 | inline const VectorType vectorD() const { |
---|
| 573 | eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); |
---|
| 574 | return Base::m_diag; |
---|
| 575 | } |
---|
| 576 | inline const CholMatrixType rawMatrix() const { |
---|
| 577 | eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); |
---|
| 578 | return Base::m_matrix; |
---|
| 579 | } |
---|
| 580 | |
---|
| 581 | /** Computes the sparse Cholesky decomposition of \a matrix */ |
---|
| 582 | SimplicialCholesky& compute(const MatrixType& matrix) |
---|
| 583 | { |
---|
| 584 | if(m_LDLT) |
---|
| 585 | Base::template compute<true>(matrix); |
---|
| 586 | else |
---|
| 587 | Base::template compute<false>(matrix); |
---|
| 588 | return *this; |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | /** Performs a symbolic decomposition on the sparcity of \a matrix. |
---|
| 592 | * |
---|
| 593 | * This function is particularly useful when solving for several problems having the same structure. |
---|
| 594 | * |
---|
| 595 | * \sa factorize() |
---|
| 596 | */ |
---|
| 597 | void analyzePattern(const MatrixType& a) |
---|
| 598 | { |
---|
| 599 | Base::analyzePattern(a, m_LDLT); |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | /** Performs a numeric decomposition of \a matrix |
---|
| 603 | * |
---|
| 604 | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
---|
| 605 | * |
---|
| 606 | * \sa analyzePattern() |
---|
| 607 | */ |
---|
| 608 | void factorize(const MatrixType& a) |
---|
| 609 | { |
---|
| 610 | if(m_LDLT) |
---|
| 611 | Base::template factorize<true>(a); |
---|
| 612 | else |
---|
| 613 | Base::template factorize<false>(a); |
---|
| 614 | } |
---|
| 615 | |
---|
| 616 | /** \internal */ |
---|
| 617 | template<typename Rhs,typename Dest> |
---|
| 618 | void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
---|
| 619 | { |
---|
| 620 | eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
---|
| 621 | eigen_assert(Base::m_matrix.rows()==b.rows()); |
---|
| 622 | |
---|
| 623 | if(Base::m_info!=Success) |
---|
| 624 | return; |
---|
| 625 | |
---|
| 626 | if(Base::m_P.size()>0) |
---|
| 627 | dest = Base::m_P * b; |
---|
| 628 | else |
---|
| 629 | dest = b; |
---|
| 630 | |
---|
| 631 | if(Base::m_matrix.nonZeros()>0) // otherwise L==I |
---|
| 632 | { |
---|
| 633 | if(m_LDLT) |
---|
| 634 | LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); |
---|
| 635 | else |
---|
| 636 | LLTTraits::getL(Base::m_matrix).solveInPlace(dest); |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | if(Base::m_diag.size()>0) |
---|
| 640 | dest = Base::m_diag.asDiagonal().inverse() * dest; |
---|
| 641 | |
---|
| 642 | if (Base::m_matrix.nonZeros()>0) // otherwise I==I |
---|
| 643 | { |
---|
| 644 | if(m_LDLT) |
---|
| 645 | LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); |
---|
| 646 | else |
---|
| 647 | LLTTraits::getU(Base::m_matrix).solveInPlace(dest); |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | if(Base::m_P.size()>0) |
---|
| 651 | dest = Base::m_Pinv * dest; |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | Scalar determinant() const |
---|
| 655 | { |
---|
| 656 | if(m_LDLT) |
---|
| 657 | { |
---|
| 658 | return Base::m_diag.prod(); |
---|
| 659 | } |
---|
| 660 | else |
---|
| 661 | { |
---|
| 662 | Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod(); |
---|
| 663 | return internal::abs2(detL); |
---|
| 664 | } |
---|
| 665 | } |
---|
| 666 | |
---|
| 667 | protected: |
---|
| 668 | bool m_LDLT; |
---|
| 669 | }; |
---|
| 670 | |
---|
| 671 | template<typename Derived> |
---|
| 672 | void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap) |
---|
| 673 | { |
---|
| 674 | eigen_assert(a.rows()==a.cols()); |
---|
| 675 | const Index size = a.rows(); |
---|
| 676 | // TODO allows to configure the permutation |
---|
| 677 | // Note that amd compute the inverse permutation |
---|
| 678 | { |
---|
| 679 | CholMatrixType C; |
---|
| 680 | C = a.template selfadjointView<UpLo>(); |
---|
| 681 | // remove diagonal entries: |
---|
| 682 | // seems not to be needed |
---|
| 683 | // C.prune(keep_diag()); |
---|
| 684 | internal::minimum_degree_ordering(C, m_Pinv); |
---|
| 685 | } |
---|
| 686 | |
---|
| 687 | if(m_Pinv.size()>0) |
---|
| 688 | m_P = m_Pinv.inverse(); |
---|
| 689 | else |
---|
| 690 | m_P.resize(0); |
---|
| 691 | |
---|
| 692 | ap.resize(size,size); |
---|
| 693 | ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); |
---|
| 694 | } |
---|
| 695 | |
---|
| 696 | template<typename Derived> |
---|
| 697 | void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) |
---|
| 698 | { |
---|
| 699 | const Index size = ap.rows(); |
---|
| 700 | m_matrix.resize(size, size); |
---|
| 701 | m_parent.resize(size); |
---|
| 702 | m_nonZerosPerCol.resize(size); |
---|
| 703 | |
---|
| 704 | ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); |
---|
| 705 | |
---|
| 706 | for(Index k = 0; k < size; ++k) |
---|
| 707 | { |
---|
| 708 | /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ |
---|
| 709 | m_parent[k] = -1; /* parent of k is not yet known */ |
---|
| 710 | tags[k] = k; /* mark node k as visited */ |
---|
| 711 | m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ |
---|
| 712 | for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) |
---|
| 713 | { |
---|
| 714 | Index i = it.index(); |
---|
| 715 | if(i < k) |
---|
| 716 | { |
---|
| 717 | /* follow path from i to root of etree, stop at flagged node */ |
---|
| 718 | for(; tags[i] != k; i = m_parent[i]) |
---|
| 719 | { |
---|
| 720 | /* find parent of i if not yet determined */ |
---|
| 721 | if (m_parent[i] == -1) |
---|
| 722 | m_parent[i] = k; |
---|
| 723 | m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */ |
---|
| 724 | tags[i] = k; /* mark i as visited */ |
---|
| 725 | } |
---|
| 726 | } |
---|
| 727 | } |
---|
| 728 | } |
---|
| 729 | |
---|
| 730 | /* construct Lp index array from m_nonZerosPerCol column counts */ |
---|
| 731 | Index* Lp = m_matrix.outerIndexPtr(); |
---|
| 732 | Lp[0] = 0; |
---|
| 733 | for(Index k = 0; k < size; ++k) |
---|
| 734 | Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); |
---|
| 735 | |
---|
| 736 | m_matrix.resizeNonZeros(Lp[size]); |
---|
| 737 | |
---|
| 738 | m_isInitialized = true; |
---|
| 739 | m_info = Success; |
---|
| 740 | m_analysisIsOk = true; |
---|
| 741 | m_factorizationIsOk = false; |
---|
| 742 | } |
---|
| 743 | |
---|
| 744 | |
---|
| 745 | template<typename Derived> |
---|
| 746 | template<bool DoLDLT> |
---|
| 747 | void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) |
---|
| 748 | { |
---|
| 749 | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
---|
| 750 | eigen_assert(ap.rows()==ap.cols()); |
---|
| 751 | const Index size = ap.rows(); |
---|
| 752 | eigen_assert(m_parent.size()==size); |
---|
| 753 | eigen_assert(m_nonZerosPerCol.size()==size); |
---|
| 754 | |
---|
| 755 | const Index* Lp = m_matrix.outerIndexPtr(); |
---|
| 756 | Index* Li = m_matrix.innerIndexPtr(); |
---|
| 757 | Scalar* Lx = m_matrix.valuePtr(); |
---|
| 758 | |
---|
| 759 | ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); |
---|
| 760 | ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0); |
---|
| 761 | ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); |
---|
| 762 | |
---|
| 763 | bool ok = true; |
---|
| 764 | m_diag.resize(DoLDLT ? size : 0); |
---|
| 765 | |
---|
| 766 | for(Index k = 0; k < size; ++k) |
---|
| 767 | { |
---|
| 768 | // compute nonzero pattern of kth row of L, in topological order |
---|
| 769 | y[k] = 0.0; // Y(0:k) is now all zero |
---|
| 770 | Index top = size; // stack for pattern is empty |
---|
| 771 | tags[k] = k; // mark node k as visited |
---|
| 772 | m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L |
---|
| 773 | for(typename MatrixType::InnerIterator it(ap,k); it; ++it) |
---|
| 774 | { |
---|
| 775 | Index i = it.index(); |
---|
| 776 | if(i <= k) |
---|
| 777 | { |
---|
| 778 | y[i] += internal::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */ |
---|
| 779 | Index len; |
---|
| 780 | for(len = 0; tags[i] != k; i = m_parent[i]) |
---|
| 781 | { |
---|
| 782 | pattern[len++] = i; /* L(k,i) is nonzero */ |
---|
| 783 | tags[i] = k; /* mark i as visited */ |
---|
| 784 | } |
---|
| 785 | while(len > 0) |
---|
| 786 | pattern[--top] = pattern[--len]; |
---|
| 787 | } |
---|
| 788 | } |
---|
| 789 | |
---|
| 790 | /* compute numerical values kth row of L (a sparse triangular solve) */ |
---|
| 791 | |
---|
| 792 | RealScalar d = internal::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k) |
---|
| 793 | y[k] = 0.0; |
---|
| 794 | for(; top < size; ++top) |
---|
| 795 | { |
---|
| 796 | Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ |
---|
| 797 | Scalar yi = y[i]; /* get and clear Y(i) */ |
---|
| 798 | y[i] = 0.0; |
---|
| 799 | |
---|
| 800 | /* the nonzero entry L(k,i) */ |
---|
| 801 | Scalar l_ki; |
---|
| 802 | if(DoLDLT) |
---|
| 803 | l_ki = yi / m_diag[i]; |
---|
| 804 | else |
---|
| 805 | yi = l_ki = yi / Lx[Lp[i]]; |
---|
| 806 | |
---|
| 807 | Index p2 = Lp[i] + m_nonZerosPerCol[i]; |
---|
| 808 | Index p; |
---|
| 809 | for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) |
---|
| 810 | y[Li[p]] -= internal::conj(Lx[p]) * yi; |
---|
| 811 | d -= internal::real(l_ki * internal::conj(yi)); |
---|
| 812 | Li[p] = k; /* store L(k,i) in column form of L */ |
---|
| 813 | Lx[p] = l_ki; |
---|
| 814 | ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ |
---|
| 815 | } |
---|
| 816 | if(DoLDLT) |
---|
| 817 | { |
---|
| 818 | m_diag[k] = d; |
---|
| 819 | if(d == RealScalar(0)) |
---|
| 820 | { |
---|
| 821 | ok = false; /* failure, D(k,k) is zero */ |
---|
| 822 | break; |
---|
| 823 | } |
---|
| 824 | } |
---|
| 825 | else |
---|
| 826 | { |
---|
| 827 | Index p = Lp[k] + m_nonZerosPerCol[k]++; |
---|
| 828 | Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */ |
---|
| 829 | if(d <= RealScalar(0)) { |
---|
| 830 | ok = false; /* failure, matrix is not positive definite */ |
---|
| 831 | break; |
---|
| 832 | } |
---|
| 833 | Lx[p] = internal::sqrt(d) ; |
---|
| 834 | } |
---|
| 835 | } |
---|
| 836 | |
---|
| 837 | m_info = ok ? Success : NumericalIssue; |
---|
| 838 | m_factorizationIsOk = true; |
---|
| 839 | } |
---|
| 840 | |
---|
| 841 | namespace internal { |
---|
| 842 | |
---|
| 843 | template<typename Derived, typename Rhs> |
---|
| 844 | struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs> |
---|
| 845 | : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs> |
---|
| 846 | { |
---|
| 847 | typedef SimplicialCholeskyBase<Derived> Dec; |
---|
| 848 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 849 | |
---|
| 850 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 851 | { |
---|
| 852 | dec().derived()._solve(rhs(),dst); |
---|
| 853 | } |
---|
| 854 | }; |
---|
| 855 | |
---|
| 856 | template<typename Derived, typename Rhs> |
---|
| 857 | struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs> |
---|
| 858 | : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs> |
---|
| 859 | { |
---|
| 860 | typedef SimplicialCholeskyBase<Derived> Dec; |
---|
| 861 | EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 862 | |
---|
| 863 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 864 | { |
---|
| 865 | dec().derived()._solve_sparse(rhs(),dst); |
---|
| 866 | } |
---|
| 867 | }; |
---|
| 868 | |
---|
| 869 | } // end namespace internal |
---|
| 870 | |
---|
| 871 | } // end namespace Eigen |
---|
| 872 | |
---|
| 873 | #endif // EIGEN_SIMPLICIAL_CHOLESKY_H |
---|