1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
6 | // Copyright (C) 2010 Vincent Lejeune |
---|
7 | // |
---|
8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
11 | |
---|
12 | #ifndef EIGEN_QR_H |
---|
13 | #define EIGEN_QR_H |
---|
14 | |
---|
15 | namespace Eigen { |
---|
16 | |
---|
17 | /** \ingroup QR_Module |
---|
18 | * |
---|
19 | * |
---|
20 | * \class HouseholderQR |
---|
21 | * |
---|
22 | * \brief Householder QR decomposition of a matrix |
---|
23 | * |
---|
24 | * \param MatrixType the type of the matrix of which we are computing the QR decomposition |
---|
25 | * |
---|
26 | * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R |
---|
27 | * such that |
---|
28 | * \f[ |
---|
29 | * \mathbf{A} = \mathbf{Q} \, \mathbf{R} |
---|
30 | * \f] |
---|
31 | * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. |
---|
32 | * The result is stored in a compact way compatible with LAPACK. |
---|
33 | * |
---|
34 | * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. |
---|
35 | * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. |
---|
36 | * |
---|
37 | * This Householder QR decomposition is faster, but less numerically stable and less feature-full than |
---|
38 | * FullPivHouseholderQR or ColPivHouseholderQR. |
---|
39 | * |
---|
40 | * \sa MatrixBase::householderQr() |
---|
41 | */ |
---|
42 | template<typename _MatrixType> class HouseholderQR |
---|
43 | { |
---|
44 | public: |
---|
45 | |
---|
46 | typedef _MatrixType MatrixType; |
---|
47 | enum { |
---|
48 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
49 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
50 | Options = MatrixType::Options, |
---|
51 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
52 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
53 | }; |
---|
54 | typedef typename MatrixType::Scalar Scalar; |
---|
55 | typedef typename MatrixType::RealScalar RealScalar; |
---|
56 | typedef typename MatrixType::Index Index; |
---|
57 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
---|
58 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
---|
59 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
---|
60 | typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; |
---|
61 | |
---|
62 | /** |
---|
63 | * \brief Default Constructor. |
---|
64 | * |
---|
65 | * The default constructor is useful in cases in which the user intends to |
---|
66 | * perform decompositions via HouseholderQR::compute(const MatrixType&). |
---|
67 | */ |
---|
68 | HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} |
---|
69 | |
---|
70 | /** \brief Default Constructor with memory preallocation |
---|
71 | * |
---|
72 | * Like the default constructor but with preallocation of the internal data |
---|
73 | * according to the specified problem \a size. |
---|
74 | * \sa HouseholderQR() |
---|
75 | */ |
---|
76 | HouseholderQR(Index rows, Index cols) |
---|
77 | : m_qr(rows, cols), |
---|
78 | m_hCoeffs((std::min)(rows,cols)), |
---|
79 | m_temp(cols), |
---|
80 | m_isInitialized(false) {} |
---|
81 | |
---|
82 | HouseholderQR(const MatrixType& matrix) |
---|
83 | : m_qr(matrix.rows(), matrix.cols()), |
---|
84 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
---|
85 | m_temp(matrix.cols()), |
---|
86 | m_isInitialized(false) |
---|
87 | { |
---|
88 | compute(matrix); |
---|
89 | } |
---|
90 | |
---|
91 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
---|
92 | * *this is the QR decomposition, if any exists. |
---|
93 | * |
---|
94 | * \param b the right-hand-side of the equation to solve. |
---|
95 | * |
---|
96 | * \returns a solution. |
---|
97 | * |
---|
98 | * \note The case where b is a matrix is not yet implemented. Also, this |
---|
99 | * code is space inefficient. |
---|
100 | * |
---|
101 | * \note_about_checking_solutions |
---|
102 | * |
---|
103 | * \note_about_arbitrary_choice_of_solution |
---|
104 | * |
---|
105 | * Example: \include HouseholderQR_solve.cpp |
---|
106 | * Output: \verbinclude HouseholderQR_solve.out |
---|
107 | */ |
---|
108 | template<typename Rhs> |
---|
109 | inline const internal::solve_retval<HouseholderQR, Rhs> |
---|
110 | solve(const MatrixBase<Rhs>& b) const |
---|
111 | { |
---|
112 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
113 | return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived()); |
---|
114 | } |
---|
115 | |
---|
116 | HouseholderSequenceType householderQ() const |
---|
117 | { |
---|
118 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
119 | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
---|
120 | } |
---|
121 | |
---|
122 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
---|
123 | * in a LAPACK-compatible way. |
---|
124 | */ |
---|
125 | const MatrixType& matrixQR() const |
---|
126 | { |
---|
127 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
128 | return m_qr; |
---|
129 | } |
---|
130 | |
---|
131 | HouseholderQR& compute(const MatrixType& matrix); |
---|
132 | |
---|
133 | /** \returns the absolute value of the determinant of the matrix of which |
---|
134 | * *this is the QR decomposition. It has only linear complexity |
---|
135 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
136 | * as the QR decomposition has already been computed. |
---|
137 | * |
---|
138 | * \note This is only for square matrices. |
---|
139 | * |
---|
140 | * \warning a determinant can be very big or small, so for matrices |
---|
141 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
142 | * One way to work around that is to use logAbsDeterminant() instead. |
---|
143 | * |
---|
144 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
---|
145 | */ |
---|
146 | typename MatrixType::RealScalar absDeterminant() const; |
---|
147 | |
---|
148 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
---|
149 | * *this is the QR decomposition. It has only linear complexity |
---|
150 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
151 | * as the QR decomposition has already been computed. |
---|
152 | * |
---|
153 | * \note This is only for square matrices. |
---|
154 | * |
---|
155 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
---|
156 | * to determinant computation. |
---|
157 | * |
---|
158 | * \sa absDeterminant(), MatrixBase::determinant() |
---|
159 | */ |
---|
160 | typename MatrixType::RealScalar logAbsDeterminant() const; |
---|
161 | |
---|
162 | inline Index rows() const { return m_qr.rows(); } |
---|
163 | inline Index cols() const { return m_qr.cols(); } |
---|
164 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
---|
165 | |
---|
166 | protected: |
---|
167 | MatrixType m_qr; |
---|
168 | HCoeffsType m_hCoeffs; |
---|
169 | RowVectorType m_temp; |
---|
170 | bool m_isInitialized; |
---|
171 | }; |
---|
172 | |
---|
173 | template<typename MatrixType> |
---|
174 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const |
---|
175 | { |
---|
176 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
177 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
178 | return internal::abs(m_qr.diagonal().prod()); |
---|
179 | } |
---|
180 | |
---|
181 | template<typename MatrixType> |
---|
182 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const |
---|
183 | { |
---|
184 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
185 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
186 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
---|
187 | } |
---|
188 | |
---|
189 | namespace internal { |
---|
190 | |
---|
191 | /** \internal */ |
---|
192 | template<typename MatrixQR, typename HCoeffs> |
---|
193 | void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) |
---|
194 | { |
---|
195 | typedef typename MatrixQR::Index Index; |
---|
196 | typedef typename MatrixQR::Scalar Scalar; |
---|
197 | typedef typename MatrixQR::RealScalar RealScalar; |
---|
198 | Index rows = mat.rows(); |
---|
199 | Index cols = mat.cols(); |
---|
200 | Index size = (std::min)(rows,cols); |
---|
201 | |
---|
202 | eigen_assert(hCoeffs.size() == size); |
---|
203 | |
---|
204 | typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; |
---|
205 | TempType tempVector; |
---|
206 | if(tempData==0) |
---|
207 | { |
---|
208 | tempVector.resize(cols); |
---|
209 | tempData = tempVector.data(); |
---|
210 | } |
---|
211 | |
---|
212 | for(Index k = 0; k < size; ++k) |
---|
213 | { |
---|
214 | Index remainingRows = rows - k; |
---|
215 | Index remainingCols = cols - k - 1; |
---|
216 | |
---|
217 | RealScalar beta; |
---|
218 | mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); |
---|
219 | mat.coeffRef(k,k) = beta; |
---|
220 | |
---|
221 | // apply H to remaining part of m_qr from the left |
---|
222 | mat.bottomRightCorner(remainingRows, remainingCols) |
---|
223 | .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | /** \internal */ |
---|
228 | template<typename MatrixQR, typename HCoeffs> |
---|
229 | void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, |
---|
230 | typename MatrixQR::Index maxBlockSize=32, |
---|
231 | typename MatrixQR::Scalar* tempData = 0) |
---|
232 | { |
---|
233 | typedef typename MatrixQR::Index Index; |
---|
234 | typedef typename MatrixQR::Scalar Scalar; |
---|
235 | typedef typename MatrixQR::RealScalar RealScalar; |
---|
236 | typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; |
---|
237 | |
---|
238 | Index rows = mat.rows(); |
---|
239 | Index cols = mat.cols(); |
---|
240 | Index size = (std::min)(rows, cols); |
---|
241 | |
---|
242 | typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; |
---|
243 | TempType tempVector; |
---|
244 | if(tempData==0) |
---|
245 | { |
---|
246 | tempVector.resize(cols); |
---|
247 | tempData = tempVector.data(); |
---|
248 | } |
---|
249 | |
---|
250 | Index blockSize = (std::min)(maxBlockSize,size); |
---|
251 | |
---|
252 | Index k = 0; |
---|
253 | for (k = 0; k < size; k += blockSize) |
---|
254 | { |
---|
255 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
---|
256 | Index tcols = cols - k - bs; // trailing columns |
---|
257 | Index brows = rows-k; // rows of the block |
---|
258 | |
---|
259 | // partition the matrix: |
---|
260 | // A00 | A01 | A02 |
---|
261 | // mat = A10 | A11 | A12 |
---|
262 | // A20 | A21 | A22 |
---|
263 | // and performs the qr dec of [A11^T A12^T]^T |
---|
264 | // and update [A21^T A22^T]^T using level 3 operations. |
---|
265 | // Finally, the algorithm continue on A22 |
---|
266 | |
---|
267 | BlockType A11_21 = mat.block(k,k,brows,bs); |
---|
268 | Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); |
---|
269 | |
---|
270 | householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); |
---|
271 | |
---|
272 | if(tcols) |
---|
273 | { |
---|
274 | BlockType A21_22 = mat.block(k,k+bs,brows,tcols); |
---|
275 | apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); |
---|
276 | } |
---|
277 | } |
---|
278 | } |
---|
279 | |
---|
280 | template<typename _MatrixType, typename Rhs> |
---|
281 | struct solve_retval<HouseholderQR<_MatrixType>, Rhs> |
---|
282 | : solve_retval_base<HouseholderQR<_MatrixType>, Rhs> |
---|
283 | { |
---|
284 | EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) |
---|
285 | |
---|
286 | template<typename Dest> void evalTo(Dest& dst) const |
---|
287 | { |
---|
288 | const Index rows = dec().rows(), cols = dec().cols(); |
---|
289 | const Index rank = (std::min)(rows, cols); |
---|
290 | eigen_assert(rhs().rows() == rows); |
---|
291 | |
---|
292 | typename Rhs::PlainObject c(rhs()); |
---|
293 | |
---|
294 | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
---|
295 | c.applyOnTheLeft(householderSequence( |
---|
296 | dec().matrixQR().leftCols(rank), |
---|
297 | dec().hCoeffs().head(rank)).transpose() |
---|
298 | ); |
---|
299 | |
---|
300 | dec().matrixQR() |
---|
301 | .topLeftCorner(rank, rank) |
---|
302 | .template triangularView<Upper>() |
---|
303 | .solveInPlace(c.topRows(rank)); |
---|
304 | |
---|
305 | dst.topRows(rank) = c.topRows(rank); |
---|
306 | dst.bottomRows(cols-rank).setZero(); |
---|
307 | } |
---|
308 | }; |
---|
309 | |
---|
310 | } // end namespace internal |
---|
311 | |
---|
312 | template<typename MatrixType> |
---|
313 | HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) |
---|
314 | { |
---|
315 | Index rows = matrix.rows(); |
---|
316 | Index cols = matrix.cols(); |
---|
317 | Index size = (std::min)(rows,cols); |
---|
318 | |
---|
319 | m_qr = matrix; |
---|
320 | m_hCoeffs.resize(size); |
---|
321 | |
---|
322 | m_temp.resize(cols); |
---|
323 | |
---|
324 | internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data()); |
---|
325 | |
---|
326 | m_isInitialized = true; |
---|
327 | return *this; |
---|
328 | } |
---|
329 | |
---|
330 | /** \return the Householder QR decomposition of \c *this. |
---|
331 | * |
---|
332 | * \sa class HouseholderQR |
---|
333 | */ |
---|
334 | template<typename Derived> |
---|
335 | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> |
---|
336 | MatrixBase<Derived>::householderQr() const |
---|
337 | { |
---|
338 | return HouseholderQR<PlainObject>(eval()); |
---|
339 | } |
---|
340 | |
---|
341 | } // end namespace Eigen |
---|
342 | |
---|
343 | #endif // EIGEN_QR_H |
---|