[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
| 6 | // Copyright (C) 2010 Vincent Lejeune |
---|
| 7 | // |
---|
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 11 | |
---|
| 12 | #ifndef EIGEN_QR_H |
---|
| 13 | #define EIGEN_QR_H |
---|
| 14 | |
---|
| 15 | namespace Eigen { |
---|
| 16 | |
---|
| 17 | /** \ingroup QR_Module |
---|
| 18 | * |
---|
| 19 | * |
---|
| 20 | * \class HouseholderQR |
---|
| 21 | * |
---|
| 22 | * \brief Householder QR decomposition of a matrix |
---|
| 23 | * |
---|
| 24 | * \param MatrixType the type of the matrix of which we are computing the QR decomposition |
---|
| 25 | * |
---|
| 26 | * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R |
---|
| 27 | * such that |
---|
| 28 | * \f[ |
---|
| 29 | * \mathbf{A} = \mathbf{Q} \, \mathbf{R} |
---|
| 30 | * \f] |
---|
| 31 | * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. |
---|
| 32 | * The result is stored in a compact way compatible with LAPACK. |
---|
| 33 | * |
---|
| 34 | * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. |
---|
| 35 | * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. |
---|
| 36 | * |
---|
| 37 | * This Householder QR decomposition is faster, but less numerically stable and less feature-full than |
---|
| 38 | * FullPivHouseholderQR or ColPivHouseholderQR. |
---|
| 39 | * |
---|
| 40 | * \sa MatrixBase::householderQr() |
---|
| 41 | */ |
---|
| 42 | template<typename _MatrixType> class HouseholderQR |
---|
| 43 | { |
---|
| 44 | public: |
---|
| 45 | |
---|
| 46 | typedef _MatrixType MatrixType; |
---|
| 47 | enum { |
---|
| 48 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
| 49 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
| 50 | Options = MatrixType::Options, |
---|
| 51 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
| 52 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
| 53 | }; |
---|
| 54 | typedef typename MatrixType::Scalar Scalar; |
---|
| 55 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 56 | typedef typename MatrixType::Index Index; |
---|
| 57 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
---|
| 58 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
---|
| 59 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
---|
| 60 | typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType; |
---|
| 61 | |
---|
| 62 | /** |
---|
| 63 | * \brief Default Constructor. |
---|
| 64 | * |
---|
| 65 | * The default constructor is useful in cases in which the user intends to |
---|
| 66 | * perform decompositions via HouseholderQR::compute(const MatrixType&). |
---|
| 67 | */ |
---|
| 68 | HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} |
---|
| 69 | |
---|
| 70 | /** \brief Default Constructor with memory preallocation |
---|
| 71 | * |
---|
| 72 | * Like the default constructor but with preallocation of the internal data |
---|
| 73 | * according to the specified problem \a size. |
---|
| 74 | * \sa HouseholderQR() |
---|
| 75 | */ |
---|
| 76 | HouseholderQR(Index rows, Index cols) |
---|
| 77 | : m_qr(rows, cols), |
---|
| 78 | m_hCoeffs((std::min)(rows,cols)), |
---|
| 79 | m_temp(cols), |
---|
| 80 | m_isInitialized(false) {} |
---|
| 81 | |
---|
| 82 | HouseholderQR(const MatrixType& matrix) |
---|
| 83 | : m_qr(matrix.rows(), matrix.cols()), |
---|
| 84 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
---|
| 85 | m_temp(matrix.cols()), |
---|
| 86 | m_isInitialized(false) |
---|
| 87 | { |
---|
| 88 | compute(matrix); |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
---|
| 92 | * *this is the QR decomposition, if any exists. |
---|
| 93 | * |
---|
| 94 | * \param b the right-hand-side of the equation to solve. |
---|
| 95 | * |
---|
| 96 | * \returns a solution. |
---|
| 97 | * |
---|
| 98 | * \note The case where b is a matrix is not yet implemented. Also, this |
---|
| 99 | * code is space inefficient. |
---|
| 100 | * |
---|
| 101 | * \note_about_checking_solutions |
---|
| 102 | * |
---|
| 103 | * \note_about_arbitrary_choice_of_solution |
---|
| 104 | * |
---|
| 105 | * Example: \include HouseholderQR_solve.cpp |
---|
| 106 | * Output: \verbinclude HouseholderQR_solve.out |
---|
| 107 | */ |
---|
| 108 | template<typename Rhs> |
---|
| 109 | inline const internal::solve_retval<HouseholderQR, Rhs> |
---|
| 110 | solve(const MatrixBase<Rhs>& b) const |
---|
| 111 | { |
---|
| 112 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
| 113 | return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived()); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | HouseholderSequenceType householderQ() const |
---|
| 117 | { |
---|
| 118 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
| 119 | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
---|
| 123 | * in a LAPACK-compatible way. |
---|
| 124 | */ |
---|
| 125 | const MatrixType& matrixQR() const |
---|
| 126 | { |
---|
| 127 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
| 128 | return m_qr; |
---|
| 129 | } |
---|
| 130 | |
---|
| 131 | HouseholderQR& compute(const MatrixType& matrix); |
---|
| 132 | |
---|
| 133 | /** \returns the absolute value of the determinant of the matrix of which |
---|
| 134 | * *this is the QR decomposition. It has only linear complexity |
---|
| 135 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
| 136 | * as the QR decomposition has already been computed. |
---|
| 137 | * |
---|
| 138 | * \note This is only for square matrices. |
---|
| 139 | * |
---|
| 140 | * \warning a determinant can be very big or small, so for matrices |
---|
| 141 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
| 142 | * One way to work around that is to use logAbsDeterminant() instead. |
---|
| 143 | * |
---|
| 144 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
---|
| 145 | */ |
---|
| 146 | typename MatrixType::RealScalar absDeterminant() const; |
---|
| 147 | |
---|
| 148 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
---|
| 149 | * *this is the QR decomposition. It has only linear complexity |
---|
| 150 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
| 151 | * as the QR decomposition has already been computed. |
---|
| 152 | * |
---|
| 153 | * \note This is only for square matrices. |
---|
| 154 | * |
---|
| 155 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
---|
| 156 | * to determinant computation. |
---|
| 157 | * |
---|
| 158 | * \sa absDeterminant(), MatrixBase::determinant() |
---|
| 159 | */ |
---|
| 160 | typename MatrixType::RealScalar logAbsDeterminant() const; |
---|
| 161 | |
---|
| 162 | inline Index rows() const { return m_qr.rows(); } |
---|
| 163 | inline Index cols() const { return m_qr.cols(); } |
---|
| 164 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
---|
| 165 | |
---|
| 166 | protected: |
---|
| 167 | MatrixType m_qr; |
---|
| 168 | HCoeffsType m_hCoeffs; |
---|
| 169 | RowVectorType m_temp; |
---|
| 170 | bool m_isInitialized; |
---|
| 171 | }; |
---|
| 172 | |
---|
| 173 | template<typename MatrixType> |
---|
| 174 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const |
---|
| 175 | { |
---|
| 176 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
| 177 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
| 178 | return internal::abs(m_qr.diagonal().prod()); |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | template<typename MatrixType> |
---|
| 182 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const |
---|
| 183 | { |
---|
| 184 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); |
---|
| 185 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
| 186 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | namespace internal { |
---|
| 190 | |
---|
| 191 | /** \internal */ |
---|
| 192 | template<typename MatrixQR, typename HCoeffs> |
---|
| 193 | void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) |
---|
| 194 | { |
---|
| 195 | typedef typename MatrixQR::Index Index; |
---|
| 196 | typedef typename MatrixQR::Scalar Scalar; |
---|
| 197 | typedef typename MatrixQR::RealScalar RealScalar; |
---|
| 198 | Index rows = mat.rows(); |
---|
| 199 | Index cols = mat.cols(); |
---|
| 200 | Index size = (std::min)(rows,cols); |
---|
| 201 | |
---|
| 202 | eigen_assert(hCoeffs.size() == size); |
---|
| 203 | |
---|
| 204 | typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; |
---|
| 205 | TempType tempVector; |
---|
| 206 | if(tempData==0) |
---|
| 207 | { |
---|
| 208 | tempVector.resize(cols); |
---|
| 209 | tempData = tempVector.data(); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | for(Index k = 0; k < size; ++k) |
---|
| 213 | { |
---|
| 214 | Index remainingRows = rows - k; |
---|
| 215 | Index remainingCols = cols - k - 1; |
---|
| 216 | |
---|
| 217 | RealScalar beta; |
---|
| 218 | mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); |
---|
| 219 | mat.coeffRef(k,k) = beta; |
---|
| 220 | |
---|
| 221 | // apply H to remaining part of m_qr from the left |
---|
| 222 | mat.bottomRightCorner(remainingRows, remainingCols) |
---|
| 223 | .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); |
---|
| 224 | } |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | /** \internal */ |
---|
| 228 | template<typename MatrixQR, typename HCoeffs> |
---|
| 229 | void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs, |
---|
| 230 | typename MatrixQR::Index maxBlockSize=32, |
---|
| 231 | typename MatrixQR::Scalar* tempData = 0) |
---|
| 232 | { |
---|
| 233 | typedef typename MatrixQR::Index Index; |
---|
| 234 | typedef typename MatrixQR::Scalar Scalar; |
---|
| 235 | typedef typename MatrixQR::RealScalar RealScalar; |
---|
| 236 | typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; |
---|
| 237 | |
---|
| 238 | Index rows = mat.rows(); |
---|
| 239 | Index cols = mat.cols(); |
---|
| 240 | Index size = (std::min)(rows, cols); |
---|
| 241 | |
---|
| 242 | typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; |
---|
| 243 | TempType tempVector; |
---|
| 244 | if(tempData==0) |
---|
| 245 | { |
---|
| 246 | tempVector.resize(cols); |
---|
| 247 | tempData = tempVector.data(); |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | Index blockSize = (std::min)(maxBlockSize,size); |
---|
| 251 | |
---|
| 252 | Index k = 0; |
---|
| 253 | for (k = 0; k < size; k += blockSize) |
---|
| 254 | { |
---|
| 255 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
---|
| 256 | Index tcols = cols - k - bs; // trailing columns |
---|
| 257 | Index brows = rows-k; // rows of the block |
---|
| 258 | |
---|
| 259 | // partition the matrix: |
---|
| 260 | // A00 | A01 | A02 |
---|
| 261 | // mat = A10 | A11 | A12 |
---|
| 262 | // A20 | A21 | A22 |
---|
| 263 | // and performs the qr dec of [A11^T A12^T]^T |
---|
| 264 | // and update [A21^T A22^T]^T using level 3 operations. |
---|
| 265 | // Finally, the algorithm continue on A22 |
---|
| 266 | |
---|
| 267 | BlockType A11_21 = mat.block(k,k,brows,bs); |
---|
| 268 | Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); |
---|
| 269 | |
---|
| 270 | householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); |
---|
| 271 | |
---|
| 272 | if(tcols) |
---|
| 273 | { |
---|
| 274 | BlockType A21_22 = mat.block(k,k+bs,brows,tcols); |
---|
| 275 | apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint()); |
---|
| 276 | } |
---|
| 277 | } |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | template<typename _MatrixType, typename Rhs> |
---|
| 281 | struct solve_retval<HouseholderQR<_MatrixType>, Rhs> |
---|
| 282 | : solve_retval_base<HouseholderQR<_MatrixType>, Rhs> |
---|
| 283 | { |
---|
| 284 | EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs) |
---|
| 285 | |
---|
| 286 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 287 | { |
---|
| 288 | const Index rows = dec().rows(), cols = dec().cols(); |
---|
| 289 | const Index rank = (std::min)(rows, cols); |
---|
| 290 | eigen_assert(rhs().rows() == rows); |
---|
| 291 | |
---|
| 292 | typename Rhs::PlainObject c(rhs()); |
---|
| 293 | |
---|
| 294 | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
---|
| 295 | c.applyOnTheLeft(householderSequence( |
---|
| 296 | dec().matrixQR().leftCols(rank), |
---|
| 297 | dec().hCoeffs().head(rank)).transpose() |
---|
| 298 | ); |
---|
| 299 | |
---|
| 300 | dec().matrixQR() |
---|
| 301 | .topLeftCorner(rank, rank) |
---|
| 302 | .template triangularView<Upper>() |
---|
| 303 | .solveInPlace(c.topRows(rank)); |
---|
| 304 | |
---|
| 305 | dst.topRows(rank) = c.topRows(rank); |
---|
| 306 | dst.bottomRows(cols-rank).setZero(); |
---|
| 307 | } |
---|
| 308 | }; |
---|
| 309 | |
---|
| 310 | } // end namespace internal |
---|
| 311 | |
---|
| 312 | template<typename MatrixType> |
---|
| 313 | HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix) |
---|
| 314 | { |
---|
| 315 | Index rows = matrix.rows(); |
---|
| 316 | Index cols = matrix.cols(); |
---|
| 317 | Index size = (std::min)(rows,cols); |
---|
| 318 | |
---|
| 319 | m_qr = matrix; |
---|
| 320 | m_hCoeffs.resize(size); |
---|
| 321 | |
---|
| 322 | m_temp.resize(cols); |
---|
| 323 | |
---|
| 324 | internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data()); |
---|
| 325 | |
---|
| 326 | m_isInitialized = true; |
---|
| 327 | return *this; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | /** \return the Householder QR decomposition of \c *this. |
---|
| 331 | * |
---|
| 332 | * \sa class HouseholderQR |
---|
| 333 | */ |
---|
| 334 | template<typename Derived> |
---|
| 335 | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> |
---|
| 336 | MatrixBase<Derived>::householderQr() const |
---|
| 337 | { |
---|
| 338 | return HouseholderQR<PlainObject>(eval()); |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | } // end namespace Eigen |
---|
| 342 | |
---|
| 343 | #endif // EIGEN_QR_H |
---|