Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/QR/FullPivHouseholderQR.h @ 10479

Last change on this file since 10479 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 22.1 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
12#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
13
14namespace Eigen {
15
16namespace internal {
17
18template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
19
20template<typename MatrixType>
21struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
22{
23  typedef typename MatrixType::PlainObject ReturnType;
24};
25
26}
27
28/** \ingroup QR_Module
29  *
30  * \class FullPivHouseholderQR
31  *
32  * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
33  *
34  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
35  *
36  * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
37  * such that
38  * \f[
39  *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
40  * \f]
41  * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
42  * upper triangular matrix.
43  *
44  * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
45  * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
46  *
47  * \sa MatrixBase::fullPivHouseholderQr()
48  */
49template<typename _MatrixType> class FullPivHouseholderQR
50{
51  public:
52
53    typedef _MatrixType MatrixType;
54    enum {
55      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57      Options = MatrixType::Options,
58      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
59      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60    };
61    typedef typename MatrixType::Scalar Scalar;
62    typedef typename MatrixType::RealScalar RealScalar;
63    typedef typename MatrixType::Index Index;
64    typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
65    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
66    typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
67    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
68    typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
69    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
70    typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
71
72    /** \brief Default Constructor.
73      *
74      * The default constructor is useful in cases in which the user intends to
75      * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
76      */
77    FullPivHouseholderQR()
78      : m_qr(),
79        m_hCoeffs(),
80        m_rows_transpositions(),
81        m_cols_transpositions(),
82        m_cols_permutation(),
83        m_temp(),
84        m_isInitialized(false),
85        m_usePrescribedThreshold(false) {}
86
87    /** \brief Default Constructor with memory preallocation
88      *
89      * Like the default constructor but with preallocation of the internal data
90      * according to the specified problem \a size.
91      * \sa FullPivHouseholderQR()
92      */
93    FullPivHouseholderQR(Index rows, Index cols)
94      : m_qr(rows, cols),
95        m_hCoeffs((std::min)(rows,cols)),
96        m_rows_transpositions(rows),
97        m_cols_transpositions(cols),
98        m_cols_permutation(cols),
99        m_temp((std::min)(rows,cols)),
100        m_isInitialized(false),
101        m_usePrescribedThreshold(false) {}
102
103    FullPivHouseholderQR(const MatrixType& matrix)
104      : m_qr(matrix.rows(), matrix.cols()),
105        m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
106        m_rows_transpositions(matrix.rows()),
107        m_cols_transpositions(matrix.cols()),
108        m_cols_permutation(matrix.cols()),
109        m_temp((std::min)(matrix.rows(), matrix.cols())),
110        m_isInitialized(false),
111        m_usePrescribedThreshold(false)
112    {
113      compute(matrix);
114    }
115
116    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
117      * *this is the QR decomposition, if any exists.
118      *
119      * \param b the right-hand-side of the equation to solve.
120      *
121      * \returns a solution.
122      *
123      * \note The case where b is a matrix is not yet implemented. Also, this
124      *       code is space inefficient.
125      *
126      * \note_about_checking_solutions
127      *
128      * \note_about_arbitrary_choice_of_solution
129      *
130      * Example: \include FullPivHouseholderQR_solve.cpp
131      * Output: \verbinclude FullPivHouseholderQR_solve.out
132      */
133    template<typename Rhs>
134    inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
135    solve(const MatrixBase<Rhs>& b) const
136    {
137      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
138      return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
139    }
140
141    /** \returns Expression object representing the matrix Q
142      */
143    MatrixQReturnType matrixQ(void) const;
144
145    /** \returns a reference to the matrix where the Householder QR decomposition is stored
146      */
147    const MatrixType& matrixQR() const
148    {
149      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
150      return m_qr;
151    }
152
153    FullPivHouseholderQR& compute(const MatrixType& matrix);
154
155    const PermutationType& colsPermutation() const
156    {
157      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
158      return m_cols_permutation;
159    }
160
161    const IntColVectorType& rowsTranspositions() const
162    {
163      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
164      return m_rows_transpositions;
165    }
166
167    /** \returns the absolute value of the determinant of the matrix of which
168      * *this is the QR decomposition. It has only linear complexity
169      * (that is, O(n) where n is the dimension of the square matrix)
170      * as the QR decomposition has already been computed.
171      *
172      * \note This is only for square matrices.
173      *
174      * \warning a determinant can be very big or small, so for matrices
175      * of large enough dimension, there is a risk of overflow/underflow.
176      * One way to work around that is to use logAbsDeterminant() instead.
177      *
178      * \sa logAbsDeterminant(), MatrixBase::determinant()
179      */
180    typename MatrixType::RealScalar absDeterminant() const;
181
182    /** \returns the natural log of the absolute value of the determinant of the matrix of which
183      * *this is the QR decomposition. It has only linear complexity
184      * (that is, O(n) where n is the dimension of the square matrix)
185      * as the QR decomposition has already been computed.
186      *
187      * \note This is only for square matrices.
188      *
189      * \note This method is useful to work around the risk of overflow/underflow that's inherent
190      * to determinant computation.
191      *
192      * \sa absDeterminant(), MatrixBase::determinant()
193      */
194    typename MatrixType::RealScalar logAbsDeterminant() const;
195
196    /** \returns the rank of the matrix of which *this is the QR decomposition.
197      *
198      * \note This method has to determine which pivots should be considered nonzero.
199      *       For that, it uses the threshold value that you can control by calling
200      *       setThreshold(const RealScalar&).
201      */
202    inline Index rank() const
203    {
204      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
205      RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
206      Index result = 0;
207      for(Index i = 0; i < m_nonzero_pivots; ++i)
208        result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
209      return result;
210    }
211
212    /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
213      *
214      * \note This method has to determine which pivots should be considered nonzero.
215      *       For that, it uses the threshold value that you can control by calling
216      *       setThreshold(const RealScalar&).
217      */
218    inline Index dimensionOfKernel() const
219    {
220      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
221      return cols() - rank();
222    }
223
224    /** \returns true if the matrix of which *this is the QR decomposition represents an injective
225      *          linear map, i.e. has trivial kernel; false otherwise.
226      *
227      * \note This method has to determine which pivots should be considered nonzero.
228      *       For that, it uses the threshold value that you can control by calling
229      *       setThreshold(const RealScalar&).
230      */
231    inline bool isInjective() const
232    {
233      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
234      return rank() == cols();
235    }
236
237    /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
238      *          linear map; false otherwise.
239      *
240      * \note This method has to determine which pivots should be considered nonzero.
241      *       For that, it uses the threshold value that you can control by calling
242      *       setThreshold(const RealScalar&).
243      */
244    inline bool isSurjective() const
245    {
246      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
247      return rank() == rows();
248    }
249
250    /** \returns true if the matrix of which *this is the QR decomposition is invertible.
251      *
252      * \note This method has to determine which pivots should be considered nonzero.
253      *       For that, it uses the threshold value that you can control by calling
254      *       setThreshold(const RealScalar&).
255      */
256    inline bool isInvertible() const
257    {
258      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
259      return isInjective() && isSurjective();
260    }
261
262    /** \returns the inverse of the matrix of which *this is the QR decomposition.
263      *
264      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
265      *       Use isInvertible() to first determine whether this matrix is invertible.
266      */    inline const
267    internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
268    inverse() const
269    {
270      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
271      return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
272               (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
273    }
274
275    inline Index rows() const { return m_qr.rows(); }
276    inline Index cols() const { return m_qr.cols(); }
277    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
278
279    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
280      * who need to determine when pivots are to be considered nonzero. This is not used for the
281      * QR decomposition itself.
282      *
283      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
284      * uses a formula to automatically determine a reasonable threshold.
285      * Once you have called the present method setThreshold(const RealScalar&),
286      * your value is used instead.
287      *
288      * \param threshold The new value to use as the threshold.
289      *
290      * A pivot will be considered nonzero if its absolute value is strictly greater than
291      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
292      * where maxpivot is the biggest pivot.
293      *
294      * If you want to come back to the default behavior, call setThreshold(Default_t)
295      */
296    FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
297    {
298      m_usePrescribedThreshold = true;
299      m_prescribedThreshold = threshold;
300      return *this;
301    }
302
303    /** Allows to come back to the default behavior, letting Eigen use its default formula for
304      * determining the threshold.
305      *
306      * You should pass the special object Eigen::Default as parameter here.
307      * \code qr.setThreshold(Eigen::Default); \endcode
308      *
309      * See the documentation of setThreshold(const RealScalar&).
310      */
311    FullPivHouseholderQR& setThreshold(Default_t)
312    {
313      m_usePrescribedThreshold = false;
314      return *this;
315    }
316
317    /** Returns the threshold that will be used by certain methods such as rank().
318      *
319      * See the documentation of setThreshold(const RealScalar&).
320      */
321    RealScalar threshold() const
322    {
323      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
324      return m_usePrescribedThreshold ? m_prescribedThreshold
325      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
326      // and turns out to be identical to Higham's formula used already in LDLt.
327                                      : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
328    }
329
330    /** \returns the number of nonzero pivots in the QR decomposition.
331      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
332      * So that notion isn't really intrinsically interesting, but it is
333      * still useful when implementing algorithms.
334      *
335      * \sa rank()
336      */
337    inline Index nonzeroPivots() const
338    {
339      eigen_assert(m_isInitialized && "LU is not initialized.");
340      return m_nonzero_pivots;
341    }
342
343    /** \returns the absolute value of the biggest pivot, i.e. the biggest
344      *          diagonal coefficient of U.
345      */
346    RealScalar maxPivot() const { return m_maxpivot; }
347
348  protected:
349    MatrixType m_qr;
350    HCoeffsType m_hCoeffs;
351    IntColVectorType m_rows_transpositions;
352    IntRowVectorType m_cols_transpositions;
353    PermutationType m_cols_permutation;
354    RowVectorType m_temp;
355    bool m_isInitialized, m_usePrescribedThreshold;
356    RealScalar m_prescribedThreshold, m_maxpivot;
357    Index m_nonzero_pivots;
358    RealScalar m_precision;
359    Index m_det_pq;
360};
361
362template<typename MatrixType>
363typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
364{
365  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
366  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
367  return internal::abs(m_qr.diagonal().prod());
368}
369
370template<typename MatrixType>
371typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
372{
373  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
374  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
375  return m_qr.diagonal().cwiseAbs().array().log().sum();
376}
377
378template<typename MatrixType>
379FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
380{
381  Index rows = matrix.rows();
382  Index cols = matrix.cols();
383  Index size = (std::min)(rows,cols);
384
385  m_qr = matrix;
386  m_hCoeffs.resize(size);
387
388  m_temp.resize(cols);
389
390  m_precision = NumTraits<Scalar>::epsilon() * size;
391
392  m_rows_transpositions.resize(matrix.rows());
393  m_cols_transpositions.resize(matrix.cols());
394  Index number_of_transpositions = 0;
395
396  RealScalar biggest(0);
397
398  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
399  m_maxpivot = RealScalar(0);
400
401  for (Index k = 0; k < size; ++k)
402  {
403    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
404    RealScalar biggest_in_corner;
405
406    biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
407                            .cwiseAbs()
408                            .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
409    row_of_biggest_in_corner += k;
410    col_of_biggest_in_corner += k;
411    if(k==0) biggest = biggest_in_corner;
412
413    // if the corner is negligible, then we have less than full rank, and we can finish early
414    if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
415    {
416      m_nonzero_pivots = k;
417      for(Index i = k; i < size; i++)
418      {
419        m_rows_transpositions.coeffRef(i) = i;
420        m_cols_transpositions.coeffRef(i) = i;
421        m_hCoeffs.coeffRef(i) = Scalar(0);
422      }
423      break;
424    }
425
426    m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
427    m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
428    if(k != row_of_biggest_in_corner) {
429      m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
430      ++number_of_transpositions;
431    }
432    if(k != col_of_biggest_in_corner) {
433      m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
434      ++number_of_transpositions;
435    }
436
437    RealScalar beta;
438    m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
439    m_qr.coeffRef(k,k) = beta;
440
441    // remember the maximum absolute value of diagonal coefficients
442    if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);
443
444    m_qr.bottomRightCorner(rows-k, cols-k-1)
445        .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
446  }
447
448  m_cols_permutation.setIdentity(cols);
449  for(Index k = 0; k < size; ++k)
450    m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
451
452  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
453  m_isInitialized = true;
454
455  return *this;
456}
457
458namespace internal {
459
460template<typename _MatrixType, typename Rhs>
461struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
462  : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
463{
464  EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
465
466  template<typename Dest> void evalTo(Dest& dst) const
467  {
468    const Index rows = dec().rows(), cols = dec().cols();
469    eigen_assert(rhs().rows() == rows);
470
471    // FIXME introduce nonzeroPivots() and use it here. and more generally,
472    // make the same improvements in this dec as in FullPivLU.
473    if(dec().rank()==0)
474    {
475      dst.setZero();
476      return;
477    }
478
479    typename Rhs::PlainObject c(rhs());
480
481    Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
482    for (Index k = 0; k < dec().rank(); ++k)
483    {
484      Index remainingSize = rows-k;
485      c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
486      c.bottomRightCorner(remainingSize, rhs().cols())
487       .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
488                                  dec().hCoeffs().coeff(k), &temp.coeffRef(0));
489    }
490
491    if(!dec().isSurjective())
492    {
493      // is c is in the image of R ?
494      RealScalar biggest_in_upper_part_of_c = c.topRows(   dec().rank()     ).cwiseAbs().maxCoeff();
495      RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
496      // FIXME brain dead
497      const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
498      // this internal:: prefix is needed by at least gcc 3.4 and ICC
499      if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
500        return;
501    }
502    dec().matrixQR()
503       .topLeftCorner(dec().rank(), dec().rank())
504       .template triangularView<Upper>()
505       .solveInPlace(c.topRows(dec().rank()));
506
507    for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
508    for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
509  }
510};
511
512/** \ingroup QR_Module
513  *
514  * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
515  *
516  * \tparam MatrixType type of underlying dense matrix
517  */
518template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
519  : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
520{
521public:
522  typedef typename MatrixType::Index Index;
523  typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
524  typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
525  typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
526                 MatrixType::MaxRowsAtCompileTime> WorkVectorType;
527
528  FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
529                                        const HCoeffsType&      hCoeffs,
530                                        const IntColVectorType& rowsTranspositions)
531    : m_qr(qr),
532      m_hCoeffs(hCoeffs),
533      m_rowsTranspositions(rowsTranspositions)
534      {}
535
536  template <typename ResultType>
537  void evalTo(ResultType& result) const
538  {
539    const Index rows = m_qr.rows();
540    WorkVectorType workspace(rows);
541    evalTo(result, workspace);
542  }
543
544  template <typename ResultType>
545  void evalTo(ResultType& result, WorkVectorType& workspace) const
546  {
547    // compute the product H'_0 H'_1 ... H'_n-1,
548    // where H_k is the k-th Householder transformation I - h_k v_k v_k'
549    // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
550    const Index rows = m_qr.rows();
551    const Index cols = m_qr.cols();
552    const Index size = (std::min)(rows, cols);
553    workspace.resize(rows);
554    result.setIdentity(rows, rows);
555    for (Index k = size-1; k >= 0; k--)
556    {
557      result.block(k, k, rows-k, rows-k)
558            .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), internal::conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
559      result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
560    }
561  }
562
563    Index rows() const { return m_qr.rows(); }
564    Index cols() const { return m_qr.rows(); }
565
566protected:
567  typename MatrixType::Nested m_qr;
568  typename HCoeffsType::Nested m_hCoeffs;
569  typename IntColVectorType::Nested m_rowsTranspositions;
570};
571
572} // end namespace internal
573
574template<typename MatrixType>
575inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
576{
577  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
578  return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
579}
580
581/** \return the full-pivoting Householder QR decomposition of \c *this.
582  *
583  * \sa class FullPivHouseholderQR
584  */
585template<typename Derived>
586const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
587MatrixBase<Derived>::fullPivHouseholderQr() const
588{
589  return FullPivHouseholderQR<PlainObject>(eval());
590}
591
592} // end namespace Eigen
593
594#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
Note: See TracBrowser for help on using the repository browser.