1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | /* |
---|
11 | |
---|
12 | NOTE: this routine has been adapted from the CSparse library: |
---|
13 | |
---|
14 | Copyright (c) 2006, Timothy A. Davis. |
---|
15 | http://www.cise.ufl.edu/research/sparse/CSparse |
---|
16 | |
---|
17 | CSparse is free software; you can redistribute it and/or |
---|
18 | modify it under the terms of the GNU Lesser General Public |
---|
19 | License as published by the Free Software Foundation; either |
---|
20 | version 2.1 of the License, or (at your option) any later version. |
---|
21 | |
---|
22 | CSparse is distributed in the hope that it will be useful, |
---|
23 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
24 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
25 | Lesser General Public License for more details. |
---|
26 | |
---|
27 | You should have received a copy of the GNU Lesser General Public |
---|
28 | License along with this Module; if not, write to the Free Software |
---|
29 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
30 | |
---|
31 | */ |
---|
32 | |
---|
33 | #include "../Core/util/NonMPL2.h" |
---|
34 | |
---|
35 | #ifndef EIGEN_SPARSE_AMD_H |
---|
36 | #define EIGEN_SPARSE_AMD_H |
---|
37 | |
---|
38 | namespace Eigen { |
---|
39 | |
---|
40 | namespace internal { |
---|
41 | |
---|
42 | template<typename T> inline T amd_flip(const T& i) { return -i-2; } |
---|
43 | template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } |
---|
44 | template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } |
---|
45 | template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } |
---|
46 | |
---|
47 | /* clear w */ |
---|
48 | template<typename Index> |
---|
49 | static int cs_wclear (Index mark, Index lemax, Index *w, Index n) |
---|
50 | { |
---|
51 | Index k; |
---|
52 | if(mark < 2 || (mark + lemax < 0)) |
---|
53 | { |
---|
54 | for(k = 0; k < n; k++) |
---|
55 | if(w[k] != 0) |
---|
56 | w[k] = 1; |
---|
57 | mark = 2; |
---|
58 | } |
---|
59 | return (mark); /* at this point, w[0..n-1] < mark holds */ |
---|
60 | } |
---|
61 | |
---|
62 | /* depth-first search and postorder of a tree rooted at node j */ |
---|
63 | template<typename Index> |
---|
64 | Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack) |
---|
65 | { |
---|
66 | int i, p, top = 0; |
---|
67 | if(!head || !next || !post || !stack) return (-1); /* check inputs */ |
---|
68 | stack[0] = j; /* place j on the stack */ |
---|
69 | while (top >= 0) /* while (stack is not empty) */ |
---|
70 | { |
---|
71 | p = stack[top]; /* p = top of stack */ |
---|
72 | i = head[p]; /* i = youngest child of p */ |
---|
73 | if(i == -1) |
---|
74 | { |
---|
75 | top--; /* p has no unordered children left */ |
---|
76 | post[k++] = p; /* node p is the kth postordered node */ |
---|
77 | } |
---|
78 | else |
---|
79 | { |
---|
80 | head[p] = next[i]; /* remove i from children of p */ |
---|
81 | stack[++top] = i; /* start dfs on child node i */ |
---|
82 | } |
---|
83 | } |
---|
84 | return k; |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | /** \internal |
---|
89 | * Approximate minimum degree ordering algorithm. |
---|
90 | * \returns the permutation P reducing the fill-in of the input matrix \a C |
---|
91 | * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional. |
---|
92 | * On exit the values of C are destroyed */ |
---|
93 | template<typename Scalar, typename Index> |
---|
94 | void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm) |
---|
95 | { |
---|
96 | using std::sqrt; |
---|
97 | typedef SparseMatrix<Scalar,ColMajor,Index> CCS; |
---|
98 | |
---|
99 | int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, |
---|
100 | k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, |
---|
101 | ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t; |
---|
102 | unsigned int h; |
---|
103 | |
---|
104 | Index n = C.cols(); |
---|
105 | dense = std::max<Index> (16, Index(10 * sqrt(double(n)))); /* find dense threshold */ |
---|
106 | dense = std::min<Index> (n-2, dense); |
---|
107 | |
---|
108 | Index cnz = C.nonZeros(); |
---|
109 | perm.resize(n+1); |
---|
110 | t = cnz + cnz/5 + 2*n; /* add elbow room to C */ |
---|
111 | C.resizeNonZeros(t); |
---|
112 | |
---|
113 | Index* W = new Index[8*(n+1)]; /* get workspace */ |
---|
114 | Index* len = W; |
---|
115 | Index* nv = W + (n+1); |
---|
116 | Index* next = W + 2*(n+1); |
---|
117 | Index* head = W + 3*(n+1); |
---|
118 | Index* elen = W + 4*(n+1); |
---|
119 | Index* degree = W + 5*(n+1); |
---|
120 | Index* w = W + 6*(n+1); |
---|
121 | Index* hhead = W + 7*(n+1); |
---|
122 | Index* last = perm.indices().data(); /* use P as workspace for last */ |
---|
123 | |
---|
124 | /* --- Initialize quotient graph ---------------------------------------- */ |
---|
125 | Index* Cp = C.outerIndexPtr(); |
---|
126 | Index* Ci = C.innerIndexPtr(); |
---|
127 | for(k = 0; k < n; k++) |
---|
128 | len[k] = Cp[k+1] - Cp[k]; |
---|
129 | len[n] = 0; |
---|
130 | nzmax = t; |
---|
131 | |
---|
132 | for(i = 0; i <= n; i++) |
---|
133 | { |
---|
134 | head[i] = -1; // degree list i is empty |
---|
135 | last[i] = -1; |
---|
136 | next[i] = -1; |
---|
137 | hhead[i] = -1; // hash list i is empty |
---|
138 | nv[i] = 1; // node i is just one node |
---|
139 | w[i] = 1; // node i is alive |
---|
140 | elen[i] = 0; // Ek of node i is empty |
---|
141 | degree[i] = len[i]; // degree of node i |
---|
142 | } |
---|
143 | mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */ |
---|
144 | elen[n] = -2; /* n is a dead element */ |
---|
145 | Cp[n] = -1; /* n is a root of assembly tree */ |
---|
146 | w[n] = 0; /* n is a dead element */ |
---|
147 | |
---|
148 | /* --- Initialize degree lists ------------------------------------------ */ |
---|
149 | for(i = 0; i < n; i++) |
---|
150 | { |
---|
151 | d = degree[i]; |
---|
152 | if(d == 0) /* node i is empty */ |
---|
153 | { |
---|
154 | elen[i] = -2; /* element i is dead */ |
---|
155 | nel++; |
---|
156 | Cp[i] = -1; /* i is a root of assembly tree */ |
---|
157 | w[i] = 0; |
---|
158 | } |
---|
159 | else if(d > dense) /* node i is dense */ |
---|
160 | { |
---|
161 | nv[i] = 0; /* absorb i into element n */ |
---|
162 | elen[i] = -1; /* node i is dead */ |
---|
163 | nel++; |
---|
164 | Cp[i] = amd_flip (n); |
---|
165 | nv[n]++; |
---|
166 | } |
---|
167 | else |
---|
168 | { |
---|
169 | if(head[d] != -1) last[head[d]] = i; |
---|
170 | next[i] = head[d]; /* put node i in degree list d */ |
---|
171 | head[d] = i; |
---|
172 | } |
---|
173 | } |
---|
174 | |
---|
175 | while (nel < n) /* while (selecting pivots) do */ |
---|
176 | { |
---|
177 | /* --- Select node of minimum approximate degree -------------------- */ |
---|
178 | for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} |
---|
179 | if(next[k] != -1) last[next[k]] = -1; |
---|
180 | head[mindeg] = next[k]; /* remove k from degree list */ |
---|
181 | elenk = elen[k]; /* elenk = |Ek| */ |
---|
182 | nvk = nv[k]; /* # of nodes k represents */ |
---|
183 | nel += nvk; /* nv[k] nodes of A eliminated */ |
---|
184 | |
---|
185 | /* --- Garbage collection ------------------------------------------- */ |
---|
186 | if(elenk > 0 && cnz + mindeg >= nzmax) |
---|
187 | { |
---|
188 | for(j = 0; j < n; j++) |
---|
189 | { |
---|
190 | if((p = Cp[j]) >= 0) /* j is a live node or element */ |
---|
191 | { |
---|
192 | Cp[j] = Ci[p]; /* save first entry of object */ |
---|
193 | Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */ |
---|
194 | } |
---|
195 | } |
---|
196 | for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ |
---|
197 | { |
---|
198 | if((j = amd_flip (Ci[p++])) >= 0) /* found object j */ |
---|
199 | { |
---|
200 | Ci[q] = Cp[j]; /* restore first entry of object */ |
---|
201 | Cp[j] = q++; /* new pointer to object j */ |
---|
202 | for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; |
---|
203 | } |
---|
204 | } |
---|
205 | cnz = q; /* Ci[cnz...nzmax-1] now free */ |
---|
206 | } |
---|
207 | |
---|
208 | /* --- Construct new element ---------------------------------------- */ |
---|
209 | dk = 0; |
---|
210 | nv[k] = -nvk; /* flag k as in Lk */ |
---|
211 | p = Cp[k]; |
---|
212 | pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ |
---|
213 | pk2 = pk1; |
---|
214 | for(k1 = 1; k1 <= elenk + 1; k1++) |
---|
215 | { |
---|
216 | if(k1 > elenk) |
---|
217 | { |
---|
218 | e = k; /* search the nodes in k */ |
---|
219 | pj = p; /* list of nodes starts at Ci[pj]*/ |
---|
220 | ln = len[k] - elenk; /* length of list of nodes in k */ |
---|
221 | } |
---|
222 | else |
---|
223 | { |
---|
224 | e = Ci[p++]; /* search the nodes in e */ |
---|
225 | pj = Cp[e]; |
---|
226 | ln = len[e]; /* length of list of nodes in e */ |
---|
227 | } |
---|
228 | for(k2 = 1; k2 <= ln; k2++) |
---|
229 | { |
---|
230 | i = Ci[pj++]; |
---|
231 | if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ |
---|
232 | dk += nvi; /* degree[Lk] += size of node i */ |
---|
233 | nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/ |
---|
234 | Ci[pk2++] = i; /* place i in Lk */ |
---|
235 | if(next[i] != -1) last[next[i]] = last[i]; |
---|
236 | if(last[i] != -1) /* remove i from degree list */ |
---|
237 | { |
---|
238 | next[last[i]] = next[i]; |
---|
239 | } |
---|
240 | else |
---|
241 | { |
---|
242 | head[degree[i]] = next[i]; |
---|
243 | } |
---|
244 | } |
---|
245 | if(e != k) |
---|
246 | { |
---|
247 | Cp[e] = amd_flip (k); /* absorb e into k */ |
---|
248 | w[e] = 0; /* e is now a dead element */ |
---|
249 | } |
---|
250 | } |
---|
251 | if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ |
---|
252 | degree[k] = dk; /* external degree of k - |Lk\i| */ |
---|
253 | Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */ |
---|
254 | len[k] = pk2 - pk1; |
---|
255 | elen[k] = -2; /* k is now an element */ |
---|
256 | |
---|
257 | /* --- Find set differences ----------------------------------------- */ |
---|
258 | mark = internal::cs_wclear<Index>(mark, lemax, w, n); /* clear w if necessary */ |
---|
259 | for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */ |
---|
260 | { |
---|
261 | i = Ci[pk]; |
---|
262 | if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ |
---|
263 | nvi = -nv[i]; /* nv[i] was negated */ |
---|
264 | wnvi = mark - nvi; |
---|
265 | for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ |
---|
266 | { |
---|
267 | e = Ci[p]; |
---|
268 | if(w[e] >= mark) |
---|
269 | { |
---|
270 | w[e] -= nvi; /* decrement |Le\Lk| */ |
---|
271 | } |
---|
272 | else if(w[e] != 0) /* ensure e is a live element */ |
---|
273 | { |
---|
274 | w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ |
---|
275 | } |
---|
276 | } |
---|
277 | } |
---|
278 | |
---|
279 | /* --- Degree update ------------------------------------------------ */ |
---|
280 | for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */ |
---|
281 | { |
---|
282 | i = Ci[pk]; /* consider node i in Lk */ |
---|
283 | p1 = Cp[i]; |
---|
284 | p2 = p1 + elen[i] - 1; |
---|
285 | pn = p1; |
---|
286 | for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ |
---|
287 | { |
---|
288 | e = Ci[p]; |
---|
289 | if(w[e] != 0) /* e is an unabsorbed element */ |
---|
290 | { |
---|
291 | dext = w[e] - mark; /* dext = |Le\Lk| */ |
---|
292 | if(dext > 0) |
---|
293 | { |
---|
294 | d += dext; /* sum up the set differences */ |
---|
295 | Ci[pn++] = e; /* keep e in Ei */ |
---|
296 | h += e; /* compute the hash of node i */ |
---|
297 | } |
---|
298 | else |
---|
299 | { |
---|
300 | Cp[e] = amd_flip (k); /* aggressive absorb. e->k */ |
---|
301 | w[e] = 0; /* e is a dead element */ |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|
305 | elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ |
---|
306 | p3 = pn; |
---|
307 | p4 = p1 + len[i]; |
---|
308 | for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ |
---|
309 | { |
---|
310 | j = Ci[p]; |
---|
311 | if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ |
---|
312 | d += nvj; /* degree(i) += |j| */ |
---|
313 | Ci[pn++] = j; /* place j in node list of i */ |
---|
314 | h += j; /* compute hash for node i */ |
---|
315 | } |
---|
316 | if(d == 0) /* check for mass elimination */ |
---|
317 | { |
---|
318 | Cp[i] = amd_flip (k); /* absorb i into k */ |
---|
319 | nvi = -nv[i]; |
---|
320 | dk -= nvi; /* |Lk| -= |i| */ |
---|
321 | nvk += nvi; /* |k| += nv[i] */ |
---|
322 | nel += nvi; |
---|
323 | nv[i] = 0; |
---|
324 | elen[i] = -1; /* node i is dead */ |
---|
325 | } |
---|
326 | else |
---|
327 | { |
---|
328 | degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */ |
---|
329 | Ci[pn] = Ci[p3]; /* move first node to end */ |
---|
330 | Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */ |
---|
331 | Ci[p1] = k; /* add k as 1st element in of Ei */ |
---|
332 | len[i] = pn - p1 + 1; /* new len of adj. list of node i */ |
---|
333 | h %= n; /* finalize hash of i */ |
---|
334 | next[i] = hhead[h]; /* place i in hash bucket */ |
---|
335 | hhead[h] = i; |
---|
336 | last[i] = h; /* save hash of i in last[i] */ |
---|
337 | } |
---|
338 | } /* scan2 is done */ |
---|
339 | degree[k] = dk; /* finalize |Lk| */ |
---|
340 | lemax = std::max<Index>(lemax, dk); |
---|
341 | mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n); /* clear w */ |
---|
342 | |
---|
343 | /* --- Supernode detection ------------------------------------------ */ |
---|
344 | for(pk = pk1; pk < pk2; pk++) |
---|
345 | { |
---|
346 | i = Ci[pk]; |
---|
347 | if(nv[i] >= 0) continue; /* skip if i is dead */ |
---|
348 | h = last[i]; /* scan hash bucket of node i */ |
---|
349 | i = hhead[h]; |
---|
350 | hhead[h] = -1; /* hash bucket will be empty */ |
---|
351 | for(; i != -1 && next[i] != -1; i = next[i], mark++) |
---|
352 | { |
---|
353 | ln = len[i]; |
---|
354 | eln = elen[i]; |
---|
355 | for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; |
---|
356 | jlast = i; |
---|
357 | for(j = next[i]; j != -1; ) /* compare i with all j */ |
---|
358 | { |
---|
359 | ok = (len[j] == ln) && (elen[j] == eln); |
---|
360 | for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) |
---|
361 | { |
---|
362 | if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/ |
---|
363 | } |
---|
364 | if(ok) /* i and j are identical */ |
---|
365 | { |
---|
366 | Cp[j] = amd_flip (i); /* absorb j into i */ |
---|
367 | nv[i] += nv[j]; |
---|
368 | nv[j] = 0; |
---|
369 | elen[j] = -1; /* node j is dead */ |
---|
370 | j = next[j]; /* delete j from hash bucket */ |
---|
371 | next[jlast] = j; |
---|
372 | } |
---|
373 | else |
---|
374 | { |
---|
375 | jlast = j; /* j and i are different */ |
---|
376 | j = next[j]; |
---|
377 | } |
---|
378 | } |
---|
379 | } |
---|
380 | } |
---|
381 | |
---|
382 | /* --- Finalize new element------------------------------------------ */ |
---|
383 | for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ |
---|
384 | { |
---|
385 | i = Ci[pk]; |
---|
386 | if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ |
---|
387 | nv[i] = nvi; /* restore nv[i] */ |
---|
388 | d = degree[i] + dk - nvi; /* compute external degree(i) */ |
---|
389 | d = std::min<Index> (d, n - nel - nvi); |
---|
390 | if(head[d] != -1) last[head[d]] = i; |
---|
391 | next[i] = head[d]; /* put i back in degree list */ |
---|
392 | last[i] = -1; |
---|
393 | head[d] = i; |
---|
394 | mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */ |
---|
395 | degree[i] = d; |
---|
396 | Ci[p++] = i; /* place i in Lk */ |
---|
397 | } |
---|
398 | nv[k] = nvk; /* # nodes absorbed into k */ |
---|
399 | if((len[k] = p-pk1) == 0) /* length of adj list of element k*/ |
---|
400 | { |
---|
401 | Cp[k] = -1; /* k is a root of the tree */ |
---|
402 | w[k] = 0; /* k is now a dead element */ |
---|
403 | } |
---|
404 | if(elenk != 0) cnz = p; /* free unused space in Lk */ |
---|
405 | } |
---|
406 | |
---|
407 | /* --- Postordering ----------------------------------------------------- */ |
---|
408 | for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ |
---|
409 | for(j = 0; j <= n; j++) head[j] = -1; |
---|
410 | for(j = n; j >= 0; j--) /* place unordered nodes in lists */ |
---|
411 | { |
---|
412 | if(nv[j] > 0) continue; /* skip if j is an element */ |
---|
413 | next[j] = head[Cp[j]]; /* place j in list of its parent */ |
---|
414 | head[Cp[j]] = j; |
---|
415 | } |
---|
416 | for(e = n; e >= 0; e--) /* place elements in lists */ |
---|
417 | { |
---|
418 | if(nv[e] <= 0) continue; /* skip unless e is an element */ |
---|
419 | if(Cp[e] != -1) |
---|
420 | { |
---|
421 | next[e] = head[Cp[e]]; /* place e in list of its parent */ |
---|
422 | head[Cp[e]] = e; |
---|
423 | } |
---|
424 | } |
---|
425 | for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ |
---|
426 | { |
---|
427 | if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w); |
---|
428 | } |
---|
429 | |
---|
430 | perm.indices().conservativeResize(n); |
---|
431 | |
---|
432 | delete[] W; |
---|
433 | } |
---|
434 | |
---|
435 | } // namespace internal |
---|
436 | |
---|
437 | } // end namespace Eigen |
---|
438 | |
---|
439 | #endif // EIGEN_SPARSE_AMD_H |
---|