Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/LU/Inverse.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 14.0 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_INVERSE_H
11#define EIGEN_INVERSE_H
12
13namespace Eigen {
14
15namespace internal {
16
17/**********************************
18*** General case implementation ***
19**********************************/
20
21template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
22struct compute_inverse
23{
24  static inline void run(const MatrixType& matrix, ResultType& result)
25  {
26    result = matrix.partialPivLu().inverse();
27  }
28};
29
30template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
31struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
32
33/****************************
34*** Size 1 implementation ***
35****************************/
36
37template<typename MatrixType, typename ResultType>
38struct compute_inverse<MatrixType, ResultType, 1>
39{
40  static inline void run(const MatrixType& matrix, ResultType& result)
41  {
42    typedef typename MatrixType::Scalar Scalar;
43    result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
44  }
45};
46
47template<typename MatrixType, typename ResultType>
48struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
49{
50  static inline void run(
51    const MatrixType& matrix,
52    const typename MatrixType::RealScalar& absDeterminantThreshold,
53    ResultType& result,
54    typename ResultType::Scalar& determinant,
55    bool& invertible
56  )
57  {
58    determinant = matrix.coeff(0,0);
59    invertible = abs(determinant) > absDeterminantThreshold;
60    if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
61  }
62};
63
64/****************************
65*** Size 2 implementation ***
66****************************/
67
68template<typename MatrixType, typename ResultType>
69inline void compute_inverse_size2_helper(
70    const MatrixType& matrix, const typename ResultType::Scalar& invdet,
71    ResultType& result)
72{
73  result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
74  result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
75  result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
76  result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
77}
78
79template<typename MatrixType, typename ResultType>
80struct compute_inverse<MatrixType, ResultType, 2>
81{
82  static inline void run(const MatrixType& matrix, ResultType& result)
83  {
84    typedef typename ResultType::Scalar Scalar;
85    const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
86    compute_inverse_size2_helper(matrix, invdet, result);
87  }
88};
89
90template<typename MatrixType, typename ResultType>
91struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
92{
93  static inline void run(
94    const MatrixType& matrix,
95    const typename MatrixType::RealScalar& absDeterminantThreshold,
96    ResultType& inverse,
97    typename ResultType::Scalar& determinant,
98    bool& invertible
99  )
100  {
101    typedef typename ResultType::Scalar Scalar;
102    determinant = matrix.determinant();
103    invertible = abs(determinant) > absDeterminantThreshold;
104    if(!invertible) return;
105    const Scalar invdet = Scalar(1) / determinant;
106    compute_inverse_size2_helper(matrix, invdet, inverse);
107  }
108};
109
110/****************************
111*** Size 3 implementation ***
112****************************/
113
114template<typename MatrixType, int i, int j>
115inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
116{
117  enum {
118    i1 = (i+1) % 3,
119    i2 = (i+2) % 3,
120    j1 = (j+1) % 3,
121    j2 = (j+2) % 3
122  };
123  return m.coeff(i1, j1) * m.coeff(i2, j2)
124       - m.coeff(i1, j2) * m.coeff(i2, j1);
125}
126
127template<typename MatrixType, typename ResultType>
128inline void compute_inverse_size3_helper(
129    const MatrixType& matrix,
130    const typename ResultType::Scalar& invdet,
131    const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
132    ResultType& result)
133{
134  result.row(0) = cofactors_col0 * invdet;
135  result.coeffRef(1,0) =  cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
136  result.coeffRef(1,1) =  cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
137  result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
138  result.coeffRef(2,0) =  cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
139  result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
140  result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
141}
142
143template<typename MatrixType, typename ResultType>
144struct compute_inverse<MatrixType, ResultType, 3>
145{
146  static inline void run(const MatrixType& matrix, ResultType& result)
147  {
148    typedef typename ResultType::Scalar Scalar;
149    Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
150    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
151    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
152    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
153    const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
154    const Scalar invdet = Scalar(1) / det;
155    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
156  }
157};
158
159template<typename MatrixType, typename ResultType>
160struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
161{
162  static inline void run(
163    const MatrixType& matrix,
164    const typename MatrixType::RealScalar& absDeterminantThreshold,
165    ResultType& inverse,
166    typename ResultType::Scalar& determinant,
167    bool& invertible
168  )
169  {
170    typedef typename ResultType::Scalar Scalar;
171    Matrix<Scalar,3,1> cofactors_col0;
172    cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix);
173    cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix);
174    cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix);
175    determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
176    invertible = abs(determinant) > absDeterminantThreshold;
177    if(!invertible) return;
178    const Scalar invdet = Scalar(1) / determinant;
179    compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
180  }
181};
182
183/****************************
184*** Size 4 implementation ***
185****************************/
186
187template<typename Derived>
188inline const typename Derived::Scalar general_det3_helper
189(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
190{
191  return matrix.coeff(i1,j1)
192         * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
193}
194
195template<typename MatrixType, int i, int j>
196inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
197{
198  enum {
199    i1 = (i+1) % 4,
200    i2 = (i+2) % 4,
201    i3 = (i+3) % 4,
202    j1 = (j+1) % 4,
203    j2 = (j+2) % 4,
204    j3 = (j+3) % 4
205  };
206  return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
207       + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
208       + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
209}
210
211template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
212struct compute_inverse_size4
213{
214  static void run(const MatrixType& matrix, ResultType& result)
215  {
216    result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix);
217    result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
218    result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix);
219    result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
220    result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix);
221    result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
222    result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix);
223    result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
224    result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
225    result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix);
226    result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
227    result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix);
228    result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
229    result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix);
230    result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
231    result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix);
232    result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
233  }
234};
235
236template<typename MatrixType, typename ResultType>
237struct compute_inverse<MatrixType, ResultType, 4>
238 : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
239                            MatrixType, ResultType>
240{
241};
242
243template<typename MatrixType, typename ResultType>
244struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
245{
246  static inline void run(
247    const MatrixType& matrix,
248    const typename MatrixType::RealScalar& absDeterminantThreshold,
249    ResultType& inverse,
250    typename ResultType::Scalar& determinant,
251    bool& invertible
252  )
253  {
254    determinant = matrix.determinant();
255    invertible = abs(determinant) > absDeterminantThreshold;
256    if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
257  }
258};
259
260/*************************
261*** MatrixBase methods ***
262*************************/
263
264template<typename MatrixType>
265struct traits<inverse_impl<MatrixType> >
266{
267  typedef typename MatrixType::PlainObject ReturnType;
268};
269
270template<typename MatrixType>
271struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
272{
273  typedef typename MatrixType::Index Index;
274  typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
275  typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
276  MatrixTypeNested m_matrix;
277
278  inverse_impl(const MatrixType& matrix)
279    : m_matrix(matrix)
280  {}
281
282  inline Index rows() const { return m_matrix.rows(); }
283  inline Index cols() const { return m_matrix.cols(); }
284
285  template<typename Dest> inline void evalTo(Dest& dst) const
286  {
287    const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
288    EIGEN_ONLY_USED_FOR_DEBUG(Size);
289    eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
290              && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
291
292    compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
293  }
294};
295
296} // end namespace internal
297
298/** \lu_module
299  *
300  * \returns the matrix inverse of this matrix.
301  *
302  * For small fixed sizes up to 4x4, this method uses cofactors.
303  * In the general case, this method uses class PartialPivLU.
304  *
305  * \note This matrix must be invertible, otherwise the result is undefined. If you need an
306  * invertibility check, do the following:
307  * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
308  * \li for the general case, use class FullPivLU.
309  *
310  * Example: \include MatrixBase_inverse.cpp
311  * Output: \verbinclude MatrixBase_inverse.out
312  *
313  * \sa computeInverseAndDetWithCheck()
314  */
315template<typename Derived>
316inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
317{
318  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
319  eigen_assert(rows() == cols());
320  return internal::inverse_impl<Derived>(derived());
321}
322
323/** \lu_module
324  *
325  * Computation of matrix inverse and determinant, with invertibility check.
326  *
327  * This is only for fixed-size square matrices of size up to 4x4.
328  *
329  * \param inverse Reference to the matrix in which to store the inverse.
330  * \param determinant Reference to the variable in which to store the inverse.
331  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
332  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
333  *                                The matrix will be declared invertible if the absolute value of its
334  *                                determinant is greater than this threshold.
335  *
336  * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
337  * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
338  *
339  * \sa inverse(), computeInverseWithCheck()
340  */
341template<typename Derived>
342template<typename ResultType>
343inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
344    ResultType& inverse,
345    typename ResultType::Scalar& determinant,
346    bool& invertible,
347    const RealScalar& absDeterminantThreshold
348  ) const
349{
350  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
351  eigen_assert(rows() == cols());
352  // for 2x2, it's worth giving a chance to avoid evaluating.
353  // for larger sizes, evaluating has negligible cost and limits code size.
354  typedef typename internal::conditional<
355    RowsAtCompileTime == 2,
356    typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
357    PlainObject
358  >::type MatrixType;
359  internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
360    (derived(), absDeterminantThreshold, inverse, determinant, invertible);
361}
362
363/** \lu_module
364  *
365  * Computation of matrix inverse, with invertibility check.
366  *
367  * This is only for fixed-size square matrices of size up to 4x4.
368  *
369  * \param inverse Reference to the matrix in which to store the inverse.
370  * \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
371  * \param absDeterminantThreshold Optional parameter controlling the invertibility check.
372  *                                The matrix will be declared invertible if the absolute value of its
373  *                                determinant is greater than this threshold.
374  *
375  * Example: \include MatrixBase_computeInverseWithCheck.cpp
376  * Output: \verbinclude MatrixBase_computeInverseWithCheck.out
377  *
378  * \sa inverse(), computeInverseAndDetWithCheck()
379  */
380template<typename Derived>
381template<typename ResultType>
382inline void MatrixBase<Derived>::computeInverseWithCheck(
383    ResultType& inverse,
384    bool& invertible,
385    const RealScalar& absDeterminantThreshold
386  ) const
387{
388  RealScalar determinant;
389  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
390  eigen_assert(rows() == cols());
391  computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
392}
393
394} // end namespace Eigen
395
396#endif // EIGEN_INVERSE_H
Note: See TracBrowser for help on using the repository browser.