1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_LU_H |
---|
11 | #define EIGEN_LU_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \ingroup LU_Module |
---|
16 | * |
---|
17 | * \class FullPivLU |
---|
18 | * |
---|
19 | * \brief LU decomposition of a matrix with complete pivoting, and related features |
---|
20 | * |
---|
21 | * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
---|
22 | * |
---|
23 | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A |
---|
24 | * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q |
---|
25 | * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal |
---|
26 | * coefficients) of U are sorted in such a way that any zeros are at the end. |
---|
27 | * |
---|
28 | * This decomposition provides the generic approach to solving systems of linear equations, computing |
---|
29 | * the rank, invertibility, inverse, kernel, and determinant. |
---|
30 | * |
---|
31 | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD |
---|
32 | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, |
---|
33 | * working with the SVD allows to select the smallest singular values of the matrix, something that |
---|
34 | * the LU decomposition doesn't see. |
---|
35 | * |
---|
36 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), |
---|
37 | * permutationP(), permutationQ(). |
---|
38 | * |
---|
39 | * As an exemple, here is how the original matrix can be retrieved: |
---|
40 | * \include class_FullPivLU.cpp |
---|
41 | * Output: \verbinclude class_FullPivLU.out |
---|
42 | * |
---|
43 | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() |
---|
44 | */ |
---|
45 | template<typename _MatrixType> class FullPivLU |
---|
46 | { |
---|
47 | public: |
---|
48 | typedef _MatrixType MatrixType; |
---|
49 | enum { |
---|
50 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
51 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
52 | Options = MatrixType::Options, |
---|
53 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
54 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
55 | }; |
---|
56 | typedef typename MatrixType::Scalar Scalar; |
---|
57 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
58 | typedef typename internal::traits<MatrixType>::StorageKind StorageKind; |
---|
59 | typedef typename MatrixType::Index Index; |
---|
60 | typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; |
---|
61 | typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType; |
---|
62 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; |
---|
63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; |
---|
64 | |
---|
65 | /** |
---|
66 | * \brief Default Constructor. |
---|
67 | * |
---|
68 | * The default constructor is useful in cases in which the user intends to |
---|
69 | * perform decompositions via LU::compute(const MatrixType&). |
---|
70 | */ |
---|
71 | FullPivLU(); |
---|
72 | |
---|
73 | /** \brief Default Constructor with memory preallocation |
---|
74 | * |
---|
75 | * Like the default constructor but with preallocation of the internal data |
---|
76 | * according to the specified problem \a size. |
---|
77 | * \sa FullPivLU() |
---|
78 | */ |
---|
79 | FullPivLU(Index rows, Index cols); |
---|
80 | |
---|
81 | /** Constructor. |
---|
82 | * |
---|
83 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
84 | * It is required to be nonzero. |
---|
85 | */ |
---|
86 | FullPivLU(const MatrixType& matrix); |
---|
87 | |
---|
88 | /** Computes the LU decomposition of the given matrix. |
---|
89 | * |
---|
90 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
91 | * It is required to be nonzero. |
---|
92 | * |
---|
93 | * \returns a reference to *this |
---|
94 | */ |
---|
95 | FullPivLU& compute(const MatrixType& matrix); |
---|
96 | |
---|
97 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
---|
98 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
---|
99 | * case, special care is needed, see the documentation of class FullPivLU). |
---|
100 | * |
---|
101 | * \sa matrixL(), matrixU() |
---|
102 | */ |
---|
103 | inline const MatrixType& matrixLU() const |
---|
104 | { |
---|
105 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
106 | return m_lu; |
---|
107 | } |
---|
108 | |
---|
109 | /** \returns the number of nonzero pivots in the LU decomposition. |
---|
110 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
---|
111 | * So that notion isn't really intrinsically interesting, but it is |
---|
112 | * still useful when implementing algorithms. |
---|
113 | * |
---|
114 | * \sa rank() |
---|
115 | */ |
---|
116 | inline Index nonzeroPivots() const |
---|
117 | { |
---|
118 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
119 | return m_nonzero_pivots; |
---|
120 | } |
---|
121 | |
---|
122 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
---|
123 | * diagonal coefficient of U. |
---|
124 | */ |
---|
125 | RealScalar maxPivot() const { return m_maxpivot; } |
---|
126 | |
---|
127 | /** \returns the permutation matrix P |
---|
128 | * |
---|
129 | * \sa permutationQ() |
---|
130 | */ |
---|
131 | inline const PermutationPType& permutationP() const |
---|
132 | { |
---|
133 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
134 | return m_p; |
---|
135 | } |
---|
136 | |
---|
137 | /** \returns the permutation matrix Q |
---|
138 | * |
---|
139 | * \sa permutationP() |
---|
140 | */ |
---|
141 | inline const PermutationQType& permutationQ() const |
---|
142 | { |
---|
143 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
144 | return m_q; |
---|
145 | } |
---|
146 | |
---|
147 | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix |
---|
148 | * will form a basis of the kernel. |
---|
149 | * |
---|
150 | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. |
---|
151 | * |
---|
152 | * \note This method has to determine which pivots should be considered nonzero. |
---|
153 | * For that, it uses the threshold value that you can control by calling |
---|
154 | * setThreshold(const RealScalar&). |
---|
155 | * |
---|
156 | * Example: \include FullPivLU_kernel.cpp |
---|
157 | * Output: \verbinclude FullPivLU_kernel.out |
---|
158 | * |
---|
159 | * \sa image() |
---|
160 | */ |
---|
161 | inline const internal::kernel_retval<FullPivLU> kernel() const |
---|
162 | { |
---|
163 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
164 | return internal::kernel_retval<FullPivLU>(*this); |
---|
165 | } |
---|
166 | |
---|
167 | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix |
---|
168 | * will form a basis of the kernel. |
---|
169 | * |
---|
170 | * \param originalMatrix the original matrix, of which *this is the LU decomposition. |
---|
171 | * The reason why it is needed to pass it here, is that this allows |
---|
172 | * a large optimization, as otherwise this method would need to reconstruct it |
---|
173 | * from the LU decomposition. |
---|
174 | * |
---|
175 | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. |
---|
176 | * |
---|
177 | * \note This method has to determine which pivots should be considered nonzero. |
---|
178 | * For that, it uses the threshold value that you can control by calling |
---|
179 | * setThreshold(const RealScalar&). |
---|
180 | * |
---|
181 | * Example: \include FullPivLU_image.cpp |
---|
182 | * Output: \verbinclude FullPivLU_image.out |
---|
183 | * |
---|
184 | * \sa kernel() |
---|
185 | */ |
---|
186 | inline const internal::image_retval<FullPivLU> |
---|
187 | image(const MatrixType& originalMatrix) const |
---|
188 | { |
---|
189 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
190 | return internal::image_retval<FullPivLU>(*this, originalMatrix); |
---|
191 | } |
---|
192 | |
---|
193 | /** \return a solution x to the equation Ax=b, where A is the matrix of which |
---|
194 | * *this is the LU decomposition. |
---|
195 | * |
---|
196 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
---|
197 | * the only requirement in order for the equation to make sense is that |
---|
198 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
---|
199 | * |
---|
200 | * \returns a solution. |
---|
201 | * |
---|
202 | * \note_about_checking_solutions |
---|
203 | * |
---|
204 | * \note_about_arbitrary_choice_of_solution |
---|
205 | * \note_about_using_kernel_to_study_multiple_solutions |
---|
206 | * |
---|
207 | * Example: \include FullPivLU_solve.cpp |
---|
208 | * Output: \verbinclude FullPivLU_solve.out |
---|
209 | * |
---|
210 | * \sa TriangularView::solve(), kernel(), inverse() |
---|
211 | */ |
---|
212 | template<typename Rhs> |
---|
213 | inline const internal::solve_retval<FullPivLU, Rhs> |
---|
214 | solve(const MatrixBase<Rhs>& b) const |
---|
215 | { |
---|
216 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
217 | return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived()); |
---|
218 | } |
---|
219 | |
---|
220 | /** \returns the determinant of the matrix of which |
---|
221 | * *this is the LU decomposition. It has only linear complexity |
---|
222 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
223 | * as the LU decomposition has already been computed. |
---|
224 | * |
---|
225 | * \note This is only for square matrices. |
---|
226 | * |
---|
227 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
---|
228 | * optimized paths. |
---|
229 | * |
---|
230 | * \warning a determinant can be very big or small, so for matrices |
---|
231 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
232 | * |
---|
233 | * \sa MatrixBase::determinant() |
---|
234 | */ |
---|
235 | typename internal::traits<MatrixType>::Scalar determinant() const; |
---|
236 | |
---|
237 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
---|
238 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
---|
239 | * LU decomposition itself. |
---|
240 | * |
---|
241 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
---|
242 | * uses a formula to automatically determine a reasonable threshold. |
---|
243 | * Once you have called the present method setThreshold(const RealScalar&), |
---|
244 | * your value is used instead. |
---|
245 | * |
---|
246 | * \param threshold The new value to use as the threshold. |
---|
247 | * |
---|
248 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
---|
249 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
---|
250 | * where maxpivot is the biggest pivot. |
---|
251 | * |
---|
252 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
---|
253 | */ |
---|
254 | FullPivLU& setThreshold(const RealScalar& threshold) |
---|
255 | { |
---|
256 | m_usePrescribedThreshold = true; |
---|
257 | m_prescribedThreshold = threshold; |
---|
258 | return *this; |
---|
259 | } |
---|
260 | |
---|
261 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
---|
262 | * determining the threshold. |
---|
263 | * |
---|
264 | * You should pass the special object Eigen::Default as parameter here. |
---|
265 | * \code lu.setThreshold(Eigen::Default); \endcode |
---|
266 | * |
---|
267 | * See the documentation of setThreshold(const RealScalar&). |
---|
268 | */ |
---|
269 | FullPivLU& setThreshold(Default_t) |
---|
270 | { |
---|
271 | m_usePrescribedThreshold = false; |
---|
272 | return *this; |
---|
273 | } |
---|
274 | |
---|
275 | /** Returns the threshold that will be used by certain methods such as rank(). |
---|
276 | * |
---|
277 | * See the documentation of setThreshold(const RealScalar&). |
---|
278 | */ |
---|
279 | RealScalar threshold() const |
---|
280 | { |
---|
281 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
---|
282 | return m_usePrescribedThreshold ? m_prescribedThreshold |
---|
283 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
---|
284 | // and turns out to be identical to Higham's formula used already in LDLt. |
---|
285 | : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); |
---|
286 | } |
---|
287 | |
---|
288 | /** \returns the rank of the matrix of which *this is the LU decomposition. |
---|
289 | * |
---|
290 | * \note This method has to determine which pivots should be considered nonzero. |
---|
291 | * For that, it uses the threshold value that you can control by calling |
---|
292 | * setThreshold(const RealScalar&). |
---|
293 | */ |
---|
294 | inline Index rank() const |
---|
295 | { |
---|
296 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
297 | RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold(); |
---|
298 | Index result = 0; |
---|
299 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
---|
300 | result += (internal::abs(m_lu.coeff(i,i)) > premultiplied_threshold); |
---|
301 | return result; |
---|
302 | } |
---|
303 | |
---|
304 | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. |
---|
305 | * |
---|
306 | * \note This method has to determine which pivots should be considered nonzero. |
---|
307 | * For that, it uses the threshold value that you can control by calling |
---|
308 | * setThreshold(const RealScalar&). |
---|
309 | */ |
---|
310 | inline Index dimensionOfKernel() const |
---|
311 | { |
---|
312 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
313 | return cols() - rank(); |
---|
314 | } |
---|
315 | |
---|
316 | /** \returns true if the matrix of which *this is the LU decomposition represents an injective |
---|
317 | * linear map, i.e. has trivial kernel; false otherwise. |
---|
318 | * |
---|
319 | * \note This method has to determine which pivots should be considered nonzero. |
---|
320 | * For that, it uses the threshold value that you can control by calling |
---|
321 | * setThreshold(const RealScalar&). |
---|
322 | */ |
---|
323 | inline bool isInjective() const |
---|
324 | { |
---|
325 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
326 | return rank() == cols(); |
---|
327 | } |
---|
328 | |
---|
329 | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective |
---|
330 | * linear map; false otherwise. |
---|
331 | * |
---|
332 | * \note This method has to determine which pivots should be considered nonzero. |
---|
333 | * For that, it uses the threshold value that you can control by calling |
---|
334 | * setThreshold(const RealScalar&). |
---|
335 | */ |
---|
336 | inline bool isSurjective() const |
---|
337 | { |
---|
338 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
339 | return rank() == rows(); |
---|
340 | } |
---|
341 | |
---|
342 | /** \returns true if the matrix of which *this is the LU decomposition is invertible. |
---|
343 | * |
---|
344 | * \note This method has to determine which pivots should be considered nonzero. |
---|
345 | * For that, it uses the threshold value that you can control by calling |
---|
346 | * setThreshold(const RealScalar&). |
---|
347 | */ |
---|
348 | inline bool isInvertible() const |
---|
349 | { |
---|
350 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
351 | return isInjective() && (m_lu.rows() == m_lu.cols()); |
---|
352 | } |
---|
353 | |
---|
354 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
---|
355 | * |
---|
356 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
---|
357 | * Use isInvertible() to first determine whether this matrix is invertible. |
---|
358 | * |
---|
359 | * \sa MatrixBase::inverse() |
---|
360 | */ |
---|
361 | inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const |
---|
362 | { |
---|
363 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
364 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); |
---|
365 | return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> |
---|
366 | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
---|
367 | } |
---|
368 | |
---|
369 | MatrixType reconstructedMatrix() const; |
---|
370 | |
---|
371 | inline Index rows() const { return m_lu.rows(); } |
---|
372 | inline Index cols() const { return m_lu.cols(); } |
---|
373 | |
---|
374 | protected: |
---|
375 | MatrixType m_lu; |
---|
376 | PermutationPType m_p; |
---|
377 | PermutationQType m_q; |
---|
378 | IntColVectorType m_rowsTranspositions; |
---|
379 | IntRowVectorType m_colsTranspositions; |
---|
380 | Index m_det_pq, m_nonzero_pivots; |
---|
381 | RealScalar m_maxpivot, m_prescribedThreshold; |
---|
382 | bool m_isInitialized, m_usePrescribedThreshold; |
---|
383 | }; |
---|
384 | |
---|
385 | template<typename MatrixType> |
---|
386 | FullPivLU<MatrixType>::FullPivLU() |
---|
387 | : m_isInitialized(false), m_usePrescribedThreshold(false) |
---|
388 | { |
---|
389 | } |
---|
390 | |
---|
391 | template<typename MatrixType> |
---|
392 | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) |
---|
393 | : m_lu(rows, cols), |
---|
394 | m_p(rows), |
---|
395 | m_q(cols), |
---|
396 | m_rowsTranspositions(rows), |
---|
397 | m_colsTranspositions(cols), |
---|
398 | m_isInitialized(false), |
---|
399 | m_usePrescribedThreshold(false) |
---|
400 | { |
---|
401 | } |
---|
402 | |
---|
403 | template<typename MatrixType> |
---|
404 | FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix) |
---|
405 | : m_lu(matrix.rows(), matrix.cols()), |
---|
406 | m_p(matrix.rows()), |
---|
407 | m_q(matrix.cols()), |
---|
408 | m_rowsTranspositions(matrix.rows()), |
---|
409 | m_colsTranspositions(matrix.cols()), |
---|
410 | m_isInitialized(false), |
---|
411 | m_usePrescribedThreshold(false) |
---|
412 | { |
---|
413 | compute(matrix); |
---|
414 | } |
---|
415 | |
---|
416 | template<typename MatrixType> |
---|
417 | FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix) |
---|
418 | { |
---|
419 | m_isInitialized = true; |
---|
420 | m_lu = matrix; |
---|
421 | |
---|
422 | const Index size = matrix.diagonalSize(); |
---|
423 | const Index rows = matrix.rows(); |
---|
424 | const Index cols = matrix.cols(); |
---|
425 | |
---|
426 | // will store the transpositions, before we accumulate them at the end. |
---|
427 | // can't accumulate on-the-fly because that will be done in reverse order for the rows. |
---|
428 | m_rowsTranspositions.resize(matrix.rows()); |
---|
429 | m_colsTranspositions.resize(matrix.cols()); |
---|
430 | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i |
---|
431 | |
---|
432 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
---|
433 | m_maxpivot = RealScalar(0); |
---|
434 | |
---|
435 | for(Index k = 0; k < size; ++k) |
---|
436 | { |
---|
437 | // First, we need to find the pivot. |
---|
438 | |
---|
439 | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) |
---|
440 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
---|
441 | RealScalar biggest_in_corner; |
---|
442 | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) |
---|
443 | .cwiseAbs() |
---|
444 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
---|
445 | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, |
---|
446 | col_of_biggest_in_corner += k; // need to add k to them. |
---|
447 | |
---|
448 | if(biggest_in_corner==RealScalar(0)) |
---|
449 | { |
---|
450 | // before exiting, make sure to initialize the still uninitialized transpositions |
---|
451 | // in a sane state without destroying what we already have. |
---|
452 | m_nonzero_pivots = k; |
---|
453 | for(Index i = k; i < size; ++i) |
---|
454 | { |
---|
455 | m_rowsTranspositions.coeffRef(i) = i; |
---|
456 | m_colsTranspositions.coeffRef(i) = i; |
---|
457 | } |
---|
458 | break; |
---|
459 | } |
---|
460 | |
---|
461 | if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner; |
---|
462 | |
---|
463 | // Now that we've found the pivot, we need to apply the row/col swaps to |
---|
464 | // bring it to the location (k,k). |
---|
465 | |
---|
466 | m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; |
---|
467 | m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; |
---|
468 | if(k != row_of_biggest_in_corner) { |
---|
469 | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); |
---|
470 | ++number_of_transpositions; |
---|
471 | } |
---|
472 | if(k != col_of_biggest_in_corner) { |
---|
473 | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); |
---|
474 | ++number_of_transpositions; |
---|
475 | } |
---|
476 | |
---|
477 | // Now that the pivot is at the right location, we update the remaining |
---|
478 | // bottom-right corner by Gaussian elimination. |
---|
479 | |
---|
480 | if(k<rows-1) |
---|
481 | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); |
---|
482 | if(k<size-1) |
---|
483 | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); |
---|
484 | } |
---|
485 | |
---|
486 | // the main loop is over, we still have to accumulate the transpositions to find the |
---|
487 | // permutations P and Q |
---|
488 | |
---|
489 | m_p.setIdentity(rows); |
---|
490 | for(Index k = size-1; k >= 0; --k) |
---|
491 | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
---|
492 | |
---|
493 | m_q.setIdentity(cols); |
---|
494 | for(Index k = 0; k < size; ++k) |
---|
495 | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); |
---|
496 | |
---|
497 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
---|
498 | return *this; |
---|
499 | } |
---|
500 | |
---|
501 | template<typename MatrixType> |
---|
502 | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const |
---|
503 | { |
---|
504 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
505 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
506 | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); |
---|
507 | } |
---|
508 | |
---|
509 | /** \returns the matrix represented by the decomposition, |
---|
510 | * i.e., it returns the product: P^{-1} L U Q^{-1}. |
---|
511 | * This function is provided for debug purpose. */ |
---|
512 | template<typename MatrixType> |
---|
513 | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const |
---|
514 | { |
---|
515 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
516 | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); |
---|
517 | // LU |
---|
518 | MatrixType res(m_lu.rows(),m_lu.cols()); |
---|
519 | // FIXME the .toDenseMatrix() should not be needed... |
---|
520 | res = m_lu.leftCols(smalldim) |
---|
521 | .template triangularView<UnitLower>().toDenseMatrix() |
---|
522 | * m_lu.topRows(smalldim) |
---|
523 | .template triangularView<Upper>().toDenseMatrix(); |
---|
524 | |
---|
525 | // P^{-1}(LU) |
---|
526 | res = m_p.inverse() * res; |
---|
527 | |
---|
528 | // (P^{-1}LU)Q^{-1} |
---|
529 | res = res * m_q.inverse(); |
---|
530 | |
---|
531 | return res; |
---|
532 | } |
---|
533 | |
---|
534 | /********* Implementation of kernel() **************************************************/ |
---|
535 | |
---|
536 | namespace internal { |
---|
537 | template<typename _MatrixType> |
---|
538 | struct kernel_retval<FullPivLU<_MatrixType> > |
---|
539 | : kernel_retval_base<FullPivLU<_MatrixType> > |
---|
540 | { |
---|
541 | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) |
---|
542 | |
---|
543 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
---|
544 | MatrixType::MaxColsAtCompileTime, |
---|
545 | MatrixType::MaxRowsAtCompileTime) |
---|
546 | }; |
---|
547 | |
---|
548 | template<typename Dest> void evalTo(Dest& dst) const |
---|
549 | { |
---|
550 | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); |
---|
551 | if(dimker == 0) |
---|
552 | { |
---|
553 | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's |
---|
554 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
---|
555 | // just return a single column vector filled with zeros. |
---|
556 | dst.setZero(); |
---|
557 | return; |
---|
558 | } |
---|
559 | |
---|
560 | /* Let us use the following lemma: |
---|
561 | * |
---|
562 | * Lemma: If the matrix A has the LU decomposition PAQ = LU, |
---|
563 | * then Ker A = Q(Ker U). |
---|
564 | * |
---|
565 | * Proof: trivial: just keep in mind that P, Q, L are invertible. |
---|
566 | */ |
---|
567 | |
---|
568 | /* Thus, all we need to do is to compute Ker U, and then apply Q. |
---|
569 | * |
---|
570 | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. |
---|
571 | * Thus, the diagonal of U ends with exactly |
---|
572 | * dimKer zero's. Let us use that to construct dimKer linearly |
---|
573 | * independent vectors in Ker U. |
---|
574 | */ |
---|
575 | |
---|
576 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
---|
577 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
---|
578 | Index p = 0; |
---|
579 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
---|
580 | if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
---|
581 | pivots.coeffRef(p++) = i; |
---|
582 | eigen_internal_assert(p == rank()); |
---|
583 | |
---|
584 | // we construct a temporaty trapezoid matrix m, by taking the U matrix and |
---|
585 | // permuting the rows and cols to bring the nonnegligible pivots to the top of |
---|
586 | // the main diagonal. We need that to be able to apply our triangular solvers. |
---|
587 | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified |
---|
588 | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, |
---|
589 | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> |
---|
590 | m(dec().matrixLU().block(0, 0, rank(), cols)); |
---|
591 | for(Index i = 0; i < rank(); ++i) |
---|
592 | { |
---|
593 | if(i) m.row(i).head(i).setZero(); |
---|
594 | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); |
---|
595 | } |
---|
596 | m.block(0, 0, rank(), rank()); |
---|
597 | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); |
---|
598 | for(Index i = 0; i < rank(); ++i) |
---|
599 | m.col(i).swap(m.col(pivots.coeff(i))); |
---|
600 | |
---|
601 | // ok, we have our trapezoid matrix, we can apply the triangular solver. |
---|
602 | // notice that the math behind this suggests that we should apply this to the |
---|
603 | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. |
---|
604 | m.topLeftCorner(rank(), rank()) |
---|
605 | .template triangularView<Upper>().solveInPlace( |
---|
606 | m.topRightCorner(rank(), dimker) |
---|
607 | ); |
---|
608 | |
---|
609 | // now we must undo the column permutation that we had applied! |
---|
610 | for(Index i = rank()-1; i >= 0; --i) |
---|
611 | m.col(i).swap(m.col(pivots.coeff(i))); |
---|
612 | |
---|
613 | // see the negative sign in the next line, that's what we were talking about above. |
---|
614 | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); |
---|
615 | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
---|
616 | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); |
---|
617 | } |
---|
618 | }; |
---|
619 | |
---|
620 | /***** Implementation of image() *****************************************************/ |
---|
621 | |
---|
622 | template<typename _MatrixType> |
---|
623 | struct image_retval<FullPivLU<_MatrixType> > |
---|
624 | : image_retval_base<FullPivLU<_MatrixType> > |
---|
625 | { |
---|
626 | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) |
---|
627 | |
---|
628 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
---|
629 | MatrixType::MaxColsAtCompileTime, |
---|
630 | MatrixType::MaxRowsAtCompileTime) |
---|
631 | }; |
---|
632 | |
---|
633 | template<typename Dest> void evalTo(Dest& dst) const |
---|
634 | { |
---|
635 | if(rank() == 0) |
---|
636 | { |
---|
637 | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's |
---|
638 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
---|
639 | // just return a single column vector filled with zeros. |
---|
640 | dst.setZero(); |
---|
641 | return; |
---|
642 | } |
---|
643 | |
---|
644 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
---|
645 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
---|
646 | Index p = 0; |
---|
647 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
---|
648 | if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
---|
649 | pivots.coeffRef(p++) = i; |
---|
650 | eigen_internal_assert(p == rank()); |
---|
651 | |
---|
652 | for(Index i = 0; i < rank(); ++i) |
---|
653 | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); |
---|
654 | } |
---|
655 | }; |
---|
656 | |
---|
657 | /***** Implementation of solve() *****************************************************/ |
---|
658 | |
---|
659 | template<typename _MatrixType, typename Rhs> |
---|
660 | struct solve_retval<FullPivLU<_MatrixType>, Rhs> |
---|
661 | : solve_retval_base<FullPivLU<_MatrixType>, Rhs> |
---|
662 | { |
---|
663 | EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs) |
---|
664 | |
---|
665 | template<typename Dest> void evalTo(Dest& dst) const |
---|
666 | { |
---|
667 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. |
---|
668 | * So we proceed as follows: |
---|
669 | * Step 1: compute c = P * rhs. |
---|
670 | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. |
---|
671 | * Step 3: replace c by the solution x to Ux = c. May or may not exist. |
---|
672 | * Step 4: result = Q * c; |
---|
673 | */ |
---|
674 | |
---|
675 | const Index rows = dec().rows(), cols = dec().cols(), |
---|
676 | nonzero_pivots = dec().nonzeroPivots(); |
---|
677 | eigen_assert(rhs().rows() == rows); |
---|
678 | const Index smalldim = (std::min)(rows, cols); |
---|
679 | |
---|
680 | if(nonzero_pivots == 0) |
---|
681 | { |
---|
682 | dst.setZero(); |
---|
683 | return; |
---|
684 | } |
---|
685 | |
---|
686 | typename Rhs::PlainObject c(rhs().rows(), rhs().cols()); |
---|
687 | |
---|
688 | // Step 1 |
---|
689 | c = dec().permutationP() * rhs(); |
---|
690 | |
---|
691 | // Step 2 |
---|
692 | dec().matrixLU() |
---|
693 | .topLeftCorner(smalldim,smalldim) |
---|
694 | .template triangularView<UnitLower>() |
---|
695 | .solveInPlace(c.topRows(smalldim)); |
---|
696 | if(rows>cols) |
---|
697 | { |
---|
698 | c.bottomRows(rows-cols) |
---|
699 | -= dec().matrixLU().bottomRows(rows-cols) |
---|
700 | * c.topRows(cols); |
---|
701 | } |
---|
702 | |
---|
703 | // Step 3 |
---|
704 | dec().matrixLU() |
---|
705 | .topLeftCorner(nonzero_pivots, nonzero_pivots) |
---|
706 | .template triangularView<Upper>() |
---|
707 | .solveInPlace(c.topRows(nonzero_pivots)); |
---|
708 | |
---|
709 | // Step 4 |
---|
710 | for(Index i = 0; i < nonzero_pivots; ++i) |
---|
711 | dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i); |
---|
712 | for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i) |
---|
713 | dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
---|
714 | } |
---|
715 | }; |
---|
716 | |
---|
717 | } // end namespace internal |
---|
718 | |
---|
719 | /******* MatrixBase methods *****************************************************************/ |
---|
720 | |
---|
721 | /** \lu_module |
---|
722 | * |
---|
723 | * \return the full-pivoting LU decomposition of \c *this. |
---|
724 | * |
---|
725 | * \sa class FullPivLU |
---|
726 | */ |
---|
727 | template<typename Derived> |
---|
728 | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
729 | MatrixBase<Derived>::fullPivLu() const |
---|
730 | { |
---|
731 | return FullPivLU<PlainObject>(eval()); |
---|
732 | } |
---|
733 | |
---|
734 | } // end namespace Eigen |
---|
735 | |
---|
736 | #endif // EIGEN_LU_H |
---|