Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/LU/FullPivLU.h @ 10617

Last change on this file since 10617 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 27.3 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_LU_H
11#define EIGEN_LU_H
12
13namespace Eigen {
14
15/** \ingroup LU_Module
16  *
17  * \class FullPivLU
18  *
19  * \brief LU decomposition of a matrix with complete pivoting, and related features
20  *
21  * \param MatrixType the type of the matrix of which we are computing the LU decomposition
22  *
23  * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
24  * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
25  * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
26  * coefficients) of U are sorted in such a way that any zeros are at the end.
27  *
28  * This decomposition provides the generic approach to solving systems of linear equations, computing
29  * the rank, invertibility, inverse, kernel, and determinant.
30  *
31  * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
32  * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
33  * working with the SVD allows to select the smallest singular values of the matrix, something that
34  * the LU decomposition doesn't see.
35  *
36  * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
37  * permutationP(), permutationQ().
38  *
39  * As an exemple, here is how the original matrix can be retrieved:
40  * \include class_FullPivLU.cpp
41  * Output: \verbinclude class_FullPivLU.out
42  *
43  * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
44  */
45template<typename _MatrixType> class FullPivLU
46{
47  public:
48    typedef _MatrixType MatrixType;
49    enum {
50      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
51      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
52      Options = MatrixType::Options,
53      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
54      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
55    };
56    typedef typename MatrixType::Scalar Scalar;
57    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
58    typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
59    typedef typename MatrixType::Index Index;
60    typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
61    typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
62    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
63    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
64
65    /**
66      * \brief Default Constructor.
67      *
68      * The default constructor is useful in cases in which the user intends to
69      * perform decompositions via LU::compute(const MatrixType&).
70      */
71    FullPivLU();
72
73    /** \brief Default Constructor with memory preallocation
74      *
75      * Like the default constructor but with preallocation of the internal data
76      * according to the specified problem \a size.
77      * \sa FullPivLU()
78      */
79    FullPivLU(Index rows, Index cols);
80
81    /** Constructor.
82      *
83      * \param matrix the matrix of which to compute the LU decomposition.
84      *               It is required to be nonzero.
85      */
86    FullPivLU(const MatrixType& matrix);
87
88    /** Computes the LU decomposition of the given matrix.
89      *
90      * \param matrix the matrix of which to compute the LU decomposition.
91      *               It is required to be nonzero.
92      *
93      * \returns a reference to *this
94      */
95    FullPivLU& compute(const MatrixType& matrix);
96
97    /** \returns the LU decomposition matrix: the upper-triangular part is U, the
98      * unit-lower-triangular part is L (at least for square matrices; in the non-square
99      * case, special care is needed, see the documentation of class FullPivLU).
100      *
101      * \sa matrixL(), matrixU()
102      */
103    inline const MatrixType& matrixLU() const
104    {
105      eigen_assert(m_isInitialized && "LU is not initialized.");
106      return m_lu;
107    }
108
109    /** \returns the number of nonzero pivots in the LU decomposition.
110      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
111      * So that notion isn't really intrinsically interesting, but it is
112      * still useful when implementing algorithms.
113      *
114      * \sa rank()
115      */
116    inline Index nonzeroPivots() const
117    {
118      eigen_assert(m_isInitialized && "LU is not initialized.");
119      return m_nonzero_pivots;
120    }
121
122    /** \returns the absolute value of the biggest pivot, i.e. the biggest
123      *          diagonal coefficient of U.
124      */
125    RealScalar maxPivot() const { return m_maxpivot; }
126
127    /** \returns the permutation matrix P
128      *
129      * \sa permutationQ()
130      */
131    inline const PermutationPType& permutationP() const
132    {
133      eigen_assert(m_isInitialized && "LU is not initialized.");
134      return m_p;
135    }
136
137    /** \returns the permutation matrix Q
138      *
139      * \sa permutationP()
140      */
141    inline const PermutationQType& permutationQ() const
142    {
143      eigen_assert(m_isInitialized && "LU is not initialized.");
144      return m_q;
145    }
146
147    /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
148      * will form a basis of the kernel.
149      *
150      * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
151      *
152      * \note This method has to determine which pivots should be considered nonzero.
153      *       For that, it uses the threshold value that you can control by calling
154      *       setThreshold(const RealScalar&).
155      *
156      * Example: \include FullPivLU_kernel.cpp
157      * Output: \verbinclude FullPivLU_kernel.out
158      *
159      * \sa image()
160      */
161    inline const internal::kernel_retval<FullPivLU> kernel() const
162    {
163      eigen_assert(m_isInitialized && "LU is not initialized.");
164      return internal::kernel_retval<FullPivLU>(*this);
165    }
166
167    /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
168      * will form a basis of the kernel.
169      *
170      * \param originalMatrix the original matrix, of which *this is the LU decomposition.
171      *                       The reason why it is needed to pass it here, is that this allows
172      *                       a large optimization, as otherwise this method would need to reconstruct it
173      *                       from the LU decomposition.
174      *
175      * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
176      *
177      * \note This method has to determine which pivots should be considered nonzero.
178      *       For that, it uses the threshold value that you can control by calling
179      *       setThreshold(const RealScalar&).
180      *
181      * Example: \include FullPivLU_image.cpp
182      * Output: \verbinclude FullPivLU_image.out
183      *
184      * \sa kernel()
185      */
186    inline const internal::image_retval<FullPivLU>
187      image(const MatrixType& originalMatrix) const
188    {
189      eigen_assert(m_isInitialized && "LU is not initialized.");
190      return internal::image_retval<FullPivLU>(*this, originalMatrix);
191    }
192
193    /** \return a solution x to the equation Ax=b, where A is the matrix of which
194      * *this is the LU decomposition.
195      *
196      * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
197      *          the only requirement in order for the equation to make sense is that
198      *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
199      *
200      * \returns a solution.
201      *
202      * \note_about_checking_solutions
203      *
204      * \note_about_arbitrary_choice_of_solution
205      * \note_about_using_kernel_to_study_multiple_solutions
206      *
207      * Example: \include FullPivLU_solve.cpp
208      * Output: \verbinclude FullPivLU_solve.out
209      *
210      * \sa TriangularView::solve(), kernel(), inverse()
211      */
212    template<typename Rhs>
213    inline const internal::solve_retval<FullPivLU, Rhs>
214    solve(const MatrixBase<Rhs>& b) const
215    {
216      eigen_assert(m_isInitialized && "LU is not initialized.");
217      return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
218    }
219
220    /** \returns the determinant of the matrix of which
221      * *this is the LU decomposition. It has only linear complexity
222      * (that is, O(n) where n is the dimension of the square matrix)
223      * as the LU decomposition has already been computed.
224      *
225      * \note This is only for square matrices.
226      *
227      * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
228      *       optimized paths.
229      *
230      * \warning a determinant can be very big or small, so for matrices
231      * of large enough dimension, there is a risk of overflow/underflow.
232      *
233      * \sa MatrixBase::determinant()
234      */
235    typename internal::traits<MatrixType>::Scalar determinant() const;
236
237    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
238      * who need to determine when pivots are to be considered nonzero. This is not used for the
239      * LU decomposition itself.
240      *
241      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
242      * uses a formula to automatically determine a reasonable threshold.
243      * Once you have called the present method setThreshold(const RealScalar&),
244      * your value is used instead.
245      *
246      * \param threshold The new value to use as the threshold.
247      *
248      * A pivot will be considered nonzero if its absolute value is strictly greater than
249      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
250      * where maxpivot is the biggest pivot.
251      *
252      * If you want to come back to the default behavior, call setThreshold(Default_t)
253      */
254    FullPivLU& setThreshold(const RealScalar& threshold)
255    {
256      m_usePrescribedThreshold = true;
257      m_prescribedThreshold = threshold;
258      return *this;
259    }
260
261    /** Allows to come back to the default behavior, letting Eigen use its default formula for
262      * determining the threshold.
263      *
264      * You should pass the special object Eigen::Default as parameter here.
265      * \code lu.setThreshold(Eigen::Default); \endcode
266      *
267      * See the documentation of setThreshold(const RealScalar&).
268      */
269    FullPivLU& setThreshold(Default_t)
270    {
271      m_usePrescribedThreshold = false;
272      return *this;
273    }
274
275    /** Returns the threshold that will be used by certain methods such as rank().
276      *
277      * See the documentation of setThreshold(const RealScalar&).
278      */
279    RealScalar threshold() const
280    {
281      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
282      return m_usePrescribedThreshold ? m_prescribedThreshold
283      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
284      // and turns out to be identical to Higham's formula used already in LDLt.
285                                      : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
286    }
287
288    /** \returns the rank of the matrix of which *this is the LU decomposition.
289      *
290      * \note This method has to determine which pivots should be considered nonzero.
291      *       For that, it uses the threshold value that you can control by calling
292      *       setThreshold(const RealScalar&).
293      */
294    inline Index rank() const
295    {
296      eigen_assert(m_isInitialized && "LU is not initialized.");
297      RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
298      Index result = 0;
299      for(Index i = 0; i < m_nonzero_pivots; ++i)
300        result += (internal::abs(m_lu.coeff(i,i)) > premultiplied_threshold);
301      return result;
302    }
303
304    /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
305      *
306      * \note This method has to determine which pivots should be considered nonzero.
307      *       For that, it uses the threshold value that you can control by calling
308      *       setThreshold(const RealScalar&).
309      */
310    inline Index dimensionOfKernel() const
311    {
312      eigen_assert(m_isInitialized && "LU is not initialized.");
313      return cols() - rank();
314    }
315
316    /** \returns true if the matrix of which *this is the LU decomposition represents an injective
317      *          linear map, i.e. has trivial kernel; false otherwise.
318      *
319      * \note This method has to determine which pivots should be considered nonzero.
320      *       For that, it uses the threshold value that you can control by calling
321      *       setThreshold(const RealScalar&).
322      */
323    inline bool isInjective() const
324    {
325      eigen_assert(m_isInitialized && "LU is not initialized.");
326      return rank() == cols();
327    }
328
329    /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
330      *          linear map; false otherwise.
331      *
332      * \note This method has to determine which pivots should be considered nonzero.
333      *       For that, it uses the threshold value that you can control by calling
334      *       setThreshold(const RealScalar&).
335      */
336    inline bool isSurjective() const
337    {
338      eigen_assert(m_isInitialized && "LU is not initialized.");
339      return rank() == rows();
340    }
341
342    /** \returns true if the matrix of which *this is the LU decomposition is invertible.
343      *
344      * \note This method has to determine which pivots should be considered nonzero.
345      *       For that, it uses the threshold value that you can control by calling
346      *       setThreshold(const RealScalar&).
347      */
348    inline bool isInvertible() const
349    {
350      eigen_assert(m_isInitialized && "LU is not initialized.");
351      return isInjective() && (m_lu.rows() == m_lu.cols());
352    }
353
354    /** \returns the inverse of the matrix of which *this is the LU decomposition.
355      *
356      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
357      *       Use isInvertible() to first determine whether this matrix is invertible.
358      *
359      * \sa MatrixBase::inverse()
360      */
361    inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
362    {
363      eigen_assert(m_isInitialized && "LU is not initialized.");
364      eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
365      return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
366               (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
367    }
368
369    MatrixType reconstructedMatrix() const;
370
371    inline Index rows() const { return m_lu.rows(); }
372    inline Index cols() const { return m_lu.cols(); }
373
374  protected:
375    MatrixType m_lu;
376    PermutationPType m_p;
377    PermutationQType m_q;
378    IntColVectorType m_rowsTranspositions;
379    IntRowVectorType m_colsTranspositions;
380    Index m_det_pq, m_nonzero_pivots;
381    RealScalar m_maxpivot, m_prescribedThreshold;
382    bool m_isInitialized, m_usePrescribedThreshold;
383};
384
385template<typename MatrixType>
386FullPivLU<MatrixType>::FullPivLU()
387  : m_isInitialized(false), m_usePrescribedThreshold(false)
388{
389}
390
391template<typename MatrixType>
392FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
393  : m_lu(rows, cols),
394    m_p(rows),
395    m_q(cols),
396    m_rowsTranspositions(rows),
397    m_colsTranspositions(cols),
398    m_isInitialized(false),
399    m_usePrescribedThreshold(false)
400{
401}
402
403template<typename MatrixType>
404FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
405  : m_lu(matrix.rows(), matrix.cols()),
406    m_p(matrix.rows()),
407    m_q(matrix.cols()),
408    m_rowsTranspositions(matrix.rows()),
409    m_colsTranspositions(matrix.cols()),
410    m_isInitialized(false),
411    m_usePrescribedThreshold(false)
412{
413  compute(matrix);
414}
415
416template<typename MatrixType>
417FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
418{
419  m_isInitialized = true;
420  m_lu = matrix;
421
422  const Index size = matrix.diagonalSize();
423  const Index rows = matrix.rows();
424  const Index cols = matrix.cols();
425
426  // will store the transpositions, before we accumulate them at the end.
427  // can't accumulate on-the-fly because that will be done in reverse order for the rows.
428  m_rowsTranspositions.resize(matrix.rows());
429  m_colsTranspositions.resize(matrix.cols());
430  Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
431
432  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
433  m_maxpivot = RealScalar(0);
434
435  for(Index k = 0; k < size; ++k)
436  {
437    // First, we need to find the pivot.
438
439    // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
440    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
441    RealScalar biggest_in_corner;
442    biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
443                        .cwiseAbs()
444                        .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
445    row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
446    col_of_biggest_in_corner += k; // need to add k to them.
447
448    if(biggest_in_corner==RealScalar(0))
449    {
450      // before exiting, make sure to initialize the still uninitialized transpositions
451      // in a sane state without destroying what we already have.
452      m_nonzero_pivots = k;
453      for(Index i = k; i < size; ++i)
454      {
455        m_rowsTranspositions.coeffRef(i) = i;
456        m_colsTranspositions.coeffRef(i) = i;
457      }
458      break;
459    }
460
461    if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
462
463    // Now that we've found the pivot, we need to apply the row/col swaps to
464    // bring it to the location (k,k).
465
466    m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
467    m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
468    if(k != row_of_biggest_in_corner) {
469      m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
470      ++number_of_transpositions;
471    }
472    if(k != col_of_biggest_in_corner) {
473      m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
474      ++number_of_transpositions;
475    }
476
477    // Now that the pivot is at the right location, we update the remaining
478    // bottom-right corner by Gaussian elimination.
479
480    if(k<rows-1)
481      m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
482    if(k<size-1)
483      m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
484  }
485
486  // the main loop is over, we still have to accumulate the transpositions to find the
487  // permutations P and Q
488
489  m_p.setIdentity(rows);
490  for(Index k = size-1; k >= 0; --k)
491    m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
492
493  m_q.setIdentity(cols);
494  for(Index k = 0; k < size; ++k)
495    m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
496
497  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
498  return *this;
499}
500
501template<typename MatrixType>
502typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
503{
504  eigen_assert(m_isInitialized && "LU is not initialized.");
505  eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
506  return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
507}
508
509/** \returns the matrix represented by the decomposition,
510 * i.e., it returns the product: P^{-1} L U Q^{-1}.
511 * This function is provided for debug purpose. */
512template<typename MatrixType>
513MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
514{
515  eigen_assert(m_isInitialized && "LU is not initialized.");
516  const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
517  // LU
518  MatrixType res(m_lu.rows(),m_lu.cols());
519  // FIXME the .toDenseMatrix() should not be needed...
520  res = m_lu.leftCols(smalldim)
521            .template triangularView<UnitLower>().toDenseMatrix()
522      * m_lu.topRows(smalldim)
523            .template triangularView<Upper>().toDenseMatrix();
524
525  // P^{-1}(LU)
526  res = m_p.inverse() * res;
527
528  // (P^{-1}LU)Q^{-1}
529  res = res * m_q.inverse();
530
531  return res;
532}
533
534/********* Implementation of kernel() **************************************************/
535
536namespace internal {
537template<typename _MatrixType>
538struct kernel_retval<FullPivLU<_MatrixType> >
539  : kernel_retval_base<FullPivLU<_MatrixType> >
540{
541  EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
542
543  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
544            MatrixType::MaxColsAtCompileTime,
545            MatrixType::MaxRowsAtCompileTime)
546  };
547
548  template<typename Dest> void evalTo(Dest& dst) const
549  {
550    const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
551    if(dimker == 0)
552    {
553      // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
554      // avoid crashing/asserting as that depends on floating point calculations. Let's
555      // just return a single column vector filled with zeros.
556      dst.setZero();
557      return;
558    }
559
560    /* Let us use the following lemma:
561      *
562      * Lemma: If the matrix A has the LU decomposition PAQ = LU,
563      * then Ker A = Q(Ker U).
564      *
565      * Proof: trivial: just keep in mind that P, Q, L are invertible.
566      */
567
568    /* Thus, all we need to do is to compute Ker U, and then apply Q.
569      *
570      * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
571      * Thus, the diagonal of U ends with exactly
572      * dimKer zero's. Let us use that to construct dimKer linearly
573      * independent vectors in Ker U.
574      */
575
576    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
577    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
578    Index p = 0;
579    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
580      if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
581        pivots.coeffRef(p++) = i;
582    eigen_internal_assert(p == rank());
583
584    // we construct a temporaty trapezoid matrix m, by taking the U matrix and
585    // permuting the rows and cols to bring the nonnegligible pivots to the top of
586    // the main diagonal. We need that to be able to apply our triangular solvers.
587    // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
588    Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
589           MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
590      m(dec().matrixLU().block(0, 0, rank(), cols));
591    for(Index i = 0; i < rank(); ++i)
592    {
593      if(i) m.row(i).head(i).setZero();
594      m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
595    }
596    m.block(0, 0, rank(), rank());
597    m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
598    for(Index i = 0; i < rank(); ++i)
599      m.col(i).swap(m.col(pivots.coeff(i)));
600
601    // ok, we have our trapezoid matrix, we can apply the triangular solver.
602    // notice that the math behind this suggests that we should apply this to the
603    // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
604    m.topLeftCorner(rank(), rank())
605     .template triangularView<Upper>().solveInPlace(
606        m.topRightCorner(rank(), dimker)
607      );
608
609    // now we must undo the column permutation that we had applied!
610    for(Index i = rank()-1; i >= 0; --i)
611      m.col(i).swap(m.col(pivots.coeff(i)));
612
613    // see the negative sign in the next line, that's what we were talking about above.
614    for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
615    for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
616    for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
617  }
618};
619
620/***** Implementation of image() *****************************************************/
621
622template<typename _MatrixType>
623struct image_retval<FullPivLU<_MatrixType> >
624  : image_retval_base<FullPivLU<_MatrixType> >
625{
626  EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
627
628  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
629            MatrixType::MaxColsAtCompileTime,
630            MatrixType::MaxRowsAtCompileTime)
631  };
632
633  template<typename Dest> void evalTo(Dest& dst) const
634  {
635    if(rank() == 0)
636    {
637      // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
638      // avoid crashing/asserting as that depends on floating point calculations. Let's
639      // just return a single column vector filled with zeros.
640      dst.setZero();
641      return;
642    }
643
644    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
645    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
646    Index p = 0;
647    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
648      if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
649        pivots.coeffRef(p++) = i;
650    eigen_internal_assert(p == rank());
651
652    for(Index i = 0; i < rank(); ++i)
653      dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
654  }
655};
656
657/***** Implementation of solve() *****************************************************/
658
659template<typename _MatrixType, typename Rhs>
660struct solve_retval<FullPivLU<_MatrixType>, Rhs>
661  : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
662{
663  EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
664
665  template<typename Dest> void evalTo(Dest& dst) const
666  {
667    /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
668     * So we proceed as follows:
669     * Step 1: compute c = P * rhs.
670     * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
671     * Step 3: replace c by the solution x to Ux = c. May or may not exist.
672     * Step 4: result = Q * c;
673     */
674
675    const Index rows = dec().rows(), cols = dec().cols(),
676              nonzero_pivots = dec().nonzeroPivots();
677    eigen_assert(rhs().rows() == rows);
678    const Index smalldim = (std::min)(rows, cols);
679
680    if(nonzero_pivots == 0)
681    {
682      dst.setZero();
683      return;
684    }
685
686    typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
687
688    // Step 1
689    c = dec().permutationP() * rhs();
690
691    // Step 2
692    dec().matrixLU()
693        .topLeftCorner(smalldim,smalldim)
694        .template triangularView<UnitLower>()
695        .solveInPlace(c.topRows(smalldim));
696    if(rows>cols)
697    {
698      c.bottomRows(rows-cols)
699        -= dec().matrixLU().bottomRows(rows-cols)
700         * c.topRows(cols);
701    }
702
703    // Step 3
704    dec().matrixLU()
705        .topLeftCorner(nonzero_pivots, nonzero_pivots)
706        .template triangularView<Upper>()
707        .solveInPlace(c.topRows(nonzero_pivots));
708
709    // Step 4
710    for(Index i = 0; i < nonzero_pivots; ++i)
711      dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
712    for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
713      dst.row(dec().permutationQ().indices().coeff(i)).setZero();
714  }
715};
716
717} // end namespace internal
718
719/******* MatrixBase methods *****************************************************************/
720
721/** \lu_module
722  *
723  * \return the full-pivoting LU decomposition of \c *this.
724  *
725  * \sa class FullPivLU
726  */
727template<typename Derived>
728inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
729MatrixBase<Derived>::fullPivLu() const
730{
731  return FullPivLU<PlainObject>(eval());
732}
733
734} // end namespace Eigen
735
736#endif // EIGEN_LU_H
Note: See TracBrowser for help on using the repository browser.