[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_LU_H |
---|
| 11 | #define EIGEN_LU_H |
---|
| 12 | |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | /** \ingroup LU_Module |
---|
| 16 | * |
---|
| 17 | * \class FullPivLU |
---|
| 18 | * |
---|
| 19 | * \brief LU decomposition of a matrix with complete pivoting, and related features |
---|
| 20 | * |
---|
| 21 | * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
---|
| 22 | * |
---|
| 23 | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A |
---|
| 24 | * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q |
---|
| 25 | * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal |
---|
| 26 | * coefficients) of U are sorted in such a way that any zeros are at the end. |
---|
| 27 | * |
---|
| 28 | * This decomposition provides the generic approach to solving systems of linear equations, computing |
---|
| 29 | * the rank, invertibility, inverse, kernel, and determinant. |
---|
| 30 | * |
---|
| 31 | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD |
---|
| 32 | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, |
---|
| 33 | * working with the SVD allows to select the smallest singular values of the matrix, something that |
---|
| 34 | * the LU decomposition doesn't see. |
---|
| 35 | * |
---|
| 36 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), |
---|
| 37 | * permutationP(), permutationQ(). |
---|
| 38 | * |
---|
| 39 | * As an exemple, here is how the original matrix can be retrieved: |
---|
| 40 | * \include class_FullPivLU.cpp |
---|
| 41 | * Output: \verbinclude class_FullPivLU.out |
---|
| 42 | * |
---|
| 43 | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() |
---|
| 44 | */ |
---|
| 45 | template<typename _MatrixType> class FullPivLU |
---|
| 46 | { |
---|
| 47 | public: |
---|
| 48 | typedef _MatrixType MatrixType; |
---|
| 49 | enum { |
---|
| 50 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
| 51 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
| 52 | Options = MatrixType::Options, |
---|
| 53 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
| 54 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
| 55 | }; |
---|
| 56 | typedef typename MatrixType::Scalar Scalar; |
---|
| 57 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
| 58 | typedef typename internal::traits<MatrixType>::StorageKind StorageKind; |
---|
| 59 | typedef typename MatrixType::Index Index; |
---|
| 60 | typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; |
---|
| 61 | typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType; |
---|
| 62 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; |
---|
| 63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; |
---|
| 64 | |
---|
| 65 | /** |
---|
| 66 | * \brief Default Constructor. |
---|
| 67 | * |
---|
| 68 | * The default constructor is useful in cases in which the user intends to |
---|
| 69 | * perform decompositions via LU::compute(const MatrixType&). |
---|
| 70 | */ |
---|
| 71 | FullPivLU(); |
---|
| 72 | |
---|
| 73 | /** \brief Default Constructor with memory preallocation |
---|
| 74 | * |
---|
| 75 | * Like the default constructor but with preallocation of the internal data |
---|
| 76 | * according to the specified problem \a size. |
---|
| 77 | * \sa FullPivLU() |
---|
| 78 | */ |
---|
| 79 | FullPivLU(Index rows, Index cols); |
---|
| 80 | |
---|
| 81 | /** Constructor. |
---|
| 82 | * |
---|
| 83 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
| 84 | * It is required to be nonzero. |
---|
| 85 | */ |
---|
| 86 | FullPivLU(const MatrixType& matrix); |
---|
| 87 | |
---|
| 88 | /** Computes the LU decomposition of the given matrix. |
---|
| 89 | * |
---|
| 90 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
| 91 | * It is required to be nonzero. |
---|
| 92 | * |
---|
| 93 | * \returns a reference to *this |
---|
| 94 | */ |
---|
| 95 | FullPivLU& compute(const MatrixType& matrix); |
---|
| 96 | |
---|
| 97 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
---|
| 98 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
---|
| 99 | * case, special care is needed, see the documentation of class FullPivLU). |
---|
| 100 | * |
---|
| 101 | * \sa matrixL(), matrixU() |
---|
| 102 | */ |
---|
| 103 | inline const MatrixType& matrixLU() const |
---|
| 104 | { |
---|
| 105 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 106 | return m_lu; |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | /** \returns the number of nonzero pivots in the LU decomposition. |
---|
| 110 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
---|
| 111 | * So that notion isn't really intrinsically interesting, but it is |
---|
| 112 | * still useful when implementing algorithms. |
---|
| 113 | * |
---|
| 114 | * \sa rank() |
---|
| 115 | */ |
---|
| 116 | inline Index nonzeroPivots() const |
---|
| 117 | { |
---|
| 118 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 119 | return m_nonzero_pivots; |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
---|
| 123 | * diagonal coefficient of U. |
---|
| 124 | */ |
---|
| 125 | RealScalar maxPivot() const { return m_maxpivot; } |
---|
| 126 | |
---|
| 127 | /** \returns the permutation matrix P |
---|
| 128 | * |
---|
| 129 | * \sa permutationQ() |
---|
| 130 | */ |
---|
| 131 | inline const PermutationPType& permutationP() const |
---|
| 132 | { |
---|
| 133 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 134 | return m_p; |
---|
| 135 | } |
---|
| 136 | |
---|
| 137 | /** \returns the permutation matrix Q |
---|
| 138 | * |
---|
| 139 | * \sa permutationP() |
---|
| 140 | */ |
---|
| 141 | inline const PermutationQType& permutationQ() const |
---|
| 142 | { |
---|
| 143 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 144 | return m_q; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix |
---|
| 148 | * will form a basis of the kernel. |
---|
| 149 | * |
---|
| 150 | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. |
---|
| 151 | * |
---|
| 152 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 153 | * For that, it uses the threshold value that you can control by calling |
---|
| 154 | * setThreshold(const RealScalar&). |
---|
| 155 | * |
---|
| 156 | * Example: \include FullPivLU_kernel.cpp |
---|
| 157 | * Output: \verbinclude FullPivLU_kernel.out |
---|
| 158 | * |
---|
| 159 | * \sa image() |
---|
| 160 | */ |
---|
| 161 | inline const internal::kernel_retval<FullPivLU> kernel() const |
---|
| 162 | { |
---|
| 163 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 164 | return internal::kernel_retval<FullPivLU>(*this); |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix |
---|
| 168 | * will form a basis of the kernel. |
---|
| 169 | * |
---|
| 170 | * \param originalMatrix the original matrix, of which *this is the LU decomposition. |
---|
| 171 | * The reason why it is needed to pass it here, is that this allows |
---|
| 172 | * a large optimization, as otherwise this method would need to reconstruct it |
---|
| 173 | * from the LU decomposition. |
---|
| 174 | * |
---|
| 175 | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. |
---|
| 176 | * |
---|
| 177 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 178 | * For that, it uses the threshold value that you can control by calling |
---|
| 179 | * setThreshold(const RealScalar&). |
---|
| 180 | * |
---|
| 181 | * Example: \include FullPivLU_image.cpp |
---|
| 182 | * Output: \verbinclude FullPivLU_image.out |
---|
| 183 | * |
---|
| 184 | * \sa kernel() |
---|
| 185 | */ |
---|
| 186 | inline const internal::image_retval<FullPivLU> |
---|
| 187 | image(const MatrixType& originalMatrix) const |
---|
| 188 | { |
---|
| 189 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 190 | return internal::image_retval<FullPivLU>(*this, originalMatrix); |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | /** \return a solution x to the equation Ax=b, where A is the matrix of which |
---|
| 194 | * *this is the LU decomposition. |
---|
| 195 | * |
---|
| 196 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
---|
| 197 | * the only requirement in order for the equation to make sense is that |
---|
| 198 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
---|
| 199 | * |
---|
| 200 | * \returns a solution. |
---|
| 201 | * |
---|
| 202 | * \note_about_checking_solutions |
---|
| 203 | * |
---|
| 204 | * \note_about_arbitrary_choice_of_solution |
---|
| 205 | * \note_about_using_kernel_to_study_multiple_solutions |
---|
| 206 | * |
---|
| 207 | * Example: \include FullPivLU_solve.cpp |
---|
| 208 | * Output: \verbinclude FullPivLU_solve.out |
---|
| 209 | * |
---|
| 210 | * \sa TriangularView::solve(), kernel(), inverse() |
---|
| 211 | */ |
---|
| 212 | template<typename Rhs> |
---|
| 213 | inline const internal::solve_retval<FullPivLU, Rhs> |
---|
| 214 | solve(const MatrixBase<Rhs>& b) const |
---|
| 215 | { |
---|
| 216 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 217 | return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived()); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | /** \returns the determinant of the matrix of which |
---|
| 221 | * *this is the LU decomposition. It has only linear complexity |
---|
| 222 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
| 223 | * as the LU decomposition has already been computed. |
---|
| 224 | * |
---|
| 225 | * \note This is only for square matrices. |
---|
| 226 | * |
---|
| 227 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
---|
| 228 | * optimized paths. |
---|
| 229 | * |
---|
| 230 | * \warning a determinant can be very big or small, so for matrices |
---|
| 231 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
| 232 | * |
---|
| 233 | * \sa MatrixBase::determinant() |
---|
| 234 | */ |
---|
| 235 | typename internal::traits<MatrixType>::Scalar determinant() const; |
---|
| 236 | |
---|
| 237 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
---|
| 238 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
---|
| 239 | * LU decomposition itself. |
---|
| 240 | * |
---|
| 241 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
---|
| 242 | * uses a formula to automatically determine a reasonable threshold. |
---|
| 243 | * Once you have called the present method setThreshold(const RealScalar&), |
---|
| 244 | * your value is used instead. |
---|
| 245 | * |
---|
| 246 | * \param threshold The new value to use as the threshold. |
---|
| 247 | * |
---|
| 248 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
---|
| 249 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
---|
| 250 | * where maxpivot is the biggest pivot. |
---|
| 251 | * |
---|
| 252 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
---|
| 253 | */ |
---|
| 254 | FullPivLU& setThreshold(const RealScalar& threshold) |
---|
| 255 | { |
---|
| 256 | m_usePrescribedThreshold = true; |
---|
| 257 | m_prescribedThreshold = threshold; |
---|
| 258 | return *this; |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
---|
| 262 | * determining the threshold. |
---|
| 263 | * |
---|
| 264 | * You should pass the special object Eigen::Default as parameter here. |
---|
| 265 | * \code lu.setThreshold(Eigen::Default); \endcode |
---|
| 266 | * |
---|
| 267 | * See the documentation of setThreshold(const RealScalar&). |
---|
| 268 | */ |
---|
| 269 | FullPivLU& setThreshold(Default_t) |
---|
| 270 | { |
---|
| 271 | m_usePrescribedThreshold = false; |
---|
| 272 | return *this; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | /** Returns the threshold that will be used by certain methods such as rank(). |
---|
| 276 | * |
---|
| 277 | * See the documentation of setThreshold(const RealScalar&). |
---|
| 278 | */ |
---|
| 279 | RealScalar threshold() const |
---|
| 280 | { |
---|
| 281 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
---|
| 282 | return m_usePrescribedThreshold ? m_prescribedThreshold |
---|
| 283 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
---|
| 284 | // and turns out to be identical to Higham's formula used already in LDLt. |
---|
| 285 | : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | /** \returns the rank of the matrix of which *this is the LU decomposition. |
---|
| 289 | * |
---|
| 290 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 291 | * For that, it uses the threshold value that you can control by calling |
---|
| 292 | * setThreshold(const RealScalar&). |
---|
| 293 | */ |
---|
| 294 | inline Index rank() const |
---|
| 295 | { |
---|
| 296 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 297 | RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold(); |
---|
| 298 | Index result = 0; |
---|
| 299 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
---|
| 300 | result += (internal::abs(m_lu.coeff(i,i)) > premultiplied_threshold); |
---|
| 301 | return result; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. |
---|
| 305 | * |
---|
| 306 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 307 | * For that, it uses the threshold value that you can control by calling |
---|
| 308 | * setThreshold(const RealScalar&). |
---|
| 309 | */ |
---|
| 310 | inline Index dimensionOfKernel() const |
---|
| 311 | { |
---|
| 312 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 313 | return cols() - rank(); |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | /** \returns true if the matrix of which *this is the LU decomposition represents an injective |
---|
| 317 | * linear map, i.e. has trivial kernel; false otherwise. |
---|
| 318 | * |
---|
| 319 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 320 | * For that, it uses the threshold value that you can control by calling |
---|
| 321 | * setThreshold(const RealScalar&). |
---|
| 322 | */ |
---|
| 323 | inline bool isInjective() const |
---|
| 324 | { |
---|
| 325 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 326 | return rank() == cols(); |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective |
---|
| 330 | * linear map; false otherwise. |
---|
| 331 | * |
---|
| 332 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 333 | * For that, it uses the threshold value that you can control by calling |
---|
| 334 | * setThreshold(const RealScalar&). |
---|
| 335 | */ |
---|
| 336 | inline bool isSurjective() const |
---|
| 337 | { |
---|
| 338 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 339 | return rank() == rows(); |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | /** \returns true if the matrix of which *this is the LU decomposition is invertible. |
---|
| 343 | * |
---|
| 344 | * \note This method has to determine which pivots should be considered nonzero. |
---|
| 345 | * For that, it uses the threshold value that you can control by calling |
---|
| 346 | * setThreshold(const RealScalar&). |
---|
| 347 | */ |
---|
| 348 | inline bool isInvertible() const |
---|
| 349 | { |
---|
| 350 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 351 | return isInjective() && (m_lu.rows() == m_lu.cols()); |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
---|
| 355 | * |
---|
| 356 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
---|
| 357 | * Use isInvertible() to first determine whether this matrix is invertible. |
---|
| 358 | * |
---|
| 359 | * \sa MatrixBase::inverse() |
---|
| 360 | */ |
---|
| 361 | inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const |
---|
| 362 | { |
---|
| 363 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 364 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); |
---|
| 365 | return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> |
---|
| 366 | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | MatrixType reconstructedMatrix() const; |
---|
| 370 | |
---|
| 371 | inline Index rows() const { return m_lu.rows(); } |
---|
| 372 | inline Index cols() const { return m_lu.cols(); } |
---|
| 373 | |
---|
| 374 | protected: |
---|
| 375 | MatrixType m_lu; |
---|
| 376 | PermutationPType m_p; |
---|
| 377 | PermutationQType m_q; |
---|
| 378 | IntColVectorType m_rowsTranspositions; |
---|
| 379 | IntRowVectorType m_colsTranspositions; |
---|
| 380 | Index m_det_pq, m_nonzero_pivots; |
---|
| 381 | RealScalar m_maxpivot, m_prescribedThreshold; |
---|
| 382 | bool m_isInitialized, m_usePrescribedThreshold; |
---|
| 383 | }; |
---|
| 384 | |
---|
| 385 | template<typename MatrixType> |
---|
| 386 | FullPivLU<MatrixType>::FullPivLU() |
---|
| 387 | : m_isInitialized(false), m_usePrescribedThreshold(false) |
---|
| 388 | { |
---|
| 389 | } |
---|
| 390 | |
---|
| 391 | template<typename MatrixType> |
---|
| 392 | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) |
---|
| 393 | : m_lu(rows, cols), |
---|
| 394 | m_p(rows), |
---|
| 395 | m_q(cols), |
---|
| 396 | m_rowsTranspositions(rows), |
---|
| 397 | m_colsTranspositions(cols), |
---|
| 398 | m_isInitialized(false), |
---|
| 399 | m_usePrescribedThreshold(false) |
---|
| 400 | { |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | template<typename MatrixType> |
---|
| 404 | FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix) |
---|
| 405 | : m_lu(matrix.rows(), matrix.cols()), |
---|
| 406 | m_p(matrix.rows()), |
---|
| 407 | m_q(matrix.cols()), |
---|
| 408 | m_rowsTranspositions(matrix.rows()), |
---|
| 409 | m_colsTranspositions(matrix.cols()), |
---|
| 410 | m_isInitialized(false), |
---|
| 411 | m_usePrescribedThreshold(false) |
---|
| 412 | { |
---|
| 413 | compute(matrix); |
---|
| 414 | } |
---|
| 415 | |
---|
| 416 | template<typename MatrixType> |
---|
| 417 | FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix) |
---|
| 418 | { |
---|
| 419 | m_isInitialized = true; |
---|
| 420 | m_lu = matrix; |
---|
| 421 | |
---|
| 422 | const Index size = matrix.diagonalSize(); |
---|
| 423 | const Index rows = matrix.rows(); |
---|
| 424 | const Index cols = matrix.cols(); |
---|
| 425 | |
---|
| 426 | // will store the transpositions, before we accumulate them at the end. |
---|
| 427 | // can't accumulate on-the-fly because that will be done in reverse order for the rows. |
---|
| 428 | m_rowsTranspositions.resize(matrix.rows()); |
---|
| 429 | m_colsTranspositions.resize(matrix.cols()); |
---|
| 430 | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i |
---|
| 431 | |
---|
| 432 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
---|
| 433 | m_maxpivot = RealScalar(0); |
---|
| 434 | |
---|
| 435 | for(Index k = 0; k < size; ++k) |
---|
| 436 | { |
---|
| 437 | // First, we need to find the pivot. |
---|
| 438 | |
---|
| 439 | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) |
---|
| 440 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
---|
| 441 | RealScalar biggest_in_corner; |
---|
| 442 | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) |
---|
| 443 | .cwiseAbs() |
---|
| 444 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
---|
| 445 | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, |
---|
| 446 | col_of_biggest_in_corner += k; // need to add k to them. |
---|
| 447 | |
---|
| 448 | if(biggest_in_corner==RealScalar(0)) |
---|
| 449 | { |
---|
| 450 | // before exiting, make sure to initialize the still uninitialized transpositions |
---|
| 451 | // in a sane state without destroying what we already have. |
---|
| 452 | m_nonzero_pivots = k; |
---|
| 453 | for(Index i = k; i < size; ++i) |
---|
| 454 | { |
---|
| 455 | m_rowsTranspositions.coeffRef(i) = i; |
---|
| 456 | m_colsTranspositions.coeffRef(i) = i; |
---|
| 457 | } |
---|
| 458 | break; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner; |
---|
| 462 | |
---|
| 463 | // Now that we've found the pivot, we need to apply the row/col swaps to |
---|
| 464 | // bring it to the location (k,k). |
---|
| 465 | |
---|
| 466 | m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; |
---|
| 467 | m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; |
---|
| 468 | if(k != row_of_biggest_in_corner) { |
---|
| 469 | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); |
---|
| 470 | ++number_of_transpositions; |
---|
| 471 | } |
---|
| 472 | if(k != col_of_biggest_in_corner) { |
---|
| 473 | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); |
---|
| 474 | ++number_of_transpositions; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | // Now that the pivot is at the right location, we update the remaining |
---|
| 478 | // bottom-right corner by Gaussian elimination. |
---|
| 479 | |
---|
| 480 | if(k<rows-1) |
---|
| 481 | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); |
---|
| 482 | if(k<size-1) |
---|
| 483 | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | // the main loop is over, we still have to accumulate the transpositions to find the |
---|
| 487 | // permutations P and Q |
---|
| 488 | |
---|
| 489 | m_p.setIdentity(rows); |
---|
| 490 | for(Index k = size-1; k >= 0; --k) |
---|
| 491 | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
---|
| 492 | |
---|
| 493 | m_q.setIdentity(cols); |
---|
| 494 | for(Index k = 0; k < size; ++k) |
---|
| 495 | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); |
---|
| 496 | |
---|
| 497 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
---|
| 498 | return *this; |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | template<typename MatrixType> |
---|
| 502 | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const |
---|
| 503 | { |
---|
| 504 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 505 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); |
---|
| 506 | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | /** \returns the matrix represented by the decomposition, |
---|
| 510 | * i.e., it returns the product: P^{-1} L U Q^{-1}. |
---|
| 511 | * This function is provided for debug purpose. */ |
---|
| 512 | template<typename MatrixType> |
---|
| 513 | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const |
---|
| 514 | { |
---|
| 515 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 516 | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); |
---|
| 517 | // LU |
---|
| 518 | MatrixType res(m_lu.rows(),m_lu.cols()); |
---|
| 519 | // FIXME the .toDenseMatrix() should not be needed... |
---|
| 520 | res = m_lu.leftCols(smalldim) |
---|
| 521 | .template triangularView<UnitLower>().toDenseMatrix() |
---|
| 522 | * m_lu.topRows(smalldim) |
---|
| 523 | .template triangularView<Upper>().toDenseMatrix(); |
---|
| 524 | |
---|
| 525 | // P^{-1}(LU) |
---|
| 526 | res = m_p.inverse() * res; |
---|
| 527 | |
---|
| 528 | // (P^{-1}LU)Q^{-1} |
---|
| 529 | res = res * m_q.inverse(); |
---|
| 530 | |
---|
| 531 | return res; |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | /********* Implementation of kernel() **************************************************/ |
---|
| 535 | |
---|
| 536 | namespace internal { |
---|
| 537 | template<typename _MatrixType> |
---|
| 538 | struct kernel_retval<FullPivLU<_MatrixType> > |
---|
| 539 | : kernel_retval_base<FullPivLU<_MatrixType> > |
---|
| 540 | { |
---|
| 541 | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) |
---|
| 542 | |
---|
| 543 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
---|
| 544 | MatrixType::MaxColsAtCompileTime, |
---|
| 545 | MatrixType::MaxRowsAtCompileTime) |
---|
| 546 | }; |
---|
| 547 | |
---|
| 548 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 549 | { |
---|
| 550 | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); |
---|
| 551 | if(dimker == 0) |
---|
| 552 | { |
---|
| 553 | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's |
---|
| 554 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
---|
| 555 | // just return a single column vector filled with zeros. |
---|
| 556 | dst.setZero(); |
---|
| 557 | return; |
---|
| 558 | } |
---|
| 559 | |
---|
| 560 | /* Let us use the following lemma: |
---|
| 561 | * |
---|
| 562 | * Lemma: If the matrix A has the LU decomposition PAQ = LU, |
---|
| 563 | * then Ker A = Q(Ker U). |
---|
| 564 | * |
---|
| 565 | * Proof: trivial: just keep in mind that P, Q, L are invertible. |
---|
| 566 | */ |
---|
| 567 | |
---|
| 568 | /* Thus, all we need to do is to compute Ker U, and then apply Q. |
---|
| 569 | * |
---|
| 570 | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. |
---|
| 571 | * Thus, the diagonal of U ends with exactly |
---|
| 572 | * dimKer zero's. Let us use that to construct dimKer linearly |
---|
| 573 | * independent vectors in Ker U. |
---|
| 574 | */ |
---|
| 575 | |
---|
| 576 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
---|
| 577 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
---|
| 578 | Index p = 0; |
---|
| 579 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
---|
| 580 | if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
---|
| 581 | pivots.coeffRef(p++) = i; |
---|
| 582 | eigen_internal_assert(p == rank()); |
---|
| 583 | |
---|
| 584 | // we construct a temporaty trapezoid matrix m, by taking the U matrix and |
---|
| 585 | // permuting the rows and cols to bring the nonnegligible pivots to the top of |
---|
| 586 | // the main diagonal. We need that to be able to apply our triangular solvers. |
---|
| 587 | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified |
---|
| 588 | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, |
---|
| 589 | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> |
---|
| 590 | m(dec().matrixLU().block(0, 0, rank(), cols)); |
---|
| 591 | for(Index i = 0; i < rank(); ++i) |
---|
| 592 | { |
---|
| 593 | if(i) m.row(i).head(i).setZero(); |
---|
| 594 | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); |
---|
| 595 | } |
---|
| 596 | m.block(0, 0, rank(), rank()); |
---|
| 597 | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); |
---|
| 598 | for(Index i = 0; i < rank(); ++i) |
---|
| 599 | m.col(i).swap(m.col(pivots.coeff(i))); |
---|
| 600 | |
---|
| 601 | // ok, we have our trapezoid matrix, we can apply the triangular solver. |
---|
| 602 | // notice that the math behind this suggests that we should apply this to the |
---|
| 603 | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. |
---|
| 604 | m.topLeftCorner(rank(), rank()) |
---|
| 605 | .template triangularView<Upper>().solveInPlace( |
---|
| 606 | m.topRightCorner(rank(), dimker) |
---|
| 607 | ); |
---|
| 608 | |
---|
| 609 | // now we must undo the column permutation that we had applied! |
---|
| 610 | for(Index i = rank()-1; i >= 0; --i) |
---|
| 611 | m.col(i).swap(m.col(pivots.coeff(i))); |
---|
| 612 | |
---|
| 613 | // see the negative sign in the next line, that's what we were talking about above. |
---|
| 614 | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); |
---|
| 615 | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
---|
| 616 | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); |
---|
| 617 | } |
---|
| 618 | }; |
---|
| 619 | |
---|
| 620 | /***** Implementation of image() *****************************************************/ |
---|
| 621 | |
---|
| 622 | template<typename _MatrixType> |
---|
| 623 | struct image_retval<FullPivLU<_MatrixType> > |
---|
| 624 | : image_retval_base<FullPivLU<_MatrixType> > |
---|
| 625 | { |
---|
| 626 | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) |
---|
| 627 | |
---|
| 628 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
---|
| 629 | MatrixType::MaxColsAtCompileTime, |
---|
| 630 | MatrixType::MaxRowsAtCompileTime) |
---|
| 631 | }; |
---|
| 632 | |
---|
| 633 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 634 | { |
---|
| 635 | if(rank() == 0) |
---|
| 636 | { |
---|
| 637 | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's |
---|
| 638 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
---|
| 639 | // just return a single column vector filled with zeros. |
---|
| 640 | dst.setZero(); |
---|
| 641 | return; |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
---|
| 645 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
---|
| 646 | Index p = 0; |
---|
| 647 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
---|
| 648 | if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
---|
| 649 | pivots.coeffRef(p++) = i; |
---|
| 650 | eigen_internal_assert(p == rank()); |
---|
| 651 | |
---|
| 652 | for(Index i = 0; i < rank(); ++i) |
---|
| 653 | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); |
---|
| 654 | } |
---|
| 655 | }; |
---|
| 656 | |
---|
| 657 | /***** Implementation of solve() *****************************************************/ |
---|
| 658 | |
---|
| 659 | template<typename _MatrixType, typename Rhs> |
---|
| 660 | struct solve_retval<FullPivLU<_MatrixType>, Rhs> |
---|
| 661 | : solve_retval_base<FullPivLU<_MatrixType>, Rhs> |
---|
| 662 | { |
---|
| 663 | EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs) |
---|
| 664 | |
---|
| 665 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 666 | { |
---|
| 667 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. |
---|
| 668 | * So we proceed as follows: |
---|
| 669 | * Step 1: compute c = P * rhs. |
---|
| 670 | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. |
---|
| 671 | * Step 3: replace c by the solution x to Ux = c. May or may not exist. |
---|
| 672 | * Step 4: result = Q * c; |
---|
| 673 | */ |
---|
| 674 | |
---|
| 675 | const Index rows = dec().rows(), cols = dec().cols(), |
---|
| 676 | nonzero_pivots = dec().nonzeroPivots(); |
---|
| 677 | eigen_assert(rhs().rows() == rows); |
---|
| 678 | const Index smalldim = (std::min)(rows, cols); |
---|
| 679 | |
---|
| 680 | if(nonzero_pivots == 0) |
---|
| 681 | { |
---|
| 682 | dst.setZero(); |
---|
| 683 | return; |
---|
| 684 | } |
---|
| 685 | |
---|
| 686 | typename Rhs::PlainObject c(rhs().rows(), rhs().cols()); |
---|
| 687 | |
---|
| 688 | // Step 1 |
---|
| 689 | c = dec().permutationP() * rhs(); |
---|
| 690 | |
---|
| 691 | // Step 2 |
---|
| 692 | dec().matrixLU() |
---|
| 693 | .topLeftCorner(smalldim,smalldim) |
---|
| 694 | .template triangularView<UnitLower>() |
---|
| 695 | .solveInPlace(c.topRows(smalldim)); |
---|
| 696 | if(rows>cols) |
---|
| 697 | { |
---|
| 698 | c.bottomRows(rows-cols) |
---|
| 699 | -= dec().matrixLU().bottomRows(rows-cols) |
---|
| 700 | * c.topRows(cols); |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | // Step 3 |
---|
| 704 | dec().matrixLU() |
---|
| 705 | .topLeftCorner(nonzero_pivots, nonzero_pivots) |
---|
| 706 | .template triangularView<Upper>() |
---|
| 707 | .solveInPlace(c.topRows(nonzero_pivots)); |
---|
| 708 | |
---|
| 709 | // Step 4 |
---|
| 710 | for(Index i = 0; i < nonzero_pivots; ++i) |
---|
| 711 | dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i); |
---|
| 712 | for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i) |
---|
| 713 | dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
---|
| 714 | } |
---|
| 715 | }; |
---|
| 716 | |
---|
| 717 | } // end namespace internal |
---|
| 718 | |
---|
| 719 | /******* MatrixBase methods *****************************************************************/ |
---|
| 720 | |
---|
| 721 | /** \lu_module |
---|
| 722 | * |
---|
| 723 | * \return the full-pivoting LU decomposition of \c *this. |
---|
| 724 | * |
---|
| 725 | * \sa class FullPivLU |
---|
| 726 | */ |
---|
| 727 | template<typename Derived> |
---|
| 728 | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
| 729 | MatrixBase<Derived>::fullPivLu() const |
---|
| 730 | { |
---|
| 731 | return FullPivLU<PlainObject>(eval()); |
---|
| 732 | } |
---|
| 733 | |
---|
| 734 | } // end namespace Eigen |
---|
| 735 | |
---|
| 736 | #endif // EIGEN_LU_H |
---|