1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_JACOBI_H |
---|
12 | #define EIGEN_JACOBI_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | /** \ingroup Jacobi_Module |
---|
17 | * \jacobi_module |
---|
18 | * \class JacobiRotation |
---|
19 | * \brief Rotation given by a cosine-sine pair. |
---|
20 | * |
---|
21 | * This class represents a Jacobi or Givens rotation. |
---|
22 | * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by |
---|
23 | * its cosine \c c and sine \c s as follow: |
---|
24 | * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ |
---|
25 | * |
---|
26 | * You can apply the respective counter-clockwise rotation to a column vector \c v by |
---|
27 | * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: |
---|
28 | * \code |
---|
29 | * v.applyOnTheLeft(J.adjoint()); |
---|
30 | * \endcode |
---|
31 | * |
---|
32 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
33 | */ |
---|
34 | template<typename Scalar> class JacobiRotation |
---|
35 | { |
---|
36 | public: |
---|
37 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
38 | |
---|
39 | /** Default constructor without any initialization. */ |
---|
40 | JacobiRotation() {} |
---|
41 | |
---|
42 | /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ |
---|
43 | JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} |
---|
44 | |
---|
45 | Scalar& c() { return m_c; } |
---|
46 | Scalar c() const { return m_c; } |
---|
47 | Scalar& s() { return m_s; } |
---|
48 | Scalar s() const { return m_s; } |
---|
49 | |
---|
50 | /** Concatenates two planar rotation */ |
---|
51 | JacobiRotation operator*(const JacobiRotation& other) |
---|
52 | { |
---|
53 | return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s, |
---|
54 | internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c))); |
---|
55 | } |
---|
56 | |
---|
57 | /** Returns the transposed transformation */ |
---|
58 | JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); } |
---|
59 | |
---|
60 | /** Returns the adjoint transformation */ |
---|
61 | JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); } |
---|
62 | |
---|
63 | template<typename Derived> |
---|
64 | bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q); |
---|
65 | bool makeJacobi(RealScalar x, Scalar y, RealScalar z); |
---|
66 | |
---|
67 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); |
---|
68 | |
---|
69 | protected: |
---|
70 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type); |
---|
71 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type); |
---|
72 | |
---|
73 | Scalar m_c, m_s; |
---|
74 | }; |
---|
75 | |
---|
76 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix |
---|
77 | * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ |
---|
78 | * |
---|
79 | * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
80 | */ |
---|
81 | template<typename Scalar> |
---|
82 | bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z) |
---|
83 | { |
---|
84 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
85 | if(y == Scalar(0)) |
---|
86 | { |
---|
87 | m_c = Scalar(1); |
---|
88 | m_s = Scalar(0); |
---|
89 | return false; |
---|
90 | } |
---|
91 | else |
---|
92 | { |
---|
93 | RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y)); |
---|
94 | RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1)); |
---|
95 | RealScalar t; |
---|
96 | if(tau>RealScalar(0)) |
---|
97 | { |
---|
98 | t = RealScalar(1) / (tau + w); |
---|
99 | } |
---|
100 | else |
---|
101 | { |
---|
102 | t = RealScalar(1) / (tau - w); |
---|
103 | } |
---|
104 | RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); |
---|
105 | RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1)); |
---|
106 | m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n; |
---|
107 | m_c = n; |
---|
108 | return true; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix |
---|
113 | * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields |
---|
114 | * a diagonal matrix \f$ A = J^* B J \f$ |
---|
115 | * |
---|
116 | * Example: \include Jacobi_makeJacobi.cpp |
---|
117 | * Output: \verbinclude Jacobi_makeJacobi.out |
---|
118 | * |
---|
119 | * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
120 | */ |
---|
121 | template<typename Scalar> |
---|
122 | template<typename Derived> |
---|
123 | inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q) |
---|
124 | { |
---|
125 | return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q))); |
---|
126 | } |
---|
127 | |
---|
128 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector |
---|
129 | * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: |
---|
130 | * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. |
---|
131 | * |
---|
132 | * The value of \a z is returned if \a z is not null (the default is null). |
---|
133 | * Also note that G is built such that the cosine is always real. |
---|
134 | * |
---|
135 | * Example: \include Jacobi_makeGivens.cpp |
---|
136 | * Output: \verbinclude Jacobi_makeGivens.out |
---|
137 | * |
---|
138 | * This function implements the continuous Givens rotation generation algorithm |
---|
139 | * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. |
---|
140 | * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. |
---|
141 | * |
---|
142 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
143 | */ |
---|
144 | template<typename Scalar> |
---|
145 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) |
---|
146 | { |
---|
147 | makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); |
---|
148 | } |
---|
149 | |
---|
150 | |
---|
151 | // specialization for complexes |
---|
152 | template<typename Scalar> |
---|
153 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) |
---|
154 | { |
---|
155 | if(q==Scalar(0)) |
---|
156 | { |
---|
157 | m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1); |
---|
158 | m_s = 0; |
---|
159 | if(r) *r = m_c * p; |
---|
160 | } |
---|
161 | else if(p==Scalar(0)) |
---|
162 | { |
---|
163 | m_c = 0; |
---|
164 | m_s = -q/internal::abs(q); |
---|
165 | if(r) *r = internal::abs(q); |
---|
166 | } |
---|
167 | else |
---|
168 | { |
---|
169 | RealScalar p1 = internal::norm1(p); |
---|
170 | RealScalar q1 = internal::norm1(q); |
---|
171 | if(p1>=q1) |
---|
172 | { |
---|
173 | Scalar ps = p / p1; |
---|
174 | RealScalar p2 = internal::abs2(ps); |
---|
175 | Scalar qs = q / p1; |
---|
176 | RealScalar q2 = internal::abs2(qs); |
---|
177 | |
---|
178 | RealScalar u = internal::sqrt(RealScalar(1) + q2/p2); |
---|
179 | if(internal::real(p)<RealScalar(0)) |
---|
180 | u = -u; |
---|
181 | |
---|
182 | m_c = Scalar(1)/u; |
---|
183 | m_s = -qs*internal::conj(ps)*(m_c/p2); |
---|
184 | if(r) *r = p * u; |
---|
185 | } |
---|
186 | else |
---|
187 | { |
---|
188 | Scalar ps = p / q1; |
---|
189 | RealScalar p2 = internal::abs2(ps); |
---|
190 | Scalar qs = q / q1; |
---|
191 | RealScalar q2 = internal::abs2(qs); |
---|
192 | |
---|
193 | RealScalar u = q1 * internal::sqrt(p2 + q2); |
---|
194 | if(internal::real(p)<RealScalar(0)) |
---|
195 | u = -u; |
---|
196 | |
---|
197 | p1 = internal::abs(p); |
---|
198 | ps = p/p1; |
---|
199 | m_c = p1/u; |
---|
200 | m_s = -internal::conj(ps) * (q/u); |
---|
201 | if(r) *r = ps * u; |
---|
202 | } |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | // specialization for reals |
---|
207 | template<typename Scalar> |
---|
208 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) |
---|
209 | { |
---|
210 | |
---|
211 | if(q==Scalar(0)) |
---|
212 | { |
---|
213 | m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); |
---|
214 | m_s = Scalar(0); |
---|
215 | if(r) *r = internal::abs(p); |
---|
216 | } |
---|
217 | else if(p==Scalar(0)) |
---|
218 | { |
---|
219 | m_c = Scalar(0); |
---|
220 | m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); |
---|
221 | if(r) *r = internal::abs(q); |
---|
222 | } |
---|
223 | else if(internal::abs(p) > internal::abs(q)) |
---|
224 | { |
---|
225 | Scalar t = q/p; |
---|
226 | Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); |
---|
227 | if(p<Scalar(0)) |
---|
228 | u = -u; |
---|
229 | m_c = Scalar(1)/u; |
---|
230 | m_s = -t * m_c; |
---|
231 | if(r) *r = p * u; |
---|
232 | } |
---|
233 | else |
---|
234 | { |
---|
235 | Scalar t = p/q; |
---|
236 | Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); |
---|
237 | if(q<Scalar(0)) |
---|
238 | u = -u; |
---|
239 | m_s = -Scalar(1)/u; |
---|
240 | m_c = -t * m_s; |
---|
241 | if(r) *r = q * u; |
---|
242 | } |
---|
243 | |
---|
244 | } |
---|
245 | |
---|
246 | /**************************************************************************************** |
---|
247 | * Implementation of MatrixBase methods |
---|
248 | ****************************************************************************************/ |
---|
249 | |
---|
250 | /** \jacobi_module |
---|
251 | * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: |
---|
252 | * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ |
---|
253 | * |
---|
254 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
255 | */ |
---|
256 | namespace internal { |
---|
257 | template<typename VectorX, typename VectorY, typename OtherScalar> |
---|
258 | void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j); |
---|
259 | } |
---|
260 | |
---|
261 | /** \jacobi_module |
---|
262 | * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, |
---|
263 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. |
---|
264 | * |
---|
265 | * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() |
---|
266 | */ |
---|
267 | template<typename Derived> |
---|
268 | template<typename OtherScalar> |
---|
269 | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
---|
270 | { |
---|
271 | RowXpr x(this->row(p)); |
---|
272 | RowXpr y(this->row(q)); |
---|
273 | internal::apply_rotation_in_the_plane(x, y, j); |
---|
274 | } |
---|
275 | |
---|
276 | /** \ingroup Jacobi_Module |
---|
277 | * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J |
---|
278 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. |
---|
279 | * |
---|
280 | * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() |
---|
281 | */ |
---|
282 | template<typename Derived> |
---|
283 | template<typename OtherScalar> |
---|
284 | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
---|
285 | { |
---|
286 | ColXpr x(this->col(p)); |
---|
287 | ColXpr y(this->col(q)); |
---|
288 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); |
---|
289 | } |
---|
290 | |
---|
291 | namespace internal { |
---|
292 | template<typename VectorX, typename VectorY, typename OtherScalar> |
---|
293 | void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j) |
---|
294 | { |
---|
295 | typedef typename VectorX::Index Index; |
---|
296 | typedef typename VectorX::Scalar Scalar; |
---|
297 | enum { PacketSize = packet_traits<Scalar>::size }; |
---|
298 | typedef typename packet_traits<Scalar>::type Packet; |
---|
299 | eigen_assert(_x.size() == _y.size()); |
---|
300 | Index size = _x.size(); |
---|
301 | Index incrx = _x.innerStride(); |
---|
302 | Index incry = _y.innerStride(); |
---|
303 | |
---|
304 | Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); |
---|
305 | Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); |
---|
306 | |
---|
307 | /*** dynamic-size vectorized paths ***/ |
---|
308 | |
---|
309 | if(VectorX::SizeAtCompileTime == Dynamic && |
---|
310 | (VectorX::Flags & VectorY::Flags & PacketAccessBit) && |
---|
311 | ((incrx==1 && incry==1) || PacketSize == 1)) |
---|
312 | { |
---|
313 | // both vectors are sequentially stored in memory => vectorization |
---|
314 | enum { Peeling = 2 }; |
---|
315 | |
---|
316 | Index alignedStart = internal::first_aligned(y, size); |
---|
317 | Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; |
---|
318 | |
---|
319 | const Packet pc = pset1<Packet>(j.c()); |
---|
320 | const Packet ps = pset1<Packet>(j.s()); |
---|
321 | conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; |
---|
322 | |
---|
323 | for(Index i=0; i<alignedStart; ++i) |
---|
324 | { |
---|
325 | Scalar xi = x[i]; |
---|
326 | Scalar yi = y[i]; |
---|
327 | x[i] = j.c() * xi + conj(j.s()) * yi; |
---|
328 | y[i] = -j.s() * xi + conj(j.c()) * yi; |
---|
329 | } |
---|
330 | |
---|
331 | Scalar* EIGEN_RESTRICT px = x + alignedStart; |
---|
332 | Scalar* EIGEN_RESTRICT py = y + alignedStart; |
---|
333 | |
---|
334 | if(internal::first_aligned(x, size)==alignedStart) |
---|
335 | { |
---|
336 | for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) |
---|
337 | { |
---|
338 | Packet xi = pload<Packet>(px); |
---|
339 | Packet yi = pload<Packet>(py); |
---|
340 | pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
341 | pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
342 | px += PacketSize; |
---|
343 | py += PacketSize; |
---|
344 | } |
---|
345 | } |
---|
346 | else |
---|
347 | { |
---|
348 | Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); |
---|
349 | for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) |
---|
350 | { |
---|
351 | Packet xi = ploadu<Packet>(px); |
---|
352 | Packet xi1 = ploadu<Packet>(px+PacketSize); |
---|
353 | Packet yi = pload <Packet>(py); |
---|
354 | Packet yi1 = pload <Packet>(py+PacketSize); |
---|
355 | pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
356 | pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1))); |
---|
357 | pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
358 | pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1))); |
---|
359 | px += Peeling*PacketSize; |
---|
360 | py += Peeling*PacketSize; |
---|
361 | } |
---|
362 | if(alignedEnd!=peelingEnd) |
---|
363 | { |
---|
364 | Packet xi = ploadu<Packet>(x+peelingEnd); |
---|
365 | Packet yi = pload <Packet>(y+peelingEnd); |
---|
366 | pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
367 | pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | for(Index i=alignedEnd; i<size; ++i) |
---|
372 | { |
---|
373 | Scalar xi = x[i]; |
---|
374 | Scalar yi = y[i]; |
---|
375 | x[i] = j.c() * xi + conj(j.s()) * yi; |
---|
376 | y[i] = -j.s() * xi + conj(j.c()) * yi; |
---|
377 | } |
---|
378 | } |
---|
379 | |
---|
380 | /*** fixed-size vectorized path ***/ |
---|
381 | else if(VectorX::SizeAtCompileTime != Dynamic && |
---|
382 | (VectorX::Flags & VectorY::Flags & PacketAccessBit) && |
---|
383 | (VectorX::Flags & VectorY::Flags & AlignedBit)) |
---|
384 | { |
---|
385 | const Packet pc = pset1<Packet>(j.c()); |
---|
386 | const Packet ps = pset1<Packet>(j.s()); |
---|
387 | conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; |
---|
388 | Scalar* EIGEN_RESTRICT px = x; |
---|
389 | Scalar* EIGEN_RESTRICT py = y; |
---|
390 | for(Index i=0; i<size; i+=PacketSize) |
---|
391 | { |
---|
392 | Packet xi = pload<Packet>(px); |
---|
393 | Packet yi = pload<Packet>(py); |
---|
394 | pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
395 | pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
396 | px += PacketSize; |
---|
397 | py += PacketSize; |
---|
398 | } |
---|
399 | } |
---|
400 | |
---|
401 | /*** non-vectorized path ***/ |
---|
402 | else |
---|
403 | { |
---|
404 | for(Index i=0; i<size; ++i) |
---|
405 | { |
---|
406 | Scalar xi = *x; |
---|
407 | Scalar yi = *y; |
---|
408 | *x = j.c() * xi + conj(j.s()) * yi; |
---|
409 | *y = -j.s() * xi + conj(j.c()) * yi; |
---|
410 | x += incrx; |
---|
411 | y += incry; |
---|
412 | } |
---|
413 | } |
---|
414 | } |
---|
415 | |
---|
416 | } // end namespace internal |
---|
417 | |
---|
418 | } // end namespace Eigen |
---|
419 | |
---|
420 | #endif // EIGEN_JACOBI_H |
---|