Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Jacobi/Jacobi.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 13.9 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_JACOBI_H
12#define EIGEN_JACOBI_H
13
14namespace Eigen {
15
16/** \ingroup Jacobi_Module
17  * \jacobi_module
18  * \class JacobiRotation
19  * \brief Rotation given by a cosine-sine pair.
20  *
21  * This class represents a Jacobi or Givens rotation.
22  * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
23  * its cosine \c c and sine \c s as follow:
24  * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$
25  *
26  * You can apply the respective counter-clockwise rotation to a column vector \c v by
27  * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
28  * \code
29  * v.applyOnTheLeft(J.adjoint());
30  * \endcode
31  *
32  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
33  */
34template<typename Scalar> class JacobiRotation
35{
36  public:
37    typedef typename NumTraits<Scalar>::Real RealScalar;
38
39    /** Default constructor without any initialization. */
40    JacobiRotation() {}
41
42    /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
43    JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
44
45    Scalar& c() { return m_c; }
46    Scalar c() const { return m_c; }
47    Scalar& s() { return m_s; }
48    Scalar s() const { return m_s; }
49
50    /** Concatenates two planar rotation */
51    JacobiRotation operator*(const JacobiRotation& other)
52    {
53      return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s,
54                            internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c)));
55    }
56
57    /** Returns the transposed transformation */
58    JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); }
59
60    /** Returns the adjoint transformation */
61    JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); }
62
63    template<typename Derived>
64    bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
65    bool makeJacobi(RealScalar x, Scalar y, RealScalar z);
66
67    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
68
69  protected:
70    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
71    void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
72
73    Scalar m_c, m_s;
74};
75
76/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
77  * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
78  *
79  * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
80  */
81template<typename Scalar>
82bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
83{
84  typedef typename NumTraits<Scalar>::Real RealScalar;
85  if(y == Scalar(0))
86  {
87    m_c = Scalar(1);
88    m_s = Scalar(0);
89    return false;
90  }
91  else
92  {
93    RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y));
94    RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1));
95    RealScalar t;
96    if(tau>RealScalar(0))
97    {
98      t = RealScalar(1) / (tau + w);
99    }
100    else
101    {
102      t = RealScalar(1) / (tau - w);
103    }
104    RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
105    RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1));
106    m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n;
107    m_c = n;
108    return true;
109  }
110}
111
112/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
113  * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
114  * a diagonal matrix \f$ A = J^* B J \f$
115  *
116  * Example: \include Jacobi_makeJacobi.cpp
117  * Output: \verbinclude Jacobi_makeJacobi.out
118  *
119  * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
120  */
121template<typename Scalar>
122template<typename Derived>
123inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
124{
125  return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q)));
126}
127
128/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
129  * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
130  * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
131  *
132  * The value of \a z is returned if \a z is not null (the default is null).
133  * Also note that G is built such that the cosine is always real.
134  *
135  * Example: \include Jacobi_makeGivens.cpp
136  * Output: \verbinclude Jacobi_makeGivens.out
137  *
138  * This function implements the continuous Givens rotation generation algorithm
139  * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
140  * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
141  *
142  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
143  */
144template<typename Scalar>
145void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
146{
147  makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
148}
149
150
151// specialization for complexes
152template<typename Scalar>
153void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
154{
155  if(q==Scalar(0))
156  {
157    m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1);
158    m_s = 0;
159    if(r) *r = m_c * p;
160  }
161  else if(p==Scalar(0))
162  {
163    m_c = 0;
164    m_s = -q/internal::abs(q);
165    if(r) *r = internal::abs(q);
166  }
167  else
168  {
169    RealScalar p1 = internal::norm1(p);
170    RealScalar q1 = internal::norm1(q);
171    if(p1>=q1)
172    {
173      Scalar ps = p / p1;
174      RealScalar p2 = internal::abs2(ps);
175      Scalar qs = q / p1;
176      RealScalar q2 = internal::abs2(qs);
177
178      RealScalar u = internal::sqrt(RealScalar(1) + q2/p2);
179      if(internal::real(p)<RealScalar(0))
180        u = -u;
181
182      m_c = Scalar(1)/u;
183      m_s = -qs*internal::conj(ps)*(m_c/p2);
184      if(r) *r = p * u;
185    }
186    else
187    {
188      Scalar ps = p / q1;
189      RealScalar p2 = internal::abs2(ps);
190      Scalar qs = q / q1;
191      RealScalar q2 = internal::abs2(qs);
192
193      RealScalar u = q1 * internal::sqrt(p2 + q2);
194      if(internal::real(p)<RealScalar(0))
195        u = -u;
196
197      p1 = internal::abs(p);
198      ps = p/p1;
199      m_c = p1/u;
200      m_s = -internal::conj(ps) * (q/u);
201      if(r) *r = ps * u;
202    }
203  }
204}
205
206// specialization for reals
207template<typename Scalar>
208void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
209{
210
211  if(q==Scalar(0))
212  {
213    m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
214    m_s = Scalar(0);
215    if(r) *r = internal::abs(p);
216  }
217  else if(p==Scalar(0))
218  {
219    m_c = Scalar(0);
220    m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
221    if(r) *r = internal::abs(q);
222  }
223  else if(internal::abs(p) > internal::abs(q))
224  {
225    Scalar t = q/p;
226    Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
227    if(p<Scalar(0))
228      u = -u;
229    m_c = Scalar(1)/u;
230    m_s = -t * m_c;
231    if(r) *r = p * u;
232  }
233  else
234  {
235    Scalar t = p/q;
236    Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
237    if(q<Scalar(0))
238      u = -u;
239    m_s = -Scalar(1)/u;
240    m_c = -t * m_s;
241    if(r) *r = q * u;
242  }
243
244}
245
246/****************************************************************************************
247*   Implementation of MatrixBase methods
248****************************************************************************************/
249
250/** \jacobi_module
251  * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
252  * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
253  *
254  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
255  */
256namespace internal {
257template<typename VectorX, typename VectorY, typename OtherScalar>
258void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
259}
260
261/** \jacobi_module
262  * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
263  * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
264  *
265  * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
266  */
267template<typename Derived>
268template<typename OtherScalar>
269inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
270{
271  RowXpr x(this->row(p));
272  RowXpr y(this->row(q));
273  internal::apply_rotation_in_the_plane(x, y, j);
274}
275
276/** \ingroup Jacobi_Module
277  * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
278  * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
279  *
280  * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
281  */
282template<typename Derived>
283template<typename OtherScalar>
284inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
285{
286  ColXpr x(this->col(p));
287  ColXpr y(this->col(q));
288  internal::apply_rotation_in_the_plane(x, y, j.transpose());
289}
290
291namespace internal {
292template<typename VectorX, typename VectorY, typename OtherScalar>
293void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
294{
295  typedef typename VectorX::Index Index;
296  typedef typename VectorX::Scalar Scalar;
297  enum { PacketSize = packet_traits<Scalar>::size };
298  typedef typename packet_traits<Scalar>::type Packet;
299  eigen_assert(_x.size() == _y.size());
300  Index size = _x.size();
301  Index incrx = _x.innerStride();
302  Index incry = _y.innerStride();
303
304  Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
305  Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
306
307  /*** dynamic-size vectorized paths ***/
308
309  if(VectorX::SizeAtCompileTime == Dynamic &&
310    (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
311    ((incrx==1 && incry==1) || PacketSize == 1))
312  {
313    // both vectors are sequentially stored in memory => vectorization
314    enum { Peeling = 2 };
315
316    Index alignedStart = internal::first_aligned(y, size);
317    Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
318
319    const Packet pc = pset1<Packet>(j.c());
320    const Packet ps = pset1<Packet>(j.s());
321    conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
322
323    for(Index i=0; i<alignedStart; ++i)
324    {
325      Scalar xi = x[i];
326      Scalar yi = y[i];
327      x[i] =  j.c() * xi + conj(j.s()) * yi;
328      y[i] = -j.s() * xi + conj(j.c()) * yi;
329    }
330
331    Scalar* EIGEN_RESTRICT px = x + alignedStart;
332    Scalar* EIGEN_RESTRICT py = y + alignedStart;
333
334    if(internal::first_aligned(x, size)==alignedStart)
335    {
336      for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
337      {
338        Packet xi = pload<Packet>(px);
339        Packet yi = pload<Packet>(py);
340        pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
341        pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
342        px += PacketSize;
343        py += PacketSize;
344      }
345    }
346    else
347    {
348      Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
349      for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
350      {
351        Packet xi   = ploadu<Packet>(px);
352        Packet xi1  = ploadu<Packet>(px+PacketSize);
353        Packet yi   = pload <Packet>(py);
354        Packet yi1  = pload <Packet>(py+PacketSize);
355        pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
356        pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
357        pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
358        pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
359        px += Peeling*PacketSize;
360        py += Peeling*PacketSize;
361      }
362      if(alignedEnd!=peelingEnd)
363      {
364        Packet xi = ploadu<Packet>(x+peelingEnd);
365        Packet yi = pload <Packet>(y+peelingEnd);
366        pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
367        pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
368      }
369    }
370
371    for(Index i=alignedEnd; i<size; ++i)
372    {
373      Scalar xi = x[i];
374      Scalar yi = y[i];
375      x[i] =  j.c() * xi + conj(j.s()) * yi;
376      y[i] = -j.s() * xi + conj(j.c()) * yi;
377    }
378  }
379
380  /*** fixed-size vectorized path ***/
381  else if(VectorX::SizeAtCompileTime != Dynamic &&
382          (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
383          (VectorX::Flags & VectorY::Flags & AlignedBit))
384  {
385    const Packet pc = pset1<Packet>(j.c());
386    const Packet ps = pset1<Packet>(j.s());
387    conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
388    Scalar* EIGEN_RESTRICT px = x;
389    Scalar* EIGEN_RESTRICT py = y;
390    for(Index i=0; i<size; i+=PacketSize)
391    {
392      Packet xi = pload<Packet>(px);
393      Packet yi = pload<Packet>(py);
394      pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
395      pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
396      px += PacketSize;
397      py += PacketSize;
398    }
399  }
400
401  /*** non-vectorized path ***/
402  else
403  {
404    for(Index i=0; i<size; ++i)
405    {
406      Scalar xi = *x;
407      Scalar yi = *y;
408      *x =  j.c() * xi + conj(j.s()) * yi;
409      *y = -j.s() * xi + conj(j.c()) * yi;
410      x += incrx;
411      y += incry;
412    }
413  }
414}
415
416} // end namespace internal
417
418} // end namespace Eigen
419
420#endif // EIGEN_JACOBI_H
Note: See TracBrowser for help on using the repository browser.