[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 6 | // |
---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 10 | |
---|
| 11 | #ifndef EIGEN_JACOBI_H |
---|
| 12 | #define EIGEN_JACOBI_H |
---|
| 13 | |
---|
| 14 | namespace Eigen { |
---|
| 15 | |
---|
| 16 | /** \ingroup Jacobi_Module |
---|
| 17 | * \jacobi_module |
---|
| 18 | * \class JacobiRotation |
---|
| 19 | * \brief Rotation given by a cosine-sine pair. |
---|
| 20 | * |
---|
| 21 | * This class represents a Jacobi or Givens rotation. |
---|
| 22 | * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by |
---|
| 23 | * its cosine \c c and sine \c s as follow: |
---|
| 24 | * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ |
---|
| 25 | * |
---|
| 26 | * You can apply the respective counter-clockwise rotation to a column vector \c v by |
---|
| 27 | * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: |
---|
| 28 | * \code |
---|
| 29 | * v.applyOnTheLeft(J.adjoint()); |
---|
| 30 | * \endcode |
---|
| 31 | * |
---|
| 32 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
| 33 | */ |
---|
| 34 | template<typename Scalar> class JacobiRotation |
---|
| 35 | { |
---|
| 36 | public: |
---|
| 37 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 38 | |
---|
| 39 | /** Default constructor without any initialization. */ |
---|
| 40 | JacobiRotation() {} |
---|
| 41 | |
---|
| 42 | /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ |
---|
| 43 | JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} |
---|
| 44 | |
---|
| 45 | Scalar& c() { return m_c; } |
---|
| 46 | Scalar c() const { return m_c; } |
---|
| 47 | Scalar& s() { return m_s; } |
---|
| 48 | Scalar s() const { return m_s; } |
---|
| 49 | |
---|
| 50 | /** Concatenates two planar rotation */ |
---|
| 51 | JacobiRotation operator*(const JacobiRotation& other) |
---|
| 52 | { |
---|
| 53 | return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s, |
---|
| 54 | internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c))); |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | /** Returns the transposed transformation */ |
---|
| 58 | JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); } |
---|
| 59 | |
---|
| 60 | /** Returns the adjoint transformation */ |
---|
| 61 | JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); } |
---|
| 62 | |
---|
| 63 | template<typename Derived> |
---|
| 64 | bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q); |
---|
| 65 | bool makeJacobi(RealScalar x, Scalar y, RealScalar z); |
---|
| 66 | |
---|
| 67 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); |
---|
| 68 | |
---|
| 69 | protected: |
---|
| 70 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type); |
---|
| 71 | void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type); |
---|
| 72 | |
---|
| 73 | Scalar m_c, m_s; |
---|
| 74 | }; |
---|
| 75 | |
---|
| 76 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix |
---|
| 77 | * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ |
---|
| 78 | * |
---|
| 79 | * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
| 80 | */ |
---|
| 81 | template<typename Scalar> |
---|
| 82 | bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z) |
---|
| 83 | { |
---|
| 84 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 85 | if(y == Scalar(0)) |
---|
| 86 | { |
---|
| 87 | m_c = Scalar(1); |
---|
| 88 | m_s = Scalar(0); |
---|
| 89 | return false; |
---|
| 90 | } |
---|
| 91 | else |
---|
| 92 | { |
---|
| 93 | RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y)); |
---|
| 94 | RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1)); |
---|
| 95 | RealScalar t; |
---|
| 96 | if(tau>RealScalar(0)) |
---|
| 97 | { |
---|
| 98 | t = RealScalar(1) / (tau + w); |
---|
| 99 | } |
---|
| 100 | else |
---|
| 101 | { |
---|
| 102 | t = RealScalar(1) / (tau - w); |
---|
| 103 | } |
---|
| 104 | RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); |
---|
| 105 | RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1)); |
---|
| 106 | m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n; |
---|
| 107 | m_c = n; |
---|
| 108 | return true; |
---|
| 109 | } |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix |
---|
| 113 | * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields |
---|
| 114 | * a diagonal matrix \f$ A = J^* B J \f$ |
---|
| 115 | * |
---|
| 116 | * Example: \include Jacobi_makeJacobi.cpp |
---|
| 117 | * Output: \verbinclude Jacobi_makeJacobi.out |
---|
| 118 | * |
---|
| 119 | * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
| 120 | */ |
---|
| 121 | template<typename Scalar> |
---|
| 122 | template<typename Derived> |
---|
| 123 | inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q) |
---|
| 124 | { |
---|
| 125 | return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q))); |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector |
---|
| 129 | * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: |
---|
| 130 | * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. |
---|
| 131 | * |
---|
| 132 | * The value of \a z is returned if \a z is not null (the default is null). |
---|
| 133 | * Also note that G is built such that the cosine is always real. |
---|
| 134 | * |
---|
| 135 | * Example: \include Jacobi_makeGivens.cpp |
---|
| 136 | * Output: \verbinclude Jacobi_makeGivens.out |
---|
| 137 | * |
---|
| 138 | * This function implements the continuous Givens rotation generation algorithm |
---|
| 139 | * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. |
---|
| 140 | * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. |
---|
| 141 | * |
---|
| 142 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
| 143 | */ |
---|
| 144 | template<typename Scalar> |
---|
| 145 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) |
---|
| 146 | { |
---|
| 147 | makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | // specialization for complexes |
---|
| 152 | template<typename Scalar> |
---|
| 153 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) |
---|
| 154 | { |
---|
| 155 | if(q==Scalar(0)) |
---|
| 156 | { |
---|
| 157 | m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1); |
---|
| 158 | m_s = 0; |
---|
| 159 | if(r) *r = m_c * p; |
---|
| 160 | } |
---|
| 161 | else if(p==Scalar(0)) |
---|
| 162 | { |
---|
| 163 | m_c = 0; |
---|
| 164 | m_s = -q/internal::abs(q); |
---|
| 165 | if(r) *r = internal::abs(q); |
---|
| 166 | } |
---|
| 167 | else |
---|
| 168 | { |
---|
| 169 | RealScalar p1 = internal::norm1(p); |
---|
| 170 | RealScalar q1 = internal::norm1(q); |
---|
| 171 | if(p1>=q1) |
---|
| 172 | { |
---|
| 173 | Scalar ps = p / p1; |
---|
| 174 | RealScalar p2 = internal::abs2(ps); |
---|
| 175 | Scalar qs = q / p1; |
---|
| 176 | RealScalar q2 = internal::abs2(qs); |
---|
| 177 | |
---|
| 178 | RealScalar u = internal::sqrt(RealScalar(1) + q2/p2); |
---|
| 179 | if(internal::real(p)<RealScalar(0)) |
---|
| 180 | u = -u; |
---|
| 181 | |
---|
| 182 | m_c = Scalar(1)/u; |
---|
| 183 | m_s = -qs*internal::conj(ps)*(m_c/p2); |
---|
| 184 | if(r) *r = p * u; |
---|
| 185 | } |
---|
| 186 | else |
---|
| 187 | { |
---|
| 188 | Scalar ps = p / q1; |
---|
| 189 | RealScalar p2 = internal::abs2(ps); |
---|
| 190 | Scalar qs = q / q1; |
---|
| 191 | RealScalar q2 = internal::abs2(qs); |
---|
| 192 | |
---|
| 193 | RealScalar u = q1 * internal::sqrt(p2 + q2); |
---|
| 194 | if(internal::real(p)<RealScalar(0)) |
---|
| 195 | u = -u; |
---|
| 196 | |
---|
| 197 | p1 = internal::abs(p); |
---|
| 198 | ps = p/p1; |
---|
| 199 | m_c = p1/u; |
---|
| 200 | m_s = -internal::conj(ps) * (q/u); |
---|
| 201 | if(r) *r = ps * u; |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | } |
---|
| 205 | |
---|
| 206 | // specialization for reals |
---|
| 207 | template<typename Scalar> |
---|
| 208 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) |
---|
| 209 | { |
---|
| 210 | |
---|
| 211 | if(q==Scalar(0)) |
---|
| 212 | { |
---|
| 213 | m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); |
---|
| 214 | m_s = Scalar(0); |
---|
| 215 | if(r) *r = internal::abs(p); |
---|
| 216 | } |
---|
| 217 | else if(p==Scalar(0)) |
---|
| 218 | { |
---|
| 219 | m_c = Scalar(0); |
---|
| 220 | m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); |
---|
| 221 | if(r) *r = internal::abs(q); |
---|
| 222 | } |
---|
| 223 | else if(internal::abs(p) > internal::abs(q)) |
---|
| 224 | { |
---|
| 225 | Scalar t = q/p; |
---|
| 226 | Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); |
---|
| 227 | if(p<Scalar(0)) |
---|
| 228 | u = -u; |
---|
| 229 | m_c = Scalar(1)/u; |
---|
| 230 | m_s = -t * m_c; |
---|
| 231 | if(r) *r = p * u; |
---|
| 232 | } |
---|
| 233 | else |
---|
| 234 | { |
---|
| 235 | Scalar t = p/q; |
---|
| 236 | Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); |
---|
| 237 | if(q<Scalar(0)) |
---|
| 238 | u = -u; |
---|
| 239 | m_s = -Scalar(1)/u; |
---|
| 240 | m_c = -t * m_s; |
---|
| 241 | if(r) *r = q * u; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | /**************************************************************************************** |
---|
| 247 | * Implementation of MatrixBase methods |
---|
| 248 | ****************************************************************************************/ |
---|
| 249 | |
---|
| 250 | /** \jacobi_module |
---|
| 251 | * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y: |
---|
| 252 | * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ |
---|
| 253 | * |
---|
| 254 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
---|
| 255 | */ |
---|
| 256 | namespace internal { |
---|
| 257 | template<typename VectorX, typename VectorY, typename OtherScalar> |
---|
| 258 | void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j); |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | /** \jacobi_module |
---|
| 262 | * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, |
---|
| 263 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. |
---|
| 264 | * |
---|
| 265 | * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() |
---|
| 266 | */ |
---|
| 267 | template<typename Derived> |
---|
| 268 | template<typename OtherScalar> |
---|
| 269 | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
---|
| 270 | { |
---|
| 271 | RowXpr x(this->row(p)); |
---|
| 272 | RowXpr y(this->row(q)); |
---|
| 273 | internal::apply_rotation_in_the_plane(x, y, j); |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | /** \ingroup Jacobi_Module |
---|
| 277 | * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J |
---|
| 278 | * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. |
---|
| 279 | * |
---|
| 280 | * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() |
---|
| 281 | */ |
---|
| 282 | template<typename Derived> |
---|
| 283 | template<typename OtherScalar> |
---|
| 284 | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) |
---|
| 285 | { |
---|
| 286 | ColXpr x(this->col(p)); |
---|
| 287 | ColXpr y(this->col(q)); |
---|
| 288 | internal::apply_rotation_in_the_plane(x, y, j.transpose()); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | namespace internal { |
---|
| 292 | template<typename VectorX, typename VectorY, typename OtherScalar> |
---|
| 293 | void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j) |
---|
| 294 | { |
---|
| 295 | typedef typename VectorX::Index Index; |
---|
| 296 | typedef typename VectorX::Scalar Scalar; |
---|
| 297 | enum { PacketSize = packet_traits<Scalar>::size }; |
---|
| 298 | typedef typename packet_traits<Scalar>::type Packet; |
---|
| 299 | eigen_assert(_x.size() == _y.size()); |
---|
| 300 | Index size = _x.size(); |
---|
| 301 | Index incrx = _x.innerStride(); |
---|
| 302 | Index incry = _y.innerStride(); |
---|
| 303 | |
---|
| 304 | Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); |
---|
| 305 | Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); |
---|
| 306 | |
---|
| 307 | /*** dynamic-size vectorized paths ***/ |
---|
| 308 | |
---|
| 309 | if(VectorX::SizeAtCompileTime == Dynamic && |
---|
| 310 | (VectorX::Flags & VectorY::Flags & PacketAccessBit) && |
---|
| 311 | ((incrx==1 && incry==1) || PacketSize == 1)) |
---|
| 312 | { |
---|
| 313 | // both vectors are sequentially stored in memory => vectorization |
---|
| 314 | enum { Peeling = 2 }; |
---|
| 315 | |
---|
| 316 | Index alignedStart = internal::first_aligned(y, size); |
---|
| 317 | Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; |
---|
| 318 | |
---|
| 319 | const Packet pc = pset1<Packet>(j.c()); |
---|
| 320 | const Packet ps = pset1<Packet>(j.s()); |
---|
| 321 | conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; |
---|
| 322 | |
---|
| 323 | for(Index i=0; i<alignedStart; ++i) |
---|
| 324 | { |
---|
| 325 | Scalar xi = x[i]; |
---|
| 326 | Scalar yi = y[i]; |
---|
| 327 | x[i] = j.c() * xi + conj(j.s()) * yi; |
---|
| 328 | y[i] = -j.s() * xi + conj(j.c()) * yi; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | Scalar* EIGEN_RESTRICT px = x + alignedStart; |
---|
| 332 | Scalar* EIGEN_RESTRICT py = y + alignedStart; |
---|
| 333 | |
---|
| 334 | if(internal::first_aligned(x, size)==alignedStart) |
---|
| 335 | { |
---|
| 336 | for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) |
---|
| 337 | { |
---|
| 338 | Packet xi = pload<Packet>(px); |
---|
| 339 | Packet yi = pload<Packet>(py); |
---|
| 340 | pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
| 341 | pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
| 342 | px += PacketSize; |
---|
| 343 | py += PacketSize; |
---|
| 344 | } |
---|
| 345 | } |
---|
| 346 | else |
---|
| 347 | { |
---|
| 348 | Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); |
---|
| 349 | for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) |
---|
| 350 | { |
---|
| 351 | Packet xi = ploadu<Packet>(px); |
---|
| 352 | Packet xi1 = ploadu<Packet>(px+PacketSize); |
---|
| 353 | Packet yi = pload <Packet>(py); |
---|
| 354 | Packet yi1 = pload <Packet>(py+PacketSize); |
---|
| 355 | pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
| 356 | pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1))); |
---|
| 357 | pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
| 358 | pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1))); |
---|
| 359 | px += Peeling*PacketSize; |
---|
| 360 | py += Peeling*PacketSize; |
---|
| 361 | } |
---|
| 362 | if(alignedEnd!=peelingEnd) |
---|
| 363 | { |
---|
| 364 | Packet xi = ploadu<Packet>(x+peelingEnd); |
---|
| 365 | Packet yi = pload <Packet>(y+peelingEnd); |
---|
| 366 | pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
| 367 | pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
| 368 | } |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | for(Index i=alignedEnd; i<size; ++i) |
---|
| 372 | { |
---|
| 373 | Scalar xi = x[i]; |
---|
| 374 | Scalar yi = y[i]; |
---|
| 375 | x[i] = j.c() * xi + conj(j.s()) * yi; |
---|
| 376 | y[i] = -j.s() * xi + conj(j.c()) * yi; |
---|
| 377 | } |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | /*** fixed-size vectorized path ***/ |
---|
| 381 | else if(VectorX::SizeAtCompileTime != Dynamic && |
---|
| 382 | (VectorX::Flags & VectorY::Flags & PacketAccessBit) && |
---|
| 383 | (VectorX::Flags & VectorY::Flags & AlignedBit)) |
---|
| 384 | { |
---|
| 385 | const Packet pc = pset1<Packet>(j.c()); |
---|
| 386 | const Packet ps = pset1<Packet>(j.s()); |
---|
| 387 | conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj; |
---|
| 388 | Scalar* EIGEN_RESTRICT px = x; |
---|
| 389 | Scalar* EIGEN_RESTRICT py = y; |
---|
| 390 | for(Index i=0; i<size; i+=PacketSize) |
---|
| 391 | { |
---|
| 392 | Packet xi = pload<Packet>(px); |
---|
| 393 | Packet yi = pload<Packet>(py); |
---|
| 394 | pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); |
---|
| 395 | pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); |
---|
| 396 | px += PacketSize; |
---|
| 397 | py += PacketSize; |
---|
| 398 | } |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /*** non-vectorized path ***/ |
---|
| 402 | else |
---|
| 403 | { |
---|
| 404 | for(Index i=0; i<size; ++i) |
---|
| 405 | { |
---|
| 406 | Scalar xi = *x; |
---|
| 407 | Scalar yi = *y; |
---|
| 408 | *x = j.c() * xi + conj(j.s()) * yi; |
---|
| 409 | *y = -j.s() * xi + conj(j.c()) * yi; |
---|
| 410 | x += incrx; |
---|
| 411 | y += incry; |
---|
| 412 | } |
---|
| 413 | } |
---|
| 414 | } |
---|
| 415 | |
---|
| 416 | } // end namespace internal |
---|
| 417 | |
---|
| 418 | } // end namespace Eigen |
---|
| 419 | |
---|
| 420 | #endif // EIGEN_JACOBI_H |
---|