1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_ITERATIVE_SOLVER_BASE_H |
---|
11 | #define EIGEN_ITERATIVE_SOLVER_BASE_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \ingroup IterativeLinearSolvers_Module |
---|
16 | * \brief Base class for linear iterative solvers |
---|
17 | * |
---|
18 | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
---|
19 | */ |
---|
20 | template< typename Derived> |
---|
21 | class IterativeSolverBase : internal::noncopyable |
---|
22 | { |
---|
23 | public: |
---|
24 | typedef typename internal::traits<Derived>::MatrixType MatrixType; |
---|
25 | typedef typename internal::traits<Derived>::Preconditioner Preconditioner; |
---|
26 | typedef typename MatrixType::Scalar Scalar; |
---|
27 | typedef typename MatrixType::Index Index; |
---|
28 | typedef typename MatrixType::RealScalar RealScalar; |
---|
29 | |
---|
30 | public: |
---|
31 | |
---|
32 | Derived& derived() { return *static_cast<Derived*>(this); } |
---|
33 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
---|
34 | |
---|
35 | /** Default constructor. */ |
---|
36 | IterativeSolverBase() |
---|
37 | : mp_matrix(0) |
---|
38 | { |
---|
39 | init(); |
---|
40 | } |
---|
41 | |
---|
42 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
---|
43 | * |
---|
44 | * This constructor is a shortcut for the default constructor followed |
---|
45 | * by a call to compute(). |
---|
46 | * |
---|
47 | * \warning this class stores a reference to the matrix A as well as some |
---|
48 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
49 | * this class becomes invalid. Call compute() to update it with the new |
---|
50 | * matrix A, or modify a copy of A. |
---|
51 | */ |
---|
52 | IterativeSolverBase(const MatrixType& A) |
---|
53 | { |
---|
54 | init(); |
---|
55 | compute(A); |
---|
56 | } |
---|
57 | |
---|
58 | ~IterativeSolverBase() {} |
---|
59 | |
---|
60 | /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems. |
---|
61 | * |
---|
62 | * Currently, this function mostly call analyzePattern on the preconditioner. In the future |
---|
63 | * we might, for instance, implement column reodering for faster matrix vector products. |
---|
64 | */ |
---|
65 | Derived& analyzePattern(const MatrixType& A) |
---|
66 | { |
---|
67 | m_preconditioner.analyzePattern(A); |
---|
68 | m_isInitialized = true; |
---|
69 | m_analysisIsOk = true; |
---|
70 | m_info = Success; |
---|
71 | return derived(); |
---|
72 | } |
---|
73 | |
---|
74 | /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems. |
---|
75 | * |
---|
76 | * Currently, this function mostly call factorize on the preconditioner. |
---|
77 | * |
---|
78 | * \warning this class stores a reference to the matrix A as well as some |
---|
79 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
80 | * this class becomes invalid. Call compute() to update it with the new |
---|
81 | * matrix A, or modify a copy of A. |
---|
82 | */ |
---|
83 | Derived& factorize(const MatrixType& A) |
---|
84 | { |
---|
85 | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
---|
86 | mp_matrix = &A; |
---|
87 | m_preconditioner.factorize(A); |
---|
88 | m_factorizationIsOk = true; |
---|
89 | m_info = Success; |
---|
90 | return derived(); |
---|
91 | } |
---|
92 | |
---|
93 | /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems. |
---|
94 | * |
---|
95 | * Currently, this function mostly initialized/compute the preconditioner. In the future |
---|
96 | * we might, for instance, implement column reodering for faster matrix vector products. |
---|
97 | * |
---|
98 | * \warning this class stores a reference to the matrix A as well as some |
---|
99 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
100 | * this class becomes invalid. Call compute() to update it with the new |
---|
101 | * matrix A, or modify a copy of A. |
---|
102 | */ |
---|
103 | Derived& compute(const MatrixType& A) |
---|
104 | { |
---|
105 | mp_matrix = &A; |
---|
106 | m_preconditioner.compute(A); |
---|
107 | m_isInitialized = true; |
---|
108 | m_analysisIsOk = true; |
---|
109 | m_factorizationIsOk = true; |
---|
110 | m_info = Success; |
---|
111 | return derived(); |
---|
112 | } |
---|
113 | |
---|
114 | /** \internal */ |
---|
115 | Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; } |
---|
116 | /** \internal */ |
---|
117 | Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; } |
---|
118 | |
---|
119 | /** \returns the tolerance threshold used by the stopping criteria */ |
---|
120 | RealScalar tolerance() const { return m_tolerance; } |
---|
121 | |
---|
122 | /** Sets the tolerance threshold used by the stopping criteria */ |
---|
123 | Derived& setTolerance(RealScalar tolerance) |
---|
124 | { |
---|
125 | m_tolerance = tolerance; |
---|
126 | return derived(); |
---|
127 | } |
---|
128 | |
---|
129 | /** \returns a read-write reference to the preconditioner for custom configuration. */ |
---|
130 | Preconditioner& preconditioner() { return m_preconditioner; } |
---|
131 | |
---|
132 | /** \returns a read-only reference to the preconditioner. */ |
---|
133 | const Preconditioner& preconditioner() const { return m_preconditioner; } |
---|
134 | |
---|
135 | /** \returns the max number of iterations */ |
---|
136 | int maxIterations() const |
---|
137 | { |
---|
138 | return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations; |
---|
139 | } |
---|
140 | |
---|
141 | /** Sets the max number of iterations */ |
---|
142 | Derived& setMaxIterations(int maxIters) |
---|
143 | { |
---|
144 | m_maxIterations = maxIters; |
---|
145 | return derived(); |
---|
146 | } |
---|
147 | |
---|
148 | /** \returns the number of iterations performed during the last solve */ |
---|
149 | int iterations() const |
---|
150 | { |
---|
151 | eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
---|
152 | return m_iterations; |
---|
153 | } |
---|
154 | |
---|
155 | /** \returns the tolerance error reached during the last solve */ |
---|
156 | RealScalar error() const |
---|
157 | { |
---|
158 | eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
---|
159 | return m_error; |
---|
160 | } |
---|
161 | |
---|
162 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
163 | * |
---|
164 | * \sa compute() |
---|
165 | */ |
---|
166 | template<typename Rhs> inline const internal::solve_retval<Derived, Rhs> |
---|
167 | solve(const MatrixBase<Rhs>& b) const |
---|
168 | { |
---|
169 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
170 | eigen_assert(rows()==b.rows() |
---|
171 | && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b"); |
---|
172 | return internal::solve_retval<Derived, Rhs>(derived(), b.derived()); |
---|
173 | } |
---|
174 | |
---|
175 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
176 | * |
---|
177 | * \sa compute() |
---|
178 | */ |
---|
179 | template<typename Rhs> |
---|
180 | inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs> |
---|
181 | solve(const SparseMatrixBase<Rhs>& b) const |
---|
182 | { |
---|
183 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
184 | eigen_assert(rows()==b.rows() |
---|
185 | && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b"); |
---|
186 | return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived()); |
---|
187 | } |
---|
188 | |
---|
189 | /** \returns Success if the iterations converged, and NoConvergence otherwise. */ |
---|
190 | ComputationInfo info() const |
---|
191 | { |
---|
192 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
193 | return m_info; |
---|
194 | } |
---|
195 | |
---|
196 | /** \internal */ |
---|
197 | template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex> |
---|
198 | void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
---|
199 | { |
---|
200 | eigen_assert(rows()==b.rows()); |
---|
201 | |
---|
202 | int rhsCols = b.cols(); |
---|
203 | int size = b.rows(); |
---|
204 | Eigen::Matrix<DestScalar,Dynamic,1> tb(size); |
---|
205 | Eigen::Matrix<DestScalar,Dynamic,1> tx(size); |
---|
206 | for(int k=0; k<rhsCols; ++k) |
---|
207 | { |
---|
208 | tb = b.col(k); |
---|
209 | tx = derived().solve(tb); |
---|
210 | dest.col(k) = tx.sparseView(0); |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | protected: |
---|
215 | void init() |
---|
216 | { |
---|
217 | m_isInitialized = false; |
---|
218 | m_analysisIsOk = false; |
---|
219 | m_factorizationIsOk = false; |
---|
220 | m_maxIterations = -1; |
---|
221 | m_tolerance = NumTraits<Scalar>::epsilon(); |
---|
222 | } |
---|
223 | const MatrixType* mp_matrix; |
---|
224 | Preconditioner m_preconditioner; |
---|
225 | |
---|
226 | int m_maxIterations; |
---|
227 | RealScalar m_tolerance; |
---|
228 | |
---|
229 | mutable RealScalar m_error; |
---|
230 | mutable int m_iterations; |
---|
231 | mutable ComputationInfo m_info; |
---|
232 | mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk; |
---|
233 | }; |
---|
234 | |
---|
235 | namespace internal { |
---|
236 | |
---|
237 | template<typename Derived, typename Rhs> |
---|
238 | struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs> |
---|
239 | : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs> |
---|
240 | { |
---|
241 | typedef IterativeSolverBase<Derived> Dec; |
---|
242 | EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
---|
243 | |
---|
244 | template<typename Dest> void evalTo(Dest& dst) const |
---|
245 | { |
---|
246 | dec().derived()._solve_sparse(rhs(),dst); |
---|
247 | } |
---|
248 | }; |
---|
249 | |
---|
250 | } // end namespace internal |
---|
251 | |
---|
252 | } // end namespace Eigen |
---|
253 | |
---|
254 | #endif // EIGEN_ITERATIVE_SOLVER_BASE_H |
---|