[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_ITERATIVE_SOLVER_BASE_H |
---|
| 11 | #define EIGEN_ITERATIVE_SOLVER_BASE_H |
---|
| 12 | |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | /** \ingroup IterativeLinearSolvers_Module |
---|
| 16 | * \brief Base class for linear iterative solvers |
---|
| 17 | * |
---|
| 18 | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
---|
| 19 | */ |
---|
| 20 | template< typename Derived> |
---|
| 21 | class IterativeSolverBase : internal::noncopyable |
---|
| 22 | { |
---|
| 23 | public: |
---|
| 24 | typedef typename internal::traits<Derived>::MatrixType MatrixType; |
---|
| 25 | typedef typename internal::traits<Derived>::Preconditioner Preconditioner; |
---|
| 26 | typedef typename MatrixType::Scalar Scalar; |
---|
| 27 | typedef typename MatrixType::Index Index; |
---|
| 28 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 29 | |
---|
| 30 | public: |
---|
| 31 | |
---|
| 32 | Derived& derived() { return *static_cast<Derived*>(this); } |
---|
| 33 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
---|
| 34 | |
---|
| 35 | /** Default constructor. */ |
---|
| 36 | IterativeSolverBase() |
---|
| 37 | : mp_matrix(0) |
---|
| 38 | { |
---|
| 39 | init(); |
---|
| 40 | } |
---|
| 41 | |
---|
| 42 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
---|
| 43 | * |
---|
| 44 | * This constructor is a shortcut for the default constructor followed |
---|
| 45 | * by a call to compute(). |
---|
| 46 | * |
---|
| 47 | * \warning this class stores a reference to the matrix A as well as some |
---|
| 48 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
| 49 | * this class becomes invalid. Call compute() to update it with the new |
---|
| 50 | * matrix A, or modify a copy of A. |
---|
| 51 | */ |
---|
| 52 | IterativeSolverBase(const MatrixType& A) |
---|
| 53 | { |
---|
| 54 | init(); |
---|
| 55 | compute(A); |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | ~IterativeSolverBase() {} |
---|
| 59 | |
---|
| 60 | /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems. |
---|
| 61 | * |
---|
| 62 | * Currently, this function mostly call analyzePattern on the preconditioner. In the future |
---|
| 63 | * we might, for instance, implement column reodering for faster matrix vector products. |
---|
| 64 | */ |
---|
| 65 | Derived& analyzePattern(const MatrixType& A) |
---|
| 66 | { |
---|
| 67 | m_preconditioner.analyzePattern(A); |
---|
| 68 | m_isInitialized = true; |
---|
| 69 | m_analysisIsOk = true; |
---|
| 70 | m_info = Success; |
---|
| 71 | return derived(); |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems. |
---|
| 75 | * |
---|
| 76 | * Currently, this function mostly call factorize on the preconditioner. |
---|
| 77 | * |
---|
| 78 | * \warning this class stores a reference to the matrix A as well as some |
---|
| 79 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
| 80 | * this class becomes invalid. Call compute() to update it with the new |
---|
| 81 | * matrix A, or modify a copy of A. |
---|
| 82 | */ |
---|
| 83 | Derived& factorize(const MatrixType& A) |
---|
| 84 | { |
---|
| 85 | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
---|
| 86 | mp_matrix = &A; |
---|
| 87 | m_preconditioner.factorize(A); |
---|
| 88 | m_factorizationIsOk = true; |
---|
| 89 | m_info = Success; |
---|
| 90 | return derived(); |
---|
| 91 | } |
---|
| 92 | |
---|
| 93 | /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems. |
---|
| 94 | * |
---|
| 95 | * Currently, this function mostly initialized/compute the preconditioner. In the future |
---|
| 96 | * we might, for instance, implement column reodering for faster matrix vector products. |
---|
| 97 | * |
---|
| 98 | * \warning this class stores a reference to the matrix A as well as some |
---|
| 99 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
| 100 | * this class becomes invalid. Call compute() to update it with the new |
---|
| 101 | * matrix A, or modify a copy of A. |
---|
| 102 | */ |
---|
| 103 | Derived& compute(const MatrixType& A) |
---|
| 104 | { |
---|
| 105 | mp_matrix = &A; |
---|
| 106 | m_preconditioner.compute(A); |
---|
| 107 | m_isInitialized = true; |
---|
| 108 | m_analysisIsOk = true; |
---|
| 109 | m_factorizationIsOk = true; |
---|
| 110 | m_info = Success; |
---|
| 111 | return derived(); |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | /** \internal */ |
---|
| 115 | Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; } |
---|
| 116 | /** \internal */ |
---|
| 117 | Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; } |
---|
| 118 | |
---|
| 119 | /** \returns the tolerance threshold used by the stopping criteria */ |
---|
| 120 | RealScalar tolerance() const { return m_tolerance; } |
---|
| 121 | |
---|
| 122 | /** Sets the tolerance threshold used by the stopping criteria */ |
---|
| 123 | Derived& setTolerance(RealScalar tolerance) |
---|
| 124 | { |
---|
| 125 | m_tolerance = tolerance; |
---|
| 126 | return derived(); |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** \returns a read-write reference to the preconditioner for custom configuration. */ |
---|
| 130 | Preconditioner& preconditioner() { return m_preconditioner; } |
---|
| 131 | |
---|
| 132 | /** \returns a read-only reference to the preconditioner. */ |
---|
| 133 | const Preconditioner& preconditioner() const { return m_preconditioner; } |
---|
| 134 | |
---|
| 135 | /** \returns the max number of iterations */ |
---|
| 136 | int maxIterations() const |
---|
| 137 | { |
---|
| 138 | return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations; |
---|
| 139 | } |
---|
| 140 | |
---|
| 141 | /** Sets the max number of iterations */ |
---|
| 142 | Derived& setMaxIterations(int maxIters) |
---|
| 143 | { |
---|
| 144 | m_maxIterations = maxIters; |
---|
| 145 | return derived(); |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /** \returns the number of iterations performed during the last solve */ |
---|
| 149 | int iterations() const |
---|
| 150 | { |
---|
| 151 | eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
---|
| 152 | return m_iterations; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /** \returns the tolerance error reached during the last solve */ |
---|
| 156 | RealScalar error() const |
---|
| 157 | { |
---|
| 158 | eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
---|
| 159 | return m_error; |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
| 163 | * |
---|
| 164 | * \sa compute() |
---|
| 165 | */ |
---|
| 166 | template<typename Rhs> inline const internal::solve_retval<Derived, Rhs> |
---|
| 167 | solve(const MatrixBase<Rhs>& b) const |
---|
| 168 | { |
---|
| 169 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
| 170 | eigen_assert(rows()==b.rows() |
---|
| 171 | && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 172 | return internal::solve_retval<Derived, Rhs>(derived(), b.derived()); |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
| 176 | * |
---|
| 177 | * \sa compute() |
---|
| 178 | */ |
---|
| 179 | template<typename Rhs> |
---|
| 180 | inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs> |
---|
| 181 | solve(const SparseMatrixBase<Rhs>& b) const |
---|
| 182 | { |
---|
| 183 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
| 184 | eigen_assert(rows()==b.rows() |
---|
| 185 | && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 186 | return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived()); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | /** \returns Success if the iterations converged, and NoConvergence otherwise. */ |
---|
| 190 | ComputationInfo info() const |
---|
| 191 | { |
---|
| 192 | eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); |
---|
| 193 | return m_info; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | /** \internal */ |
---|
| 197 | template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex> |
---|
| 198 | void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
---|
| 199 | { |
---|
| 200 | eigen_assert(rows()==b.rows()); |
---|
| 201 | |
---|
| 202 | int rhsCols = b.cols(); |
---|
| 203 | int size = b.rows(); |
---|
| 204 | Eigen::Matrix<DestScalar,Dynamic,1> tb(size); |
---|
| 205 | Eigen::Matrix<DestScalar,Dynamic,1> tx(size); |
---|
| 206 | for(int k=0; k<rhsCols; ++k) |
---|
| 207 | { |
---|
| 208 | tb = b.col(k); |
---|
| 209 | tx = derived().solve(tb); |
---|
| 210 | dest.col(k) = tx.sparseView(0); |
---|
| 211 | } |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | protected: |
---|
| 215 | void init() |
---|
| 216 | { |
---|
| 217 | m_isInitialized = false; |
---|
| 218 | m_analysisIsOk = false; |
---|
| 219 | m_factorizationIsOk = false; |
---|
| 220 | m_maxIterations = -1; |
---|
| 221 | m_tolerance = NumTraits<Scalar>::epsilon(); |
---|
| 222 | } |
---|
| 223 | const MatrixType* mp_matrix; |
---|
| 224 | Preconditioner m_preconditioner; |
---|
| 225 | |
---|
| 226 | int m_maxIterations; |
---|
| 227 | RealScalar m_tolerance; |
---|
| 228 | |
---|
| 229 | mutable RealScalar m_error; |
---|
| 230 | mutable int m_iterations; |
---|
| 231 | mutable ComputationInfo m_info; |
---|
| 232 | mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk; |
---|
| 233 | }; |
---|
| 234 | |
---|
| 235 | namespace internal { |
---|
| 236 | |
---|
| 237 | template<typename Derived, typename Rhs> |
---|
| 238 | struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs> |
---|
| 239 | : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs> |
---|
| 240 | { |
---|
| 241 | typedef IterativeSolverBase<Derived> Dec; |
---|
| 242 | EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 243 | |
---|
| 244 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 245 | { |
---|
| 246 | dec().derived()._solve_sparse(rhs(),dst); |
---|
| 247 | } |
---|
| 248 | }; |
---|
| 249 | |
---|
| 250 | } // end namespace internal |
---|
| 251 | |
---|
| 252 | } // end namespace Eigen |
---|
| 253 | |
---|
| 254 | #endif // EIGEN_ITERATIVE_SOLVER_BASE_H |
---|