Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h @ 9779

Last change on this file since 9779 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 14.4 KB
RevLine 
[9562]1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_INCOMPLETE_LUT_H
11#define EIGEN_INCOMPLETE_LUT_H
12
13namespace Eigen {
14
15/**
16 * \brief Incomplete LU factorization with dual-threshold strategy
17 * During the numerical factorization, two dropping rules are used :
18 *  1) any element whose magnitude is less than some tolerance is dropped.
19 *    This tolerance is obtained by multiplying the input tolerance @p droptol
20 *    by the average magnitude of all the original elements in the current row.
21 *  2) After the elimination of the row, only the @p fill largest elements in
22 *    the L part and the @p fill largest elements in the U part are kept
23 *    (in addition to the diagonal element ). Note that @p fill is computed from
24 *    the input parameter @p fillfactor which is used the ratio to control the fill_in
25 *    relatively to the initial number of nonzero elements.
26 *
27 * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
28 * and when @p fill=n/2 with @p droptol being different to zero.
29 *
30 * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
31 *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
32 *
33 * NOTE : The following implementation is derived from the ILUT implementation
34 * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
35 *  released under the terms of the GNU LGPL:
36 *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
37 * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
38 * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
39 *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
40 * alternatively, on GMANE:
41 *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
42 */
43template <typename _Scalar>
44class IncompleteLUT : internal::noncopyable
45{
46    typedef _Scalar Scalar;
47    typedef typename NumTraits<Scalar>::Real RealScalar;
48    typedef Matrix<Scalar,Dynamic,1> Vector;
49    typedef SparseMatrix<Scalar,RowMajor> FactorType;
50    typedef SparseMatrix<Scalar,ColMajor> PermutType;
51    typedef typename FactorType::Index Index;
52
53  public:
54    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
55   
56    IncompleteLUT()
57      : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
58        m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
59    {}
60   
61    template<typename MatrixType>
62    IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
63      : m_droptol(droptol),m_fillfactor(fillfactor),
64        m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
65    {
66      eigen_assert(fillfactor != 0);
67      compute(mat);
68    }
69   
70    Index rows() const { return m_lu.rows(); }
71   
72    Index cols() const { return m_lu.cols(); }
73
74    /** \brief Reports whether previous computation was successful.
75      *
76      * \returns \c Success if computation was succesful,
77      *          \c NumericalIssue if the matrix.appears to be negative.
78      */
79    ComputationInfo info() const
80    {
81      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
82      return m_info;
83    }
84   
85    template<typename MatrixType>
86    void analyzePattern(const MatrixType& amat);
87   
88    template<typename MatrixType>
89    void factorize(const MatrixType& amat);
90   
91    /**
92      * Compute an incomplete LU factorization with dual threshold on the matrix mat
93      * No pivoting is done in this version
94      *
95      **/
96    template<typename MatrixType>
97    IncompleteLUT<Scalar>& compute(const MatrixType& amat)
98    {
99      analyzePattern(amat);
100      factorize(amat);
101      eigen_assert(m_factorizationIsOk == true);
102      m_isInitialized = true;
103      return *this;
104    }
105
106    void setDroptol(RealScalar droptol);
107    void setFillfactor(int fillfactor);
108   
109    template<typename Rhs, typename Dest>
110    void _solve(const Rhs& b, Dest& x) const
111    {
112      x = m_Pinv * b; 
113      x = m_lu.template triangularView<UnitLower>().solve(x);
114      x = m_lu.template triangularView<Upper>().solve(x);
115      x = m_P * x;
116    }
117
118    template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
119     solve(const MatrixBase<Rhs>& b) const
120    {
121      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
122      eigen_assert(cols()==b.rows()
123                && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
124      return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
125    }
126
127protected:
128
129    template <typename VectorV, typename VectorI>
130    int QuickSplit(VectorV &row, VectorI &ind, int ncut);
131
132
133    /** keeps off-diagonal entries; drops diagonal entries */
134    struct keep_diag {
135      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
136      {
137        return row!=col;
138      }
139    };
140
141protected:
142
143    FactorType m_lu;
144    RealScalar m_droptol;
145    int m_fillfactor;
146    bool m_analysisIsOk;
147    bool m_factorizationIsOk;
148    bool m_isInitialized;
149    ComputationInfo m_info;
150    PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
151    PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
152};
153
154/**
155 * Set control parameter droptol
156 *  \param droptol   Drop any element whose magnitude is less than this tolerance
157 **/
158template<typename Scalar>
159void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
160{
161  this->m_droptol = droptol;   
162}
163
164/**
165 * Set control parameter fillfactor
166 * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
167 **/
168template<typename Scalar>
169void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
170{
171  this->m_fillfactor = fillfactor;   
172}
173
174
175/**
176 * Compute a quick-sort split of a vector
177 * On output, the vector row is permuted such that its elements satisfy
178 * abs(row(i)) >= abs(row(ncut)) if i<ncut
179 * abs(row(i)) <= abs(row(ncut)) if i>ncut
180 * \param row The vector of values
181 * \param ind The array of index for the elements in @p row
182 * \param ncut  The number of largest elements to keep
183 **/
184template <typename Scalar>
185template <typename VectorV, typename VectorI>
186int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
187{
188  using std::swap;
189  int mid;
190  int n = row.size(); /* length of the vector */
191  int first, last ;
192 
193  ncut--; /* to fit the zero-based indices */
194  first = 0;
195  last = n-1;
196  if (ncut < first || ncut > last ) return 0;
197 
198  do {
199    mid = first;
200    RealScalar abskey = std::abs(row(mid));
201    for (int j = first + 1; j <= last; j++) {
202      if ( std::abs(row(j)) > abskey) {
203        ++mid;
204        swap(row(mid), row(j));
205        swap(ind(mid), ind(j));
206      }
207    }
208    /* Interchange for the pivot element */
209    swap(row(mid), row(first));
210    swap(ind(mid), ind(first));
211   
212    if (mid > ncut) last = mid - 1;
213    else if (mid < ncut ) first = mid + 1;
214  } while (mid != ncut );
215 
216  return 0; /* mid is equal to ncut */
217}
218
219template <typename Scalar>
220template<typename _MatrixType>
221void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
222{
223  // Compute the Fill-reducing permutation
224  SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
225  SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
226  // Symmetrize the pattern
227  // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
228  //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
229  SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
230  AtA.prune(keep_diag());
231  internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
232
233  m_Pinv  = m_P.inverse(); // ... and the inverse permutation
234
235  m_analysisIsOk = true;
236}
237
238template <typename Scalar>
239template<typename _MatrixType>
240void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
241{
242  using std::sqrt;
243  using std::swap;
244  using std::abs;
245
246  eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
247  int n = amat.cols();  // Size of the matrix
248  m_lu.resize(n,n);
249  // Declare Working vectors and variables
250  Vector u(n) ;     // real values of the row -- maximum size is n --
251  VectorXi ju(n);   // column position of the values in u -- maximum size  is n
252  VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
253
254  // Apply the fill-reducing permutation
255  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
256  SparseMatrix<Scalar,RowMajor, Index> mat;
257  mat = amat.twistedBy(m_Pinv);
258
259  // Initialization
260  jr.fill(-1);
261  ju.fill(0);
262  u.fill(0);
263
264  // number of largest elements to keep in each row:
265  int fill_in =   static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
266  if (fill_in > n) fill_in = n;
267
268  // number of largest nonzero elements to keep in the L and the U part of the current row:
269  int nnzL = fill_in/2;
270  int nnzU = nnzL;
271  m_lu.reserve(n * (nnzL + nnzU + 1));
272
273  // global loop over the rows of the sparse matrix
274  for (int ii = 0; ii < n; ii++)
275  {
276    // 1 - copy the lower and the upper part of the row i of mat in the working vector u
277
278    int sizeu = 1; // number of nonzero elements in the upper part of the current row
279    int sizel = 0; // number of nonzero elements in the lower part of the current row
280    ju(ii)    = ii;
281    u(ii)     = 0;
282    jr(ii)    = ii;
283    RealScalar rownorm = 0;
284
285    typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
286    for (; j_it; ++j_it)
287    {
288      int k = j_it.index();
289      if (k < ii)
290      {
291        // copy the lower part
292        ju(sizel) = k;
293        u(sizel) = j_it.value();
294        jr(k) = sizel;
295        ++sizel;
296      }
297      else if (k == ii)
298      {
299        u(ii) = j_it.value();
300      }
301      else
302      {
303        // copy the upper part
304        int jpos = ii + sizeu;
305        ju(jpos) = k;
306        u(jpos) = j_it.value();
307        jr(k) = jpos;
308        ++sizeu;
309      }
310      rownorm += internal::abs2(j_it.value());
311    }
312
313    // 2 - detect possible zero row
314    if(rownorm==0)
315    {
316      m_info = NumericalIssue;
317      return;
318    }
319    // Take the 2-norm of the current row as a relative tolerance
320    rownorm = sqrt(rownorm);
321
322    // 3 - eliminate the previous nonzero rows
323    int jj = 0;
324    int len = 0;
325    while (jj < sizel)
326    {
327      // In order to eliminate in the correct order,
328      // we must select first the smallest column index among  ju(jj:sizel)
329      int k;
330      int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
331      k += jj;
332      if (minrow != ju(jj))
333      {
334        // swap the two locations
335        int j = ju(jj);
336        swap(ju(jj), ju(k));
337        jr(minrow) = jj;   jr(j) = k;
338        swap(u(jj), u(k));
339      }
340      // Reset this location
341      jr(minrow) = -1;
342
343      // Start elimination
344      typename FactorType::InnerIterator ki_it(m_lu, minrow);
345      while (ki_it && ki_it.index() < minrow) ++ki_it;
346      eigen_internal_assert(ki_it && ki_it.col()==minrow);
347      Scalar fact = u(jj) / ki_it.value();
348
349      // drop too small elements
350      if(abs(fact) <= m_droptol)
351      {
352        jj++;
353        continue;
354      }
355
356      // linear combination of the current row ii and the row minrow
357      ++ki_it;
358      for (; ki_it; ++ki_it)
359      {
360        Scalar prod = fact * ki_it.value();
361        int j       = ki_it.index();
362        int jpos    = jr(j);
363        if (jpos == -1) // fill-in element
364        {
365          int newpos;
366          if (j >= ii) // dealing with the upper part
367          {
368            newpos = ii + sizeu;
369            sizeu++;
370            eigen_internal_assert(sizeu<=n);
371          }
372          else // dealing with the lower part
373          {
374            newpos = sizel;
375            sizel++;
376            eigen_internal_assert(sizel<=ii);
377          }
378          ju(newpos) = j;
379          u(newpos) = -prod;
380          jr(j) = newpos;
381        }
382        else
383          u(jpos) -= prod;
384      }
385      // store the pivot element
386      u(len) = fact;
387      ju(len) = minrow;
388      ++len;
389
390      jj++;
391    } // end of the elimination on the row ii
392
393    // reset the upper part of the pointer jr to zero
394    for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
395
396    // 4 - partially sort and insert the elements in the m_lu matrix
397
398    // sort the L-part of the row
399    sizel = len;
400    len = (std::min)(sizel, nnzL);
401    typename Vector::SegmentReturnType ul(u.segment(0, sizel));
402    typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
403    QuickSplit(ul, jul, len);
404
405    // store the largest m_fill elements of the L part
406    m_lu.startVec(ii);
407    for(int k = 0; k < len; k++)
408      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
409
410    // store the diagonal element
411    // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
412    if (u(ii) == Scalar(0))
413      u(ii) = sqrt(m_droptol) * rownorm;
414    m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
415
416    // sort the U-part of the row
417    // apply the dropping rule first
418    len = 0;
419    for(int k = 1; k < sizeu; k++)
420    {
421      if(abs(u(ii+k)) > m_droptol * rownorm )
422      {
423        ++len;
424        u(ii + len)  = u(ii + k);
425        ju(ii + len) = ju(ii + k);
426      }
427    }
428    sizeu = len + 1; // +1 to take into account the diagonal element
429    len = (std::min)(sizeu, nnzU);
430    typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
431    typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
432    QuickSplit(uu, juu, len);
433
434    // store the largest elements of the U part
435    for(int k = ii + 1; k < ii + len; k++)
436      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
437  }
438
439  m_lu.finalize();
440  m_lu.makeCompressed();
441
442  m_factorizationIsOk = true;
443  m_info = Success;
444}
445
446namespace internal {
447
448template<typename _MatrixType, typename Rhs>
449struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
450  : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
451{
452  typedef IncompleteLUT<_MatrixType> Dec;
453  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
454
455  template<typename Dest> void evalTo(Dest& dst) const
456  {
457    dec()._solve(rhs(),dst);
458  }
459};
460
461} // end namespace internal
462
463} // end namespace Eigen
464
465#endif // EIGEN_INCOMPLETE_LUT_H
466
Note: See TracBrowser for help on using the repository browser.