[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_INCOMPLETE_LUT_H |
---|
| 11 | #define EIGEN_INCOMPLETE_LUT_H |
---|
| 12 | |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * \brief Incomplete LU factorization with dual-threshold strategy |
---|
| 17 | * During the numerical factorization, two dropping rules are used : |
---|
| 18 | * 1) any element whose magnitude is less than some tolerance is dropped. |
---|
| 19 | * This tolerance is obtained by multiplying the input tolerance @p droptol |
---|
| 20 | * by the average magnitude of all the original elements in the current row. |
---|
| 21 | * 2) After the elimination of the row, only the @p fill largest elements in |
---|
| 22 | * the L part and the @p fill largest elements in the U part are kept |
---|
| 23 | * (in addition to the diagonal element ). Note that @p fill is computed from |
---|
| 24 | * the input parameter @p fillfactor which is used the ratio to control the fill_in |
---|
| 25 | * relatively to the initial number of nonzero elements. |
---|
| 26 | * |
---|
| 27 | * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements) |
---|
| 28 | * and when @p fill=n/2 with @p droptol being different to zero. |
---|
| 29 | * |
---|
| 30 | * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, |
---|
| 31 | * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994. |
---|
| 32 | * |
---|
| 33 | * NOTE : The following implementation is derived from the ILUT implementation |
---|
| 34 | * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota |
---|
| 35 | * released under the terms of the GNU LGPL: |
---|
| 36 | * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README |
---|
| 37 | * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. |
---|
| 38 | * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: |
---|
| 39 | * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html |
---|
| 40 | * alternatively, on GMANE: |
---|
| 41 | * http://comments.gmane.org/gmane.comp.lib.eigen/3302 |
---|
| 42 | */ |
---|
| 43 | template <typename _Scalar> |
---|
| 44 | class IncompleteLUT : internal::noncopyable |
---|
| 45 | { |
---|
| 46 | typedef _Scalar Scalar; |
---|
| 47 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 48 | typedef Matrix<Scalar,Dynamic,1> Vector; |
---|
| 49 | typedef SparseMatrix<Scalar,RowMajor> FactorType; |
---|
| 50 | typedef SparseMatrix<Scalar,ColMajor> PermutType; |
---|
| 51 | typedef typename FactorType::Index Index; |
---|
| 52 | |
---|
| 53 | public: |
---|
| 54 | typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; |
---|
| 55 | |
---|
| 56 | IncompleteLUT() |
---|
| 57 | : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10), |
---|
| 58 | m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false) |
---|
| 59 | {} |
---|
| 60 | |
---|
| 61 | template<typename MatrixType> |
---|
| 62 | IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10) |
---|
| 63 | : m_droptol(droptol),m_fillfactor(fillfactor), |
---|
| 64 | m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) |
---|
| 65 | { |
---|
| 66 | eigen_assert(fillfactor != 0); |
---|
| 67 | compute(mat); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | Index rows() const { return m_lu.rows(); } |
---|
| 71 | |
---|
| 72 | Index cols() const { return m_lu.cols(); } |
---|
| 73 | |
---|
| 74 | /** \brief Reports whether previous computation was successful. |
---|
| 75 | * |
---|
| 76 | * \returns \c Success if computation was succesful, |
---|
| 77 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
| 78 | */ |
---|
| 79 | ComputationInfo info() const |
---|
| 80 | { |
---|
| 81 | eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); |
---|
| 82 | return m_info; |
---|
| 83 | } |
---|
| 84 | |
---|
| 85 | template<typename MatrixType> |
---|
| 86 | void analyzePattern(const MatrixType& amat); |
---|
| 87 | |
---|
| 88 | template<typename MatrixType> |
---|
| 89 | void factorize(const MatrixType& amat); |
---|
| 90 | |
---|
| 91 | /** |
---|
| 92 | * Compute an incomplete LU factorization with dual threshold on the matrix mat |
---|
| 93 | * No pivoting is done in this version |
---|
| 94 | * |
---|
| 95 | **/ |
---|
| 96 | template<typename MatrixType> |
---|
| 97 | IncompleteLUT<Scalar>& compute(const MatrixType& amat) |
---|
| 98 | { |
---|
| 99 | analyzePattern(amat); |
---|
| 100 | factorize(amat); |
---|
| 101 | eigen_assert(m_factorizationIsOk == true); |
---|
| 102 | m_isInitialized = true; |
---|
| 103 | return *this; |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | void setDroptol(RealScalar droptol); |
---|
| 107 | void setFillfactor(int fillfactor); |
---|
| 108 | |
---|
| 109 | template<typename Rhs, typename Dest> |
---|
| 110 | void _solve(const Rhs& b, Dest& x) const |
---|
| 111 | { |
---|
| 112 | x = m_Pinv * b; |
---|
| 113 | x = m_lu.template triangularView<UnitLower>().solve(x); |
---|
| 114 | x = m_lu.template triangularView<Upper>().solve(x); |
---|
| 115 | x = m_P * x; |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs> |
---|
| 119 | solve(const MatrixBase<Rhs>& b) const |
---|
| 120 | { |
---|
| 121 | eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); |
---|
| 122 | eigen_assert(cols()==b.rows() |
---|
| 123 | && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 124 | return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived()); |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | protected: |
---|
| 128 | |
---|
| 129 | template <typename VectorV, typename VectorI> |
---|
| 130 | int QuickSplit(VectorV &row, VectorI &ind, int ncut); |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | /** keeps off-diagonal entries; drops diagonal entries */ |
---|
| 134 | struct keep_diag { |
---|
| 135 | inline bool operator() (const Index& row, const Index& col, const Scalar&) const |
---|
| 136 | { |
---|
| 137 | return row!=col; |
---|
| 138 | } |
---|
| 139 | }; |
---|
| 140 | |
---|
| 141 | protected: |
---|
| 142 | |
---|
| 143 | FactorType m_lu; |
---|
| 144 | RealScalar m_droptol; |
---|
| 145 | int m_fillfactor; |
---|
| 146 | bool m_analysisIsOk; |
---|
| 147 | bool m_factorizationIsOk; |
---|
| 148 | bool m_isInitialized; |
---|
| 149 | ComputationInfo m_info; |
---|
| 150 | PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation |
---|
| 151 | PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation |
---|
| 152 | }; |
---|
| 153 | |
---|
| 154 | /** |
---|
| 155 | * Set control parameter droptol |
---|
| 156 | * \param droptol Drop any element whose magnitude is less than this tolerance |
---|
| 157 | **/ |
---|
| 158 | template<typename Scalar> |
---|
| 159 | void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol) |
---|
| 160 | { |
---|
| 161 | this->m_droptol = droptol; |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Set control parameter fillfactor |
---|
| 166 | * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. |
---|
| 167 | **/ |
---|
| 168 | template<typename Scalar> |
---|
| 169 | void IncompleteLUT<Scalar>::setFillfactor(int fillfactor) |
---|
| 170 | { |
---|
| 171 | this->m_fillfactor = fillfactor; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * Compute a quick-sort split of a vector |
---|
| 177 | * On output, the vector row is permuted such that its elements satisfy |
---|
| 178 | * abs(row(i)) >= abs(row(ncut)) if i<ncut |
---|
| 179 | * abs(row(i)) <= abs(row(ncut)) if i>ncut |
---|
| 180 | * \param row The vector of values |
---|
| 181 | * \param ind The array of index for the elements in @p row |
---|
| 182 | * \param ncut The number of largest elements to keep |
---|
| 183 | **/ |
---|
| 184 | template <typename Scalar> |
---|
| 185 | template <typename VectorV, typename VectorI> |
---|
| 186 | int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut) |
---|
| 187 | { |
---|
| 188 | using std::swap; |
---|
| 189 | int mid; |
---|
| 190 | int n = row.size(); /* length of the vector */ |
---|
| 191 | int first, last ; |
---|
| 192 | |
---|
| 193 | ncut--; /* to fit the zero-based indices */ |
---|
| 194 | first = 0; |
---|
| 195 | last = n-1; |
---|
| 196 | if (ncut < first || ncut > last ) return 0; |
---|
| 197 | |
---|
| 198 | do { |
---|
| 199 | mid = first; |
---|
| 200 | RealScalar abskey = std::abs(row(mid)); |
---|
| 201 | for (int j = first + 1; j <= last; j++) { |
---|
| 202 | if ( std::abs(row(j)) > abskey) { |
---|
| 203 | ++mid; |
---|
| 204 | swap(row(mid), row(j)); |
---|
| 205 | swap(ind(mid), ind(j)); |
---|
| 206 | } |
---|
| 207 | } |
---|
| 208 | /* Interchange for the pivot element */ |
---|
| 209 | swap(row(mid), row(first)); |
---|
| 210 | swap(ind(mid), ind(first)); |
---|
| 211 | |
---|
| 212 | if (mid > ncut) last = mid - 1; |
---|
| 213 | else if (mid < ncut ) first = mid + 1; |
---|
| 214 | } while (mid != ncut ); |
---|
| 215 | |
---|
| 216 | return 0; /* mid is equal to ncut */ |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | template <typename Scalar> |
---|
| 220 | template<typename _MatrixType> |
---|
| 221 | void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat) |
---|
| 222 | { |
---|
| 223 | // Compute the Fill-reducing permutation |
---|
| 224 | SparseMatrix<Scalar,ColMajor, Index> mat1 = amat; |
---|
| 225 | SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose(); |
---|
| 226 | // Symmetrize the pattern |
---|
| 227 | // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. |
---|
| 228 | // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered... |
---|
| 229 | SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1; |
---|
| 230 | AtA.prune(keep_diag()); |
---|
| 231 | internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering... |
---|
| 232 | |
---|
| 233 | m_Pinv = m_P.inverse(); // ... and the inverse permutation |
---|
| 234 | |
---|
| 235 | m_analysisIsOk = true; |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | template <typename Scalar> |
---|
| 239 | template<typename _MatrixType> |
---|
| 240 | void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) |
---|
| 241 | { |
---|
| 242 | using std::sqrt; |
---|
| 243 | using std::swap; |
---|
| 244 | using std::abs; |
---|
| 245 | |
---|
| 246 | eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); |
---|
| 247 | int n = amat.cols(); // Size of the matrix |
---|
| 248 | m_lu.resize(n,n); |
---|
| 249 | // Declare Working vectors and variables |
---|
| 250 | Vector u(n) ; // real values of the row -- maximum size is n -- |
---|
| 251 | VectorXi ju(n); // column position of the values in u -- maximum size is n |
---|
| 252 | VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 |
---|
| 253 | |
---|
| 254 | // Apply the fill-reducing permutation |
---|
| 255 | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
---|
| 256 | SparseMatrix<Scalar,RowMajor, Index> mat; |
---|
| 257 | mat = amat.twistedBy(m_Pinv); |
---|
| 258 | |
---|
| 259 | // Initialization |
---|
| 260 | jr.fill(-1); |
---|
| 261 | ju.fill(0); |
---|
| 262 | u.fill(0); |
---|
| 263 | |
---|
| 264 | // number of largest elements to keep in each row: |
---|
| 265 | int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1; |
---|
| 266 | if (fill_in > n) fill_in = n; |
---|
| 267 | |
---|
| 268 | // number of largest nonzero elements to keep in the L and the U part of the current row: |
---|
| 269 | int nnzL = fill_in/2; |
---|
| 270 | int nnzU = nnzL; |
---|
| 271 | m_lu.reserve(n * (nnzL + nnzU + 1)); |
---|
| 272 | |
---|
| 273 | // global loop over the rows of the sparse matrix |
---|
| 274 | for (int ii = 0; ii < n; ii++) |
---|
| 275 | { |
---|
| 276 | // 1 - copy the lower and the upper part of the row i of mat in the working vector u |
---|
| 277 | |
---|
| 278 | int sizeu = 1; // number of nonzero elements in the upper part of the current row |
---|
| 279 | int sizel = 0; // number of nonzero elements in the lower part of the current row |
---|
| 280 | ju(ii) = ii; |
---|
| 281 | u(ii) = 0; |
---|
| 282 | jr(ii) = ii; |
---|
| 283 | RealScalar rownorm = 0; |
---|
| 284 | |
---|
| 285 | typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii |
---|
| 286 | for (; j_it; ++j_it) |
---|
| 287 | { |
---|
| 288 | int k = j_it.index(); |
---|
| 289 | if (k < ii) |
---|
| 290 | { |
---|
| 291 | // copy the lower part |
---|
| 292 | ju(sizel) = k; |
---|
| 293 | u(sizel) = j_it.value(); |
---|
| 294 | jr(k) = sizel; |
---|
| 295 | ++sizel; |
---|
| 296 | } |
---|
| 297 | else if (k == ii) |
---|
| 298 | { |
---|
| 299 | u(ii) = j_it.value(); |
---|
| 300 | } |
---|
| 301 | else |
---|
| 302 | { |
---|
| 303 | // copy the upper part |
---|
| 304 | int jpos = ii + sizeu; |
---|
| 305 | ju(jpos) = k; |
---|
| 306 | u(jpos) = j_it.value(); |
---|
| 307 | jr(k) = jpos; |
---|
| 308 | ++sizeu; |
---|
| 309 | } |
---|
| 310 | rownorm += internal::abs2(j_it.value()); |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | // 2 - detect possible zero row |
---|
| 314 | if(rownorm==0) |
---|
| 315 | { |
---|
| 316 | m_info = NumericalIssue; |
---|
| 317 | return; |
---|
| 318 | } |
---|
| 319 | // Take the 2-norm of the current row as a relative tolerance |
---|
| 320 | rownorm = sqrt(rownorm); |
---|
| 321 | |
---|
| 322 | // 3 - eliminate the previous nonzero rows |
---|
| 323 | int jj = 0; |
---|
| 324 | int len = 0; |
---|
| 325 | while (jj < sizel) |
---|
| 326 | { |
---|
| 327 | // In order to eliminate in the correct order, |
---|
| 328 | // we must select first the smallest column index among ju(jj:sizel) |
---|
| 329 | int k; |
---|
| 330 | int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment |
---|
| 331 | k += jj; |
---|
| 332 | if (minrow != ju(jj)) |
---|
| 333 | { |
---|
| 334 | // swap the two locations |
---|
| 335 | int j = ju(jj); |
---|
| 336 | swap(ju(jj), ju(k)); |
---|
| 337 | jr(minrow) = jj; jr(j) = k; |
---|
| 338 | swap(u(jj), u(k)); |
---|
| 339 | } |
---|
| 340 | // Reset this location |
---|
| 341 | jr(minrow) = -1; |
---|
| 342 | |
---|
| 343 | // Start elimination |
---|
| 344 | typename FactorType::InnerIterator ki_it(m_lu, minrow); |
---|
| 345 | while (ki_it && ki_it.index() < minrow) ++ki_it; |
---|
| 346 | eigen_internal_assert(ki_it && ki_it.col()==minrow); |
---|
| 347 | Scalar fact = u(jj) / ki_it.value(); |
---|
| 348 | |
---|
| 349 | // drop too small elements |
---|
| 350 | if(abs(fact) <= m_droptol) |
---|
| 351 | { |
---|
| 352 | jj++; |
---|
| 353 | continue; |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | // linear combination of the current row ii and the row minrow |
---|
| 357 | ++ki_it; |
---|
| 358 | for (; ki_it; ++ki_it) |
---|
| 359 | { |
---|
| 360 | Scalar prod = fact * ki_it.value(); |
---|
| 361 | int j = ki_it.index(); |
---|
| 362 | int jpos = jr(j); |
---|
| 363 | if (jpos == -1) // fill-in element |
---|
| 364 | { |
---|
| 365 | int newpos; |
---|
| 366 | if (j >= ii) // dealing with the upper part |
---|
| 367 | { |
---|
| 368 | newpos = ii + sizeu; |
---|
| 369 | sizeu++; |
---|
| 370 | eigen_internal_assert(sizeu<=n); |
---|
| 371 | } |
---|
| 372 | else // dealing with the lower part |
---|
| 373 | { |
---|
| 374 | newpos = sizel; |
---|
| 375 | sizel++; |
---|
| 376 | eigen_internal_assert(sizel<=ii); |
---|
| 377 | } |
---|
| 378 | ju(newpos) = j; |
---|
| 379 | u(newpos) = -prod; |
---|
| 380 | jr(j) = newpos; |
---|
| 381 | } |
---|
| 382 | else |
---|
| 383 | u(jpos) -= prod; |
---|
| 384 | } |
---|
| 385 | // store the pivot element |
---|
| 386 | u(len) = fact; |
---|
| 387 | ju(len) = minrow; |
---|
| 388 | ++len; |
---|
| 389 | |
---|
| 390 | jj++; |
---|
| 391 | } // end of the elimination on the row ii |
---|
| 392 | |
---|
| 393 | // reset the upper part of the pointer jr to zero |
---|
| 394 | for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1; |
---|
| 395 | |
---|
| 396 | // 4 - partially sort and insert the elements in the m_lu matrix |
---|
| 397 | |
---|
| 398 | // sort the L-part of the row |
---|
| 399 | sizel = len; |
---|
| 400 | len = (std::min)(sizel, nnzL); |
---|
| 401 | typename Vector::SegmentReturnType ul(u.segment(0, sizel)); |
---|
| 402 | typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel)); |
---|
| 403 | QuickSplit(ul, jul, len); |
---|
| 404 | |
---|
| 405 | // store the largest m_fill elements of the L part |
---|
| 406 | m_lu.startVec(ii); |
---|
| 407 | for(int k = 0; k < len; k++) |
---|
| 408 | m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); |
---|
| 409 | |
---|
| 410 | // store the diagonal element |
---|
| 411 | // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization) |
---|
| 412 | if (u(ii) == Scalar(0)) |
---|
| 413 | u(ii) = sqrt(m_droptol) * rownorm; |
---|
| 414 | m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii); |
---|
| 415 | |
---|
| 416 | // sort the U-part of the row |
---|
| 417 | // apply the dropping rule first |
---|
| 418 | len = 0; |
---|
| 419 | for(int k = 1; k < sizeu; k++) |
---|
| 420 | { |
---|
| 421 | if(abs(u(ii+k)) > m_droptol * rownorm ) |
---|
| 422 | { |
---|
| 423 | ++len; |
---|
| 424 | u(ii + len) = u(ii + k); |
---|
| 425 | ju(ii + len) = ju(ii + k); |
---|
| 426 | } |
---|
| 427 | } |
---|
| 428 | sizeu = len + 1; // +1 to take into account the diagonal element |
---|
| 429 | len = (std::min)(sizeu, nnzU); |
---|
| 430 | typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); |
---|
| 431 | typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); |
---|
| 432 | QuickSplit(uu, juu, len); |
---|
| 433 | |
---|
| 434 | // store the largest elements of the U part |
---|
| 435 | for(int k = ii + 1; k < ii + len; k++) |
---|
| 436 | m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); |
---|
| 437 | } |
---|
| 438 | |
---|
| 439 | m_lu.finalize(); |
---|
| 440 | m_lu.makeCompressed(); |
---|
| 441 | |
---|
| 442 | m_factorizationIsOk = true; |
---|
| 443 | m_info = Success; |
---|
| 444 | } |
---|
| 445 | |
---|
| 446 | namespace internal { |
---|
| 447 | |
---|
| 448 | template<typename _MatrixType, typename Rhs> |
---|
| 449 | struct solve_retval<IncompleteLUT<_MatrixType>, Rhs> |
---|
| 450 | : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs> |
---|
| 451 | { |
---|
| 452 | typedef IncompleteLUT<_MatrixType> Dec; |
---|
| 453 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 454 | |
---|
| 455 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 456 | { |
---|
| 457 | dec()._solve(rhs(),dst); |
---|
| 458 | } |
---|
| 459 | }; |
---|
| 460 | |
---|
| 461 | } // end namespace internal |
---|
| 462 | |
---|
| 463 | } // end namespace Eigen |
---|
| 464 | |
---|
| 465 | #endif // EIGEN_INCOMPLETE_LUT_H |
---|
| 466 | |
---|