[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_CONJUGATE_GRADIENT_H |
---|
| 11 | #define EIGEN_CONJUGATE_GRADIENT_H |
---|
| 12 | |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | namespace internal { |
---|
| 16 | |
---|
| 17 | /** \internal Low-level conjugate gradient algorithm |
---|
| 18 | * \param mat The matrix A |
---|
| 19 | * \param rhs The right hand side vector b |
---|
| 20 | * \param x On input and initial solution, on output the computed solution. |
---|
| 21 | * \param precond A preconditioner being able to efficiently solve for an |
---|
| 22 | * approximation of Ax=b (regardless of b) |
---|
| 23 | * \param iters On input the max number of iteration, on output the number of performed iterations. |
---|
| 24 | * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
---|
| 25 | */ |
---|
| 26 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
---|
| 27 | EIGEN_DONT_INLINE |
---|
| 28 | void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, |
---|
| 29 | const Preconditioner& precond, int& iters, |
---|
| 30 | typename Dest::RealScalar& tol_error) |
---|
| 31 | { |
---|
| 32 | using std::sqrt; |
---|
| 33 | using std::abs; |
---|
| 34 | typedef typename Dest::RealScalar RealScalar; |
---|
| 35 | typedef typename Dest::Scalar Scalar; |
---|
| 36 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 37 | |
---|
| 38 | RealScalar tol = tol_error; |
---|
| 39 | int maxIters = iters; |
---|
| 40 | |
---|
| 41 | int n = mat.cols(); |
---|
| 42 | |
---|
| 43 | VectorType residual = rhs - mat * x; //initial residual |
---|
| 44 | VectorType p(n); |
---|
| 45 | |
---|
| 46 | p = precond.solve(residual); //initial search direction |
---|
| 47 | |
---|
| 48 | VectorType z(n), tmp(n); |
---|
| 49 | RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM |
---|
| 50 | RealScalar rhsNorm2 = rhs.squaredNorm(); |
---|
| 51 | RealScalar residualNorm2 = 0; |
---|
| 52 | RealScalar threshold = tol*tol*rhsNorm2; |
---|
| 53 | int i = 0; |
---|
| 54 | while(i < maxIters) |
---|
| 55 | { |
---|
| 56 | tmp.noalias() = mat * p; // the bottleneck of the algorithm |
---|
| 57 | |
---|
| 58 | Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir |
---|
| 59 | x += alpha * p; // update solution |
---|
| 60 | residual -= alpha * tmp; // update residue |
---|
| 61 | |
---|
| 62 | residualNorm2 = residual.squaredNorm(); |
---|
| 63 | if(residualNorm2 < threshold) |
---|
| 64 | break; |
---|
| 65 | |
---|
| 66 | z = precond.solve(residual); // approximately solve for "A z = residual" |
---|
| 67 | |
---|
| 68 | RealScalar absOld = absNew; |
---|
| 69 | absNew = internal::real(residual.dot(z)); // update the absolute value of r |
---|
| 70 | RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction |
---|
| 71 | p = z + beta * p; // update search direction |
---|
| 72 | i++; |
---|
| 73 | } |
---|
| 74 | tol_error = sqrt(residualNorm2 / rhsNorm2); |
---|
| 75 | iters = i; |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | template< typename _MatrixType, int _UpLo=Lower, |
---|
| 81 | typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
---|
| 82 | class ConjugateGradient; |
---|
| 83 | |
---|
| 84 | namespace internal { |
---|
| 85 | |
---|
| 86 | template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
---|
| 87 | struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > |
---|
| 88 | { |
---|
| 89 | typedef _MatrixType MatrixType; |
---|
| 90 | typedef _Preconditioner Preconditioner; |
---|
| 91 | }; |
---|
| 92 | |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | /** \ingroup IterativeLinearSolvers_Module |
---|
| 96 | * \brief A conjugate gradient solver for sparse self-adjoint problems |
---|
| 97 | * |
---|
| 98 | * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm. |
---|
| 99 | * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse. |
---|
| 100 | * |
---|
| 101 | * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
---|
| 102 | * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
---|
| 103 | * or Upper. Default is Lower. |
---|
| 104 | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
---|
| 105 | * |
---|
| 106 | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
---|
| 107 | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
---|
| 108 | * and NumTraits<Scalar>::epsilon() for the tolerance. |
---|
| 109 | * |
---|
| 110 | * This class can be used as the direct solver classes. Here is a typical usage example: |
---|
| 111 | * \code |
---|
| 112 | * int n = 10000; |
---|
| 113 | * VectorXd x(n), b(n); |
---|
| 114 | * SparseMatrix<double> A(n,n); |
---|
| 115 | * // fill A and b |
---|
| 116 | * ConjugateGradient<SparseMatrix<double> > cg; |
---|
| 117 | * cg.compute(A); |
---|
| 118 | * x = cg.solve(b); |
---|
| 119 | * std::cout << "#iterations: " << cg.iterations() << std::endl; |
---|
| 120 | * std::cout << "estimated error: " << cg.error() << std::endl; |
---|
| 121 | * // update b, and solve again |
---|
| 122 | * x = cg.solve(b); |
---|
| 123 | * \endcode |
---|
| 124 | * |
---|
| 125 | * By default the iterations start with x=0 as an initial guess of the solution. |
---|
| 126 | * One can control the start using the solveWithGuess() method. Here is a step by |
---|
| 127 | * step execution example starting with a random guess and printing the evolution |
---|
| 128 | * of the estimated error: |
---|
| 129 | * * \code |
---|
| 130 | * x = VectorXd::Random(n); |
---|
| 131 | * cg.setMaxIterations(1); |
---|
| 132 | * int i = 0; |
---|
| 133 | * do { |
---|
| 134 | * x = cg.solveWithGuess(b,x); |
---|
| 135 | * std::cout << i << " : " << cg.error() << std::endl; |
---|
| 136 | * ++i; |
---|
| 137 | * } while (cg.info()!=Success && i<100); |
---|
| 138 | * \endcode |
---|
| 139 | * Note that such a step by step excution is slightly slower. |
---|
| 140 | * |
---|
| 141 | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
---|
| 142 | */ |
---|
| 143 | template< typename _MatrixType, int _UpLo, typename _Preconditioner> |
---|
| 144 | class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > |
---|
| 145 | { |
---|
| 146 | typedef IterativeSolverBase<ConjugateGradient> Base; |
---|
| 147 | using Base::mp_matrix; |
---|
| 148 | using Base::m_error; |
---|
| 149 | using Base::m_iterations; |
---|
| 150 | using Base::m_info; |
---|
| 151 | using Base::m_isInitialized; |
---|
| 152 | public: |
---|
| 153 | typedef _MatrixType MatrixType; |
---|
| 154 | typedef typename MatrixType::Scalar Scalar; |
---|
| 155 | typedef typename MatrixType::Index Index; |
---|
| 156 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 157 | typedef _Preconditioner Preconditioner; |
---|
| 158 | |
---|
| 159 | enum { |
---|
| 160 | UpLo = _UpLo |
---|
| 161 | }; |
---|
| 162 | |
---|
| 163 | public: |
---|
| 164 | |
---|
| 165 | /** Default constructor. */ |
---|
| 166 | ConjugateGradient() : Base() {} |
---|
| 167 | |
---|
| 168 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
---|
| 169 | * |
---|
| 170 | * This constructor is a shortcut for the default constructor followed |
---|
| 171 | * by a call to compute(). |
---|
| 172 | * |
---|
| 173 | * \warning this class stores a reference to the matrix A as well as some |
---|
| 174 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
| 175 | * this class becomes invalid. Call compute() to update it with the new |
---|
| 176 | * matrix A, or modify a copy of A. |
---|
| 177 | */ |
---|
| 178 | ConjugateGradient(const MatrixType& A) : Base(A) {} |
---|
| 179 | |
---|
| 180 | ~ConjugateGradient() {} |
---|
| 181 | |
---|
| 182 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
---|
| 183 | * \a x0 as an initial solution. |
---|
| 184 | * |
---|
| 185 | * \sa compute() |
---|
| 186 | */ |
---|
| 187 | template<typename Rhs,typename Guess> |
---|
| 188 | inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess> |
---|
| 189 | solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
---|
| 190 | { |
---|
| 191 | eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); |
---|
| 192 | eigen_assert(Base::rows()==b.rows() |
---|
| 193 | && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 194 | return internal::solve_retval_with_guess |
---|
| 195 | <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0); |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | /** \internal */ |
---|
| 199 | template<typename Rhs,typename Dest> |
---|
| 200 | void _solveWithGuess(const Rhs& b, Dest& x) const |
---|
| 201 | { |
---|
| 202 | m_iterations = Base::maxIterations(); |
---|
| 203 | m_error = Base::m_tolerance; |
---|
| 204 | |
---|
| 205 | for(int j=0; j<b.cols(); ++j) |
---|
| 206 | { |
---|
| 207 | m_iterations = Base::maxIterations(); |
---|
| 208 | m_error = Base::m_tolerance; |
---|
| 209 | |
---|
| 210 | typename Dest::ColXpr xj(x,j); |
---|
| 211 | internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj, |
---|
| 212 | Base::m_preconditioner, m_iterations, m_error); |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | m_isInitialized = true; |
---|
| 216 | m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** \internal */ |
---|
| 220 | template<typename Rhs,typename Dest> |
---|
| 221 | void _solve(const Rhs& b, Dest& x) const |
---|
| 222 | { |
---|
| 223 | x.setOnes(); |
---|
| 224 | _solveWithGuess(b,x); |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | protected: |
---|
| 228 | |
---|
| 229 | }; |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | namespace internal { |
---|
| 233 | |
---|
| 234 | template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs> |
---|
| 235 | struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
---|
| 236 | : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs> |
---|
| 237 | { |
---|
| 238 | typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec; |
---|
| 239 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 240 | |
---|
| 241 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 242 | { |
---|
| 243 | dec()._solve(rhs(),dst); |
---|
| 244 | } |
---|
| 245 | }; |
---|
| 246 | |
---|
| 247 | } // end namespace internal |
---|
| 248 | |
---|
| 249 | } // end namespace Eigen |
---|
| 250 | |
---|
| 251 | #endif // EIGEN_CONJUGATE_GRADIENT_H |
---|