Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h @ 10617

Last change on this file since 10617 was 9562, checked in by gkronber, 12 years ago

#1967 worked on Gaussian process evolution.

File size: 7.8 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_BICGSTAB_H
12#define EIGEN_BICGSTAB_H
13
14namespace Eigen {
15
16namespace internal {
17
18/** \internal Low-level bi conjugate gradient stabilized algorithm
19  * \param mat The matrix A
20  * \param rhs The right hand side vector b
21  * \param x On input and initial solution, on output the computed solution.
22  * \param precond A preconditioner being able to efficiently solve for an
23  *                approximation of Ax=b (regardless of b)
24  * \param iters On input the max number of iteration, on output the number of performed iterations.
25  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
26  * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
27  */
28template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
29bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30              const Preconditioner& precond, int& iters,
31              typename Dest::RealScalar& tol_error)
32{
33  using std::sqrt;
34  using std::abs;
35  typedef typename Dest::RealScalar RealScalar;
36  typedef typename Dest::Scalar Scalar;
37  typedef Matrix<Scalar,Dynamic,1> VectorType;
38  RealScalar tol = tol_error;
39  int maxIters = iters;
40
41  int n = mat.cols();
42  VectorType r  = rhs - mat * x;
43  VectorType r0 = r;
44 
45  RealScalar r0_sqnorm = r0.squaredNorm();
46  Scalar rho    = 1;
47  Scalar alpha  = 1;
48  Scalar w      = 1;
49 
50  VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
51  VectorType y(n),  z(n);
52  VectorType kt(n), ks(n);
53
54  VectorType s(n), t(n);
55
56  RealScalar tol2 = tol*tol;
57  int i = 0;
58
59  while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters )
60  {
61    Scalar rho_old = rho;
62
63    rho = r0.dot(r);
64    if (rho == Scalar(0)) return false; /* New search directions cannot be found */
65    Scalar beta = (rho/rho_old) * (alpha / w);
66    p = r + beta * (p - w * v);
67   
68    y = precond.solve(p);
69   
70    v.noalias() = mat * y;
71
72    alpha = rho / r0.dot(v);
73    s = r - alpha * v;
74
75    z = precond.solve(s);
76    t.noalias() = mat * z;
77
78    w = t.dot(s) / t.squaredNorm();
79    x += alpha * y + w * z;
80    r = s - w * t;
81    ++i;
82  }
83  tol_error = sqrt(r.squaredNorm()/r0_sqnorm);
84  iters = i;
85  return true;
86}
87
88}
89
90template< typename _MatrixType,
91          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
92class BiCGSTAB;
93
94namespace internal {
95
96template< typename _MatrixType, typename _Preconditioner>
97struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
98{
99  typedef _MatrixType MatrixType;
100  typedef _Preconditioner Preconditioner;
101};
102
103}
104
105/** \ingroup IterativeLinearSolvers_Module
106  * \brief A bi conjugate gradient stabilized solver for sparse square problems
107  *
108  * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
109  * stabilized algorithm. The vectors x and b can be either dense or sparse.
110  *
111  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
112  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
113  *
114  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
115  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
116  * and NumTraits<Scalar>::epsilon() for the tolerance.
117  *
118  * This class can be used as the direct solver classes. Here is a typical usage example:
119  * \code
120  * int n = 10000;
121  * VectorXd x(n), b(n);
122  * SparseMatrix<double> A(n,n);
123  * // fill A and b
124  * BiCGSTAB<SparseMatrix<double> > solver;
125  * solver(A);
126  * x = solver.solve(b);
127  * std::cout << "#iterations:     " << solver.iterations() << std::endl;
128  * std::cout << "estimated error: " << solver.error()      << std::endl;
129  * // update b, and solve again
130  * x = solver.solve(b);
131  * \endcode
132  *
133  * By default the iterations start with x=0 as an initial guess of the solution.
134  * One can control the start using the solveWithGuess() method. Here is a step by
135  * step execution example starting with a random guess and printing the evolution
136  * of the estimated error:
137  * * \code
138  * x = VectorXd::Random(n);
139  * solver.setMaxIterations(1);
140  * int i = 0;
141  * do {
142  *   x = solver.solveWithGuess(b,x);
143  *   std::cout << i << " : " << solver.error() << std::endl;
144  *   ++i;
145  * } while (solver.info()!=Success && i<100);
146  * \endcode
147  * Note that such a step by step excution is slightly slower.
148  *
149  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
150  */
151template< typename _MatrixType, typename _Preconditioner>
152class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
153{
154  typedef IterativeSolverBase<BiCGSTAB> Base;
155  using Base::mp_matrix;
156  using Base::m_error;
157  using Base::m_iterations;
158  using Base::m_info;
159  using Base::m_isInitialized;
160public:
161  typedef _MatrixType MatrixType;
162  typedef typename MatrixType::Scalar Scalar;
163  typedef typename MatrixType::Index Index;
164  typedef typename MatrixType::RealScalar RealScalar;
165  typedef _Preconditioner Preconditioner;
166
167public:
168
169  /** Default constructor. */
170  BiCGSTAB() : Base() {}
171
172  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
173    *
174    * This constructor is a shortcut for the default constructor followed
175    * by a call to compute().
176    *
177    * \warning this class stores a reference to the matrix A as well as some
178    * precomputed values that depend on it. Therefore, if \a A is changed
179    * this class becomes invalid. Call compute() to update it with the new
180    * matrix A, or modify a copy of A.
181    */
182  BiCGSTAB(const MatrixType& A) : Base(A) {}
183
184  ~BiCGSTAB() {}
185 
186  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
187    * \a x0 as an initial solution.
188    *
189    * \sa compute()
190    */
191  template<typename Rhs,typename Guess>
192  inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
193  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
194  {
195    eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
196    eigen_assert(Base::rows()==b.rows()
197              && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
198    return internal::solve_retval_with_guess
199            <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
200  }
201 
202  /** \internal */
203  template<typename Rhs,typename Dest>
204  void _solveWithGuess(const Rhs& b, Dest& x) const
205  {   
206    bool failed = false;
207    for(int j=0; j<b.cols(); ++j)
208    {
209      m_iterations = Base::maxIterations();
210      m_error = Base::m_tolerance;
211     
212      typename Dest::ColXpr xj(x,j);
213      if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
214        failed = true;
215    }
216    m_info = failed ? NumericalIssue
217           : m_error <= Base::m_tolerance ? Success
218           : NoConvergence;
219    m_isInitialized = true;
220  }
221
222  /** \internal */
223  template<typename Rhs,typename Dest>
224  void _solve(const Rhs& b, Dest& x) const
225  {
226    x.setZero();
227    _solveWithGuess(b,x);
228  }
229
230protected:
231
232};
233
234
235namespace internal {
236
237  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
238struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
239  : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
240{
241  typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
242  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
243
244  template<typename Dest> void evalTo(Dest& dst) const
245  {
246    dec()._solve(rhs(),dst);
247  }
248};
249
250} // end namespace internal
251
252} // end namespace Eigen
253
254#endif // EIGEN_BICGSTAB_H
Note: See TracBrowser for help on using the repository browser.