[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
---|
| 6 | // |
---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 10 | |
---|
| 11 | #ifndef EIGEN_BICGSTAB_H |
---|
| 12 | #define EIGEN_BICGSTAB_H |
---|
| 13 | |
---|
| 14 | namespace Eigen { |
---|
| 15 | |
---|
| 16 | namespace internal { |
---|
| 17 | |
---|
| 18 | /** \internal Low-level bi conjugate gradient stabilized algorithm |
---|
| 19 | * \param mat The matrix A |
---|
| 20 | * \param rhs The right hand side vector b |
---|
| 21 | * \param x On input and initial solution, on output the computed solution. |
---|
| 22 | * \param precond A preconditioner being able to efficiently solve for an |
---|
| 23 | * approximation of Ax=b (regardless of b) |
---|
| 24 | * \param iters On input the max number of iteration, on output the number of performed iterations. |
---|
| 25 | * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
---|
| 26 | * \return false in the case of numerical issue, for example a break down of BiCGSTAB. |
---|
| 27 | */ |
---|
| 28 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
---|
| 29 | bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, |
---|
| 30 | const Preconditioner& precond, int& iters, |
---|
| 31 | typename Dest::RealScalar& tol_error) |
---|
| 32 | { |
---|
| 33 | using std::sqrt; |
---|
| 34 | using std::abs; |
---|
| 35 | typedef typename Dest::RealScalar RealScalar; |
---|
| 36 | typedef typename Dest::Scalar Scalar; |
---|
| 37 | typedef Matrix<Scalar,Dynamic,1> VectorType; |
---|
| 38 | RealScalar tol = tol_error; |
---|
| 39 | int maxIters = iters; |
---|
| 40 | |
---|
| 41 | int n = mat.cols(); |
---|
| 42 | VectorType r = rhs - mat * x; |
---|
| 43 | VectorType r0 = r; |
---|
| 44 | |
---|
| 45 | RealScalar r0_sqnorm = r0.squaredNorm(); |
---|
| 46 | Scalar rho = 1; |
---|
| 47 | Scalar alpha = 1; |
---|
| 48 | Scalar w = 1; |
---|
| 49 | |
---|
| 50 | VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); |
---|
| 51 | VectorType y(n), z(n); |
---|
| 52 | VectorType kt(n), ks(n); |
---|
| 53 | |
---|
| 54 | VectorType s(n), t(n); |
---|
| 55 | |
---|
| 56 | RealScalar tol2 = tol*tol; |
---|
| 57 | int i = 0; |
---|
| 58 | |
---|
| 59 | while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters ) |
---|
| 60 | { |
---|
| 61 | Scalar rho_old = rho; |
---|
| 62 | |
---|
| 63 | rho = r0.dot(r); |
---|
| 64 | if (rho == Scalar(0)) return false; /* New search directions cannot be found */ |
---|
| 65 | Scalar beta = (rho/rho_old) * (alpha / w); |
---|
| 66 | p = r + beta * (p - w * v); |
---|
| 67 | |
---|
| 68 | y = precond.solve(p); |
---|
| 69 | |
---|
| 70 | v.noalias() = mat * y; |
---|
| 71 | |
---|
| 72 | alpha = rho / r0.dot(v); |
---|
| 73 | s = r - alpha * v; |
---|
| 74 | |
---|
| 75 | z = precond.solve(s); |
---|
| 76 | t.noalias() = mat * z; |
---|
| 77 | |
---|
| 78 | w = t.dot(s) / t.squaredNorm(); |
---|
| 79 | x += alpha * y + w * z; |
---|
| 80 | r = s - w * t; |
---|
| 81 | ++i; |
---|
| 82 | } |
---|
| 83 | tol_error = sqrt(r.squaredNorm()/r0_sqnorm); |
---|
| 84 | iters = i; |
---|
| 85 | return true; |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | } |
---|
| 89 | |
---|
| 90 | template< typename _MatrixType, |
---|
| 91 | typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
---|
| 92 | class BiCGSTAB; |
---|
| 93 | |
---|
| 94 | namespace internal { |
---|
| 95 | |
---|
| 96 | template< typename _MatrixType, typename _Preconditioner> |
---|
| 97 | struct traits<BiCGSTAB<_MatrixType,_Preconditioner> > |
---|
| 98 | { |
---|
| 99 | typedef _MatrixType MatrixType; |
---|
| 100 | typedef _Preconditioner Preconditioner; |
---|
| 101 | }; |
---|
| 102 | |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** \ingroup IterativeLinearSolvers_Module |
---|
| 106 | * \brief A bi conjugate gradient stabilized solver for sparse square problems |
---|
| 107 | * |
---|
| 108 | * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient |
---|
| 109 | * stabilized algorithm. The vectors x and b can be either dense or sparse. |
---|
| 110 | * |
---|
| 111 | * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
---|
| 112 | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
---|
| 113 | * |
---|
| 114 | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
---|
| 115 | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
---|
| 116 | * and NumTraits<Scalar>::epsilon() for the tolerance. |
---|
| 117 | * |
---|
| 118 | * This class can be used as the direct solver classes. Here is a typical usage example: |
---|
| 119 | * \code |
---|
| 120 | * int n = 10000; |
---|
| 121 | * VectorXd x(n), b(n); |
---|
| 122 | * SparseMatrix<double> A(n,n); |
---|
| 123 | * // fill A and b |
---|
| 124 | * BiCGSTAB<SparseMatrix<double> > solver; |
---|
| 125 | * solver(A); |
---|
| 126 | * x = solver.solve(b); |
---|
| 127 | * std::cout << "#iterations: " << solver.iterations() << std::endl; |
---|
| 128 | * std::cout << "estimated error: " << solver.error() << std::endl; |
---|
| 129 | * // update b, and solve again |
---|
| 130 | * x = solver.solve(b); |
---|
| 131 | * \endcode |
---|
| 132 | * |
---|
| 133 | * By default the iterations start with x=0 as an initial guess of the solution. |
---|
| 134 | * One can control the start using the solveWithGuess() method. Here is a step by |
---|
| 135 | * step execution example starting with a random guess and printing the evolution |
---|
| 136 | * of the estimated error: |
---|
| 137 | * * \code |
---|
| 138 | * x = VectorXd::Random(n); |
---|
| 139 | * solver.setMaxIterations(1); |
---|
| 140 | * int i = 0; |
---|
| 141 | * do { |
---|
| 142 | * x = solver.solveWithGuess(b,x); |
---|
| 143 | * std::cout << i << " : " << solver.error() << std::endl; |
---|
| 144 | * ++i; |
---|
| 145 | * } while (solver.info()!=Success && i<100); |
---|
| 146 | * \endcode |
---|
| 147 | * Note that such a step by step excution is slightly slower. |
---|
| 148 | * |
---|
| 149 | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
---|
| 150 | */ |
---|
| 151 | template< typename _MatrixType, typename _Preconditioner> |
---|
| 152 | class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> > |
---|
| 153 | { |
---|
| 154 | typedef IterativeSolverBase<BiCGSTAB> Base; |
---|
| 155 | using Base::mp_matrix; |
---|
| 156 | using Base::m_error; |
---|
| 157 | using Base::m_iterations; |
---|
| 158 | using Base::m_info; |
---|
| 159 | using Base::m_isInitialized; |
---|
| 160 | public: |
---|
| 161 | typedef _MatrixType MatrixType; |
---|
| 162 | typedef typename MatrixType::Scalar Scalar; |
---|
| 163 | typedef typename MatrixType::Index Index; |
---|
| 164 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 165 | typedef _Preconditioner Preconditioner; |
---|
| 166 | |
---|
| 167 | public: |
---|
| 168 | |
---|
| 169 | /** Default constructor. */ |
---|
| 170 | BiCGSTAB() : Base() {} |
---|
| 171 | |
---|
| 172 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
---|
| 173 | * |
---|
| 174 | * This constructor is a shortcut for the default constructor followed |
---|
| 175 | * by a call to compute(). |
---|
| 176 | * |
---|
| 177 | * \warning this class stores a reference to the matrix A as well as some |
---|
| 178 | * precomputed values that depend on it. Therefore, if \a A is changed |
---|
| 179 | * this class becomes invalid. Call compute() to update it with the new |
---|
| 180 | * matrix A, or modify a copy of A. |
---|
| 181 | */ |
---|
| 182 | BiCGSTAB(const MatrixType& A) : Base(A) {} |
---|
| 183 | |
---|
| 184 | ~BiCGSTAB() {} |
---|
| 185 | |
---|
| 186 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
---|
| 187 | * \a x0 as an initial solution. |
---|
| 188 | * |
---|
| 189 | * \sa compute() |
---|
| 190 | */ |
---|
| 191 | template<typename Rhs,typename Guess> |
---|
| 192 | inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess> |
---|
| 193 | solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
---|
| 194 | { |
---|
| 195 | eigen_assert(m_isInitialized && "BiCGSTAB is not initialized."); |
---|
| 196 | eigen_assert(Base::rows()==b.rows() |
---|
| 197 | && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 198 | return internal::solve_retval_with_guess |
---|
| 199 | <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0); |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** \internal */ |
---|
| 203 | template<typename Rhs,typename Dest> |
---|
| 204 | void _solveWithGuess(const Rhs& b, Dest& x) const |
---|
| 205 | { |
---|
| 206 | bool failed = false; |
---|
| 207 | for(int j=0; j<b.cols(); ++j) |
---|
| 208 | { |
---|
| 209 | m_iterations = Base::maxIterations(); |
---|
| 210 | m_error = Base::m_tolerance; |
---|
| 211 | |
---|
| 212 | typename Dest::ColXpr xj(x,j); |
---|
| 213 | if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error)) |
---|
| 214 | failed = true; |
---|
| 215 | } |
---|
| 216 | m_info = failed ? NumericalIssue |
---|
| 217 | : m_error <= Base::m_tolerance ? Success |
---|
| 218 | : NoConvergence; |
---|
| 219 | m_isInitialized = true; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /** \internal */ |
---|
| 223 | template<typename Rhs,typename Dest> |
---|
| 224 | void _solve(const Rhs& b, Dest& x) const |
---|
| 225 | { |
---|
| 226 | x.setZero(); |
---|
| 227 | _solveWithGuess(b,x); |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | protected: |
---|
| 231 | |
---|
| 232 | }; |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | namespace internal { |
---|
| 236 | |
---|
| 237 | template<typename _MatrixType, typename _Preconditioner, typename Rhs> |
---|
| 238 | struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs> |
---|
| 239 | : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs> |
---|
| 240 | { |
---|
| 241 | typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec; |
---|
| 242 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
| 243 | |
---|
| 244 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 245 | { |
---|
| 246 | dec()._solve(rhs(),dst); |
---|
| 247 | } |
---|
| 248 | }; |
---|
| 249 | |
---|
| 250 | } // end namespace internal |
---|
| 251 | |
---|
| 252 | } // end namespace Eigen |
---|
| 253 | |
---|
| 254 | #endif // EIGEN_BICGSTAB_H |
---|