1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_BASIC_PRECONDITIONERS_H |
---|
11 | #define EIGEN_BASIC_PRECONDITIONERS_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | /** \ingroup IterativeLinearSolvers_Module |
---|
16 | * \brief A preconditioner based on the digonal entries |
---|
17 | * |
---|
18 | * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. |
---|
19 | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: |
---|
20 | * \code |
---|
21 | * A.diagonal().asDiagonal() . x = b |
---|
22 | * \endcode |
---|
23 | * |
---|
24 | * \tparam _Scalar the type of the scalar. |
---|
25 | * |
---|
26 | * This preconditioner is suitable for both selfadjoint and general problems. |
---|
27 | * The diagonal entries are pre-inverted and stored into a dense vector. |
---|
28 | * |
---|
29 | * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. |
---|
30 | * |
---|
31 | */ |
---|
32 | template <typename _Scalar> |
---|
33 | class DiagonalPreconditioner |
---|
34 | { |
---|
35 | typedef _Scalar Scalar; |
---|
36 | typedef Matrix<Scalar,Dynamic,1> Vector; |
---|
37 | typedef typename Vector::Index Index; |
---|
38 | |
---|
39 | public: |
---|
40 | // this typedef is only to export the scalar type and compile-time dimensions to solve_retval |
---|
41 | typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; |
---|
42 | |
---|
43 | DiagonalPreconditioner() : m_isInitialized(false) {} |
---|
44 | |
---|
45 | template<typename MatType> |
---|
46 | DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) |
---|
47 | { |
---|
48 | compute(mat); |
---|
49 | } |
---|
50 | |
---|
51 | Index rows() const { return m_invdiag.size(); } |
---|
52 | Index cols() const { return m_invdiag.size(); } |
---|
53 | |
---|
54 | template<typename MatType> |
---|
55 | DiagonalPreconditioner& analyzePattern(const MatType& ) |
---|
56 | { |
---|
57 | return *this; |
---|
58 | } |
---|
59 | |
---|
60 | template<typename MatType> |
---|
61 | DiagonalPreconditioner& factorize(const MatType& mat) |
---|
62 | { |
---|
63 | m_invdiag.resize(mat.cols()); |
---|
64 | for(int j=0; j<mat.outerSize(); ++j) |
---|
65 | { |
---|
66 | typename MatType::InnerIterator it(mat,j); |
---|
67 | while(it && it.index()!=j) ++it; |
---|
68 | if(it && it.index()==j) |
---|
69 | m_invdiag(j) = Scalar(1)/it.value(); |
---|
70 | else |
---|
71 | m_invdiag(j) = 0; |
---|
72 | } |
---|
73 | m_isInitialized = true; |
---|
74 | return *this; |
---|
75 | } |
---|
76 | |
---|
77 | template<typename MatType> |
---|
78 | DiagonalPreconditioner& compute(const MatType& mat) |
---|
79 | { |
---|
80 | return factorize(mat); |
---|
81 | } |
---|
82 | |
---|
83 | template<typename Rhs, typename Dest> |
---|
84 | void _solve(const Rhs& b, Dest& x) const |
---|
85 | { |
---|
86 | x = m_invdiag.array() * b.array() ; |
---|
87 | } |
---|
88 | |
---|
89 | template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs> |
---|
90 | solve(const MatrixBase<Rhs>& b) const |
---|
91 | { |
---|
92 | eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); |
---|
93 | eigen_assert(m_invdiag.size()==b.rows() |
---|
94 | && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); |
---|
95 | return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived()); |
---|
96 | } |
---|
97 | |
---|
98 | protected: |
---|
99 | Vector m_invdiag; |
---|
100 | bool m_isInitialized; |
---|
101 | }; |
---|
102 | |
---|
103 | namespace internal { |
---|
104 | |
---|
105 | template<typename _MatrixType, typename Rhs> |
---|
106 | struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs> |
---|
107 | : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs> |
---|
108 | { |
---|
109 | typedef DiagonalPreconditioner<_MatrixType> Dec; |
---|
110 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
---|
111 | |
---|
112 | template<typename Dest> void evalTo(Dest& dst) const |
---|
113 | { |
---|
114 | dec()._solve(rhs(),dst); |
---|
115 | } |
---|
116 | }; |
---|
117 | |
---|
118 | } |
---|
119 | |
---|
120 | /** \ingroup IterativeLinearSolvers_Module |
---|
121 | * \brief A naive preconditioner which approximates any matrix as the identity matrix |
---|
122 | * |
---|
123 | * \sa class DiagonalPreconditioner |
---|
124 | */ |
---|
125 | class IdentityPreconditioner |
---|
126 | { |
---|
127 | public: |
---|
128 | |
---|
129 | IdentityPreconditioner() {} |
---|
130 | |
---|
131 | template<typename MatrixType> |
---|
132 | IdentityPreconditioner(const MatrixType& ) {} |
---|
133 | |
---|
134 | template<typename MatrixType> |
---|
135 | IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } |
---|
136 | |
---|
137 | template<typename MatrixType> |
---|
138 | IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } |
---|
139 | |
---|
140 | template<typename MatrixType> |
---|
141 | IdentityPreconditioner& compute(const MatrixType& ) { return *this; } |
---|
142 | |
---|
143 | template<typename Rhs> |
---|
144 | inline const Rhs& solve(const Rhs& b) const { return b; } |
---|
145 | }; |
---|
146 | |
---|
147 | } // end namespace Eigen |
---|
148 | |
---|
149 | #endif // EIGEN_BASIC_PRECONDITIONERS_H |
---|